
Shannon Uncertainty and Information

Alan R. Rogers

April 8, 2019

William Dembski [1] defines a measure of in-
formation that is similar to the classical measure
of Claude Shannon [2]. To understand Dembski,
you need a little background on Shannon. This
note provides that background.

Suppose that we are transmitting messages,
each of which consists of a single letter: either
a, b, or c. We wish to transmit such messages
over a communications channel that uses only 0s
and 1s. Each 0 and 1 is called a “binary digit”
or “bit.” To reduce the load on our communica-
tions channel, our code should use (on average)
the minimum possible number of bits. Suppose
that the three messages, a, b, and c, occur with
probabilities 1/2, 1/4, and 1/4. Here is one pos-
sible code:

Message Probability Code

a 1/2 0
b 1/4 10
c 1/4 11

We use 1 bit for the most common message and
2 each for the less-common ones. Half the mes-
sages use 1 bit and half use 2, so the average
message uses 1.5. This can be thought of a mea-
sure of “uncertainty.”

Suppose now that we have received a message,
but it is slightly garbled. It wasn’t “a,” but was
it “b” or “c?” We’re completely undecided. We
can use a simpler code to represent the remaining
uncertainty:

Message Probability Code

b 1/2 0
c 1/2 1

After receiving the slightly-garbled message,
only a single bit is needed to represent the
remaining uncertainty. The reduction in

uncertainty—0.5 bits—is the Shannon informa-
tion provided by the message.

Shannon [2] developed a theory of uncertainty
and information. He showed that the uncer-
tainty cannot be smaller than

H = −
∑

pi log2 pi,

where pi the the probability of the ith message,
and log2 pi is the logarithm of pi to base 2. (See
the appendix for a refresher on logarithms.) This
is the “Shannon uncertainty.” Before receiving
the garbled message in the example above, the
Shannon uncertainty was

H0 = −1

2
log2

1

2
− 1

4
log2

1

4
− 1

4
log2

1

4

=
1

2
+

1

2
+

1

2
= 1.5,

After receiving the garbled message, the Shan-
non uncertainty is

H1 = −1

2
log2

1

2
− 1

2
log2

1

2
= 1

In both cases, Shannon’s formula gives the an-
swer that we got by counting bits. This is not
typical. As we shall see, most codes do not quite
achieve Shannon’s theoretical minimum.

Finally, suppose that we received an ungarbled
message. After receiving it, we know with cer-
tainty that the letter is “b.” There is no further
uncertainty, so H1 = 0. In terms of Shannon’s
formula,

H1 = −1 × log2 1 = 0

because the logarithm of 1 is 0. The information
provided by the ungarbled message, H0 −H1 =
1.5 − 0 = 1.5 bits, is equal to the uncertainty of
the system before we received the message.

1



In the examples above, we get the same answer
two different ways—from Shannon’s formula and
by averaging the number of bits per message.
This is not typical. Shannon’s formula usually
gives a slightly smaller answer than the best code
you can cook up. For example, consider:

Message Frequency Code

a 3/5 0
b 1/5 10
c 1/5 11

The average number of bits per message is

3

5
× 1 +

2

5
× 2 = 1.4

Shannon’s formula gives a slightly smaller num-
ber,

H = −3

5
log2

3

5
− 1

5
log2

1

5
− 1

5
log2

1

5
= 0.442 + 0.464 + 0.464

= 1.37

The discrepancy arises because in Shannon’s for-
mula, the number of bits allotted to a message
is − log2 p bits, which may be a fraction. In the
example just above, message “a” had probability
3/5, so Shannon’s formula allots only a fraction,
− log2(3/5) = 0.74, of a bit. Our code, however,
used an entire bit. Shannon’s formula is a lower
bound on the number of bits.

Appendix: logarithms

We all know that

23 = 2 × 2 × 2 = 8

This same fact can also be expressed by writing

log2 8 = 3

In words, this reads “the logarithm to base 2 of 8
equals 3.” Both equations mean the same thing:
the 3rd power of 2 is 8. Similarly, 210 = 1024, so
log2 1024 = 10.

For negative exponents, the situation is simi-
lar:

2−3 =
1

2
× 1

2
× 1

2
=

1

8

We write the same fact in logarithms as

log2
1

8
= −3

Here are some other numbers and their base-2
logs:

x log2 x

1/4 –2
1/2 –1

1 0
2 1
4 2
8 3

16 4
1,099,511,627,776 40

As x increases, log2 x increases too, but much
more slowly.

References

[1] William A. Dembski. The Design Inference:
Eliminating Chance through Small Probabili-
ties. Cambridge University Press, 1998.

[2] Claude Elwood Shannon. A mathematical
theory of communication. Bell System Tech-
nical Journal, 27(3):379–423, 1948.

2


