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Mobile elements make up large portions of most eukaryotic

genomes. They create genetic instability, not only through

insertional mutation but also by contributing recombination

substrates, both during and long after their insertion. The

combination of whole-genome sequences and the development

of innovative new assays to test the function of mobile elements

have increased our understanding of how these elements

mobilize and how their insertion impacts genome diversity and

human disease.
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Abbreviations
HGWD human genome working draft

IAP intracisternal A particle

L1 LINE-1

LINEs long interspersed elements

LTR long terminal repeat

MGWD mouse genome working draft

SINEs short interspersed elements

TPRT target-site primed reverse transcription

UTR untranslated region

Introduction
The completion of the human and mouse genome work-

ing draft sequences (HGWD and MGWD, respectively)

has confirmed that transposable elements played a major

role in shaping mammalian genomes [1��,2�]. DNA

transposons, LTR-retrotransposons, long interspersed

elements (LINEs), and short interspersed elements

(SINEs) comprise at least 45% and 37% of human and

mouse DNA, respectively. The difference in transposa-

ble element content between these species likely reflects

higher rates of sequence divergence in rodents that make

identification of older mobile elements impossible [2�].
Retrotransposons comprise the majority of mammalian

transposable elements (Figure 1), whereas DNA transpo-

sons comprise a small fraction and have accumulated

mutations, rendering them immobile.

Retrotransposons mobilize (i.e. retrotranspose) via an

RNA intermediate, and can be divided into two classes

on the basis of either the presence or absence of long

terminal repeats (LTRs). LTR-retrotransposons are found

in the genomes of numerous eukaryotes and are similar in

structure to simple retroviruses except that they lack a

functional envelope gene. Although LTR-retrotranspo-

sons comprise �8% of human DNA, most sequences

contain only a single LTR, because of LTR–LTR recom-

bination. Essentially all human LTR-retrotransposons are

immobile, although a few HERV (human endogenous

retrovirus) elements may remain active. By contrast, the

mouse genome harbors active LTR-retrotransposons in

the forms of intracisternal A particles (IAPs), MaLR and

Etn elements [3–5].

L1 (LINE-1) elements comprise 17–20% of human and

mouse DNA, and are the only active autonomous non-

LTR retrotransposons in those genomes. Out of the

>500,000 L1 copies, only �80–100 are active in the

average diploid human genome [6�]. By comparison,

the diploid mouse genome likely harbors �3000 poten-

tially active L1 elements [7]. Although the retrotranspo-

sition frequency must be greater in the mouse than in

humans, the best estimates of retrotransposition fre-

quency in humans are still relatively high — at least 1

event in every 50 sperm [5,8]. The human and mouse

genomes also harbor numerous non-autonomous non-

LTR retrotransposons, termed SINEs. Alu elements

are the major SINE in the human genome, whereas B1

and B2 elements are the major SINE families in the

mouse genome. Both Alu and B1 elements are derived

from the 7SL RNA, whereas B2 and most other SINEs are

derived from tRNA genes. These SINEs probably all use

the proteins encoded by active L1s to mediate their

mobility (see below). In addition, the human genome

harbors a new and poorly characterized group of mobile

elements, SVA [5].

Over millions of years our genome has evolved to contain

a small amount of protein-coding DNA (exons) and a
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substantial amount of intronic and intergenic sequence

that contains modest amounts of regulatory sequences,

and a large amount of mobile elements. Indeed retro-

transposons likely are drivers of evolutionary change and

non-coding genomic regions may be fertile ‘sampling’

grounds for the evolution of new regulatory sequences.

The sheer abundance of mobile elements also leads to

secondary recombination events that also have a major

impact on the genome.

Retrotransposons as agents of change
How retrotransposons are studied

There are four principal ways to study non-LTR retro-

transposons: first, characterization of recent disease-

producing insertions; second, use of in vitro biochemistry

to study L1-encoded proteins and Alu RNA–protein

complexes; third, analysis of engineered L1 and Alu

elements for retrotransposition in cultured cells and

transgenic mice; and fourth, analysis of whole-genome

sequences in databases. Although complementary, each

approach has its strengths and weaknesses. For example,

disease-producing insertions are somewhat rare and their

analyses often are subject to ascertainment bias, whereas

in vitro biochemical analyses typically involve studying

the retrotransposon components in artificial contexts

under non-physiological conditions. Similarly, although

cultured cell systems allow the analysis of retrotransposi-

tion events in real time without the selective pressures

that occur during genome evolution, the cellular milieu of

transformed cells may distort what actually occurs in the

germ line. However, use of all these approaches in concert

has greatly improved our understanding of how LINEs

and SINEs impact mammalian genomes.

Retrotransposons as insertional mutagens

Retrotransposons continue to sculpt mammalian genomes

and behave as insertional mutagens, either by disrupting

exons or by inserting into introns, leading to mis-splicing

(reviewed in [5,9]). To date, fifteen de novo L1 insertions,

twenty-one de novo Alu retrotransposition events, and

three de novo SVA insertions have resulted in either

disease or novel polymorphisms in man [5,9]. Similarly,

IAP, L1, and two non-autonomous retrotransposons, Etn

and MaLR have resulted in a variety of mouse mutations

[5]. Interestingly, the retrotransposon mutation rate dif-

fers significantly among mammals. For example, although

deleterious retrotransposition events account for only

�0.2% of spontaneous mutations in man, they make

up �10% of spontaneous mutations in mouse [5].

Furthermore, certain mammals, such as the South Amer-

ican rodent Oryzomys, may be devoid of active retrotran-

sposons [10].

Retrotransposons and genomic diversity

Characterization of disease-producing insertions, cell-

culture analyses, and bioinformatic approaches have

shown that active L1s can retrotranspose non-L1 DNA

derived from their 50 and 30 flanks to new genomic

locations by a process termed L1-mediated transduction

[11]. Examination of young L1s in the HGWD identified

30 transductions (Figure 2c) associated with �15–20% of

young L1 insertions, and led to the prediction that as

much as 1% of genomic DNA could be derived from

transduction [12,13]. Thus, L1-mediated transduction

has the potential to shuffle functional sequences to

new genomic locations, facilitating genetic change. More-

over, because L1 insertions frequently are 50 truncated

(Figure 2a), it is possible that many 30 transduction events

are not detected because they completely lack L1 se-

quences. Although no bona fide examples of L1-mediated

exon shuffling have been reported in vivo, L1-encoded

Figure 1
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Retrotransposable elements. Shown are schematics of the major

classes. Retroviruses are infectious agents that utilize their LTR to

supply signals to make RNA that expresses three principal proteins

involved in the retrotransposition, gag (group-specific antigen), pol

(reverse transcriptase), and env (envelope protein). Their genomic

RNA is converted to a circular, double-stranded DNA before

integration in the genome. LTR retrotransposons are similar, but lack the

env gene and therefore are incapable of making infectious particles and

leaving the cell. Non-LTR retrotransposons (primarily LINEs in
mammals), utilize an unusual internal RNA polymerase II promoter that

transcribes a full-length RNA which encodes two proteins. The ORF1

protein encodes an RNA binding protein, while ORF2 encodes

endonuclease and reverse transcriptase activities. SINEs represent the

primary non-autonomous element in mammals, and are generally very

small (<300 bp). They use an internal RNA polymerase III promoter

(A and B boxes) to make a small RNA that co-opts the LINE

retrotransposition machinery. Almost any other cellular RNA, including

mRNA, can utilize the LINE machinery to insert copies of their RNA at

low efficiency to form retro-pseudogenes.
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proteins may have functioned to mediate the mobilization

of an antisense exon from the ataxia telangiectasia

mutated gene (ATM) and a sense exon of the cystic

fibrosis transmembrane receptor gene (CFTR) [14].

Recent evidence from cultured cell studies suggests that

the proteins encoded by active L1s also can function in
trans to mobilize retrotransposition-defective L1s and

non-L1 RNAs, leading to the generation of processed

pseudogenes. Similarly, bioinformatic analyses have un-

covered numerous SINE/LINE chimeras (e.g. U6/L1, U3/

L1 and 7SL/L1) (Figure 2e) [15�], suggesting that tem-

plate switching between LINE and some other RNAs,

primarily pol III transcripts, during reverse transcription

can contribute to processed pseudogene formation. Thus,

it is clear that either directly or through the promiscuous

mobilization of non-L1 RNAs, the proteins encoded by

active L1s serve as engines of genomic change.

DNA-based rearrangements involving

retrotransposons

Retrotransposon-derived sequences can serve as sub-

strates for either homologous or non-homologous recom-

bination events. For example, unequal recombination

between homologous Alu sequences (Figure 2g), and

to a lesser extent L1 sequences, has resulted in a variety

Figure 2
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Genomic impacts of retroelements. (a) A full-length L1 element illustrates the typical 50-truncated L1 insertion into a new genomic location. (b) A

modification of the standard L1 insertion in which the 50 segment is inverted, probably by a mechanism termed ‘twin-priming’ [33�]. (c) When a L1 RNA

includes upstream or downstream sequences, it can transduce short segments of genomic DNA to new locations. (d) A L1 insertion sometimes

creates deletion of sequence (D), as well as rearrangements of the sequences (arrowheads) at the 50 integration junction. (e) During the L1 insertion

process, other RNAs (U6 in this example) can be captured to form a chimeric integrant, probably by template switching during reverse transcription.

(f) A L1 can supply activities in trans to allow insertion of non-autonomous RNAs. (g) Chromosomal duplications and deletions may occur due to

unequal recombination between existing elements (Alu in this case) already inserted in the genome. (h) Insertion of mobile elements can produce

genomic instability by the presence of inverted repeated elements in the genome. These result in heterogeneous, illegitimate recombination events.
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of diseases [9]. Furthermore, the paucity of Alu elements

arranged in a head-to-head or tail-to-tail orientation

(Figure 2h) coupled with experimental reporter-gene ap-

proaches demonstrate that mobile elements which insert

in inverted orientations relative to one another are genetic-

ally unstable [16–18]. The presence of higher levels of

Alu elements at the junctions of segmental duplications

in the genome also suggests the role of dispersed elements

in broader genome rearrangements [19].

Mobile elements also can serve as substrates for gene

conversion or recombinational repair. Despite being

interspersed, phylogenetic and comparative genome stud-

ies have provided evidence that high levels of gene

conversion occur among retrotransposons [20�], or other

dispersed mobile elements [21], creating elements that

have chimeric sequence characteristics of different sub-

families, or occasionally precisely replacing one subfamily

of element with another. Likewise, certain cultured cell

experiments revealed that cDNA-mediated gene conver-

sion could result in the formation of old/new chimeric L1s

[22�,23�], whereas others demonstrate that site-specific

endonucleolytic breaks induced in a L1 sequence occa-

sionally can be ‘healed’ by non-allelic L1-mediated gene

conversion [24]. Thus, gene conversion has the potential

to resurrect an inactive L1 or Alu into an element capable

of retrotransposition. Indeed, this process may help

explain how new subfamilies of elements evolve.

Mechanistic insights
The L1 retrotransposition cycle

The first step in L1 retrotransposition involves transcrip-

tion from an internal promoter localized in its 50 UTR.

How this promoter functions requires additional study;

however, cis-acting sequences important for transcription

include a YY1-binding site [11], SRY family binding sites

[25], and a RUNX3 binding site [26]. In addition, the 50

UTR of human L1s contains an anti-sense promoter

located at þ400–þ600 that may influence the expression

of 50 neighboring genes, but whether this promoter func-

tions in L1 retrotransposition remains unknown [27�].

After transcription, the bicistronic L1 RNA is exported to

the cytoplasm, where the ORF1 and presumably ORF2-

encoded proteins (ORF1p and ORF2p) are translated.

Both ORF1p and ORF2p exhibit a strong cis-preference

[28,29], and associate with the RNA that encoded them to

form a ribonucleoprotein particle, which is a proposed

retrotransposition intermediate (reviewed in [11]). It is

thought that the RNP gains access to the nucleus either

by active import or passively, perhaps during mitotic

nuclear envelope breakdown. ORF1p is readily detected

in a variety of cultured human and mouse cells and in

various tumors (reviewed in [5]). How ORF2p is synthe-

sized in vivo remains a mystery, although in vitro and

cultured cell analyses have demonstrated that ORF2p has

endonuclease and reverse transcriptase activities that are

important for retrotransposition (reviewed in [5,11]).

Indeed, the inability to detect ORF2p either in cultured

cells or in vivo suggests that it is made in very low amounts

or is extremely unstable.

L1 retrotransposition likely occurs by target-site primed

reverse transcription (TPRT) [5,30�], a mechanism first

demonstrated for the R2 retrotransposon from Bombyx
mori [31]. During TPRT, it is proposed that the L1

endonuclease cleaves genomic DNA, liberating a 30

hydroxyl, which serves as a primer for reverse transcrip-

tion of L1 RNA by L1 reverse transcriptase. Recent in
vitro biochemical data suggest that besides functioning in

RNP assembly, mouse ORF1p contains chaperone activ-

ity, which may facilitate early stages of TPRT [32�].

To complete retrotransposition, the nascent L1 cDNA

must join genomic DNA, generating L1 structural hall-

marks (i.e. frequent 50 truncations, a 30 A-tail, and variable-

length target site duplications). Second-strand synthesis

and the completion of L1 integration remain a mystery.

Inversions of the 50 ends of truncated L1s occur in 25–30%

of insertion events. A model termed ‘twin priming’ has

been used to explain how inversion L1s are generated

[33�]. The model involves use of the 30 OH of the second

strand (after its cleavage) as a second primer for reverse

transcription on the L1 RNA, followed by resolution of

this second cDNA to form the inversion. This model is

supported by both analyses of genome insertions from

databases and cell-culture experiments.

Recent experimental analyses in cultured cells indicate

that there could be variations in the standard TPRT

model of retrotransposition. It is hypothesized that pre-

existing nicks in genomic DNA may be utilized as pri-

mers in place of the L1 endonuclease-generated sites (a

chromosomal ‘bandage’). This phenomenon is most

obvious in cells defective in non-homologous end joining

[34�]. In another 5–10% of insertions in transformed

tissue culture cells, various forms of genomic instability

including deletions, the formation of chimeric L1s, and

the generation of possible inversions accompany L1 retro-

transposition events (Figure 2d) [22�,23�]. Although the

relatively high incidence of these unusual rearrangements

may reflect the cellular milieu of the transformed cells

used for these studies, molecular and bioinformatic stud-

ies have identified rare deletion events associated with L1

and Alu insertions in humans [35–38]. Moreover, dele-

tions formed during insertion are associated with 2/8

mutagenic L1 insertions in mouse [5].

L1-mediated SINE mobilization

SINE retrotransposition also likely occurs via TPRT and

recent studies indicate the LINE-encoded proteins are

required for this process [30�,39��]. A HeLa-cell retro-

transposition assay was also used to demonstrate that the

proteins encoded by an eel LINE element could function
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in trans to mobilize an eel SINE [40�]. In addition, those

studies also showed that sequences in the 30 UTR of the

eel LINE and SINE were critical for trans-mobilization, a

requirement not seen for human L1 retrotransposition.

Conceptually similar studies showed that a tagged repor-

ter gene driven by transcription of a ‘young’ Alu sequence

could be trans-mobilized by L1 [39��]. Interestingly, the

latter process requires both the Alu A-tail and L1 ORF2p,

but does not require L1 ORF1p. In addition, in most

inserts the Alu A-tail expanded during the Alu retro-

position process. We speculate that a template switch

in the A-tail region during the amplification is a possible

mechanism for this expansion.

In what cells does retrotransposition occur?

To propagate and expand, retrotransposons must mobi-

lize in cells destined to become germ cells. Consistent

with this notion, expression studies have revealed that

mouse L1 RNA and ORF1p are expressed early in male

and female gametogenesis. Indeed, a mouse model of

human L1 retrotransposition and the investigation of a

disease-producing L1 insertion now indicate that L1

retrotransposition can occur before the onset of meiosis

II in both male and female germ cells [41�,42]. Finally, an

insertion occurring in development has been reported in

the early embryo following injection of an engineered L1

into a fertilized mouse egg [43].

Three lines of evidence suggest that L1 can mobilize in

somatic cells. First, in vitro studies demonstrate that a

variety of transformed human cells can accommodate

retrotransposition [5,11]. Second, expression analyses

demonstrate that human ORF1p is suppressed in differ-

entiated cells, but is activated in certain tumors. Third, a

L1 insertion disrupting the adenomatous polyposis coli
(APC) gene has been identified in a colorectal tumor from

a patient, but was absent from the surrounding constitu-

tional tissue [5]. Thus, it is likely that retrotransposition

does occur in some somatic cells, perhaps stem cells. If so,

one could speculate that we may be somatic mosaics with

respect to mobile element insertions!

Population influences
An extensive study of full-length L1s in the HGWD

revealed that although the average diploid human gen-

ome contains �80–100 active L1s, the bulk of retro-

transposition activity as measured in the cultured cell

retrotransposition assay is concentrated in a small number

of elements, dubbed ‘hot’ L1s. Interestingly, ‘hot’ L1s

tend to be present at relatively low allele frequencies in

human populations and comprise the bulk of L1s that are

progenitors of disease-producing insertions. Consistently,

PCR-based assays have been successful in identifying

L1s present at low allele frequencies in the human

population [44,45�], which are absent from the HGWD

sequence [1��], and the cultured cell assay revealed that

some of these are ‘hot’ L1s [6�,44]. Thus, it is clear that

mobile element presence/absence insertion polymorph-

ism has the potential to influence the mutational load

present in an individual’s genome. Indeed, it will be

interesting to determine the extent of variation in retro-

transposition capability among different individuals in

world populations. Could it be that mobile element

insertion rates are playing a role in the ‘forward evolution’

of our species, and different population groups are evolv-

ing at different rates?

SINEs also show similar population variation, partly

because they almost certainly depend on L1 for their

amplification potential, and partly because the length of

the SINE A-tail varies throughout populations, which is

likely to influence their amplification rate in individual

genomes [46�]. The association of activity with longer A-

tails may reflect the association of the A-tail with poly(A)

binding protein [47,48]. Because new Alu inserts have

very long A-tails [39��,46�], they are likely to have high

amplification potential [46�]. The A-tails, however, shrink

rapidly and become polymorphic in the population.

Although the general tendency is for the A-tails to shrink,

there are also sporadic examples of A-tails growing tre-

mendously at a particular locus [46�]. Thus, a previously

quiescent Alu element may be activated in an individual

in a population through A-tail growth.

Individual mobile element insertions are generally free of

homoplasy (parallel insertions in different genomes)

[20�,49�], with known ancestral states. Because individual

mobile-element insertions have no known precise

mechanism for removal, the insertions are identical by

descent. These characteristics make mobile element

insertions a novel source of genetic variation for phylo-

genetic and population genetic studies [9]. SINE and

LINE insertions have been used to resolve interesting

phylogenetic questions, including the relationships of

different whales [50�] and non-human primates [51,52].

These insertions are also useful tools for the study of

human population genetics [53�,54].

Whole-genome studies
The recent wealth of genomic sequencing data has been a

particular boon to understanding the distribution and

evolution of mobile elements. The abundance of

younger, lineage-specific mobile elements in mouse sug-

gests that they have been amplifying at a higher rate in

mouse than in human [2�]. The relative divergence of the

various mobile elements from one another in the two

species suggests that mouse repetitive elements have

been amplifying at a relatively constant rate through

evolution [2�], whereas primate elements underwent a

sharp peak of activity �40 million years ago, and are

currently amplifying relatively slowly [1��]. These data

confirm that elements may undergo broad bursts of

amplification in genomes, potentially followed by inacti-

vation of the elements.
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Chromosomal distribution

It is well known that L1 and Alu elements have different

genomic distribution preferences in humans, with L1

elements preferentially in AþT-rich genomic regions

and Alu elements in GþC-rich regions [1��]. However,

analysis of the human genomic sequence demonstrated

that young L1s, specifically derived from the active Ta

subset, show no AþT-rich sequence bias, whereas older

elements show the bias relatively rapidly in evolutionary

time [45�]. The same distribution bias is seen for mouse

L1 elements relative to SINE families, B1 and B2 [2�,8].

Indeed, the correlation of LINE and SINE distributions

is stronger between orthologous mouse and human loci

than it is for AþT/GþC content [2�]. Thus, it is not the

base composition itself that drives the distribution of the

older elements but some other feature that in turn corre-

lates with the base composition.

Because the relative distribution of SINEs and LINEs

changes with time, there must be mechanisms for their

selective elimination from different genomic regions. A

likely explanation is that SINEs and LINEs are differ-

entially tolerated when inserted into genes, which also

show a relative bias for GþC-rich regions. For instance,

L1 elements show a strong bias against presence in genes,

and this bias is strongest when their orientation is in the

same direction as the gene [55]. By contrast, Alu elements

are over-represented in and near genes. Thus, to go from a

random distribution to the opposed biases requires a loss

of L1 elements from the vicinity of genes and a loss of

SINEs from the regions away from genes.

L1 elements, with their larger size, and the presence of

potential polyadenylation signals, may be more deleter-

ious within genes than the much smaller SINE sequences.

Thus, insertion of L1 elements is probably quickly fol-

lowed by a population-based selection against alleles that

damage gene expression. However, this type of selection

can only occur while specific element-containing loci are

polymorphic in the population [56]. Recombination

dynamics may explain some of the other distributional

patterns of mobile elements. For instance, post-fixation

loss of Alus through unequal crossing over from less-

essential chromosomal regions may explain the relative

enrichment of Alu elements in the gene-rich regions. It has

also been proposed that SINEs may be excluded from

imprinted regions, consistent with the possibility that their

high CpG content may have a negative impact on methy-

lation associated with imprinting [57]. Similarly, it has

been suggested that a possible role for L1 elements in

X-inactivation led to their selection and relatively high

density on the X chromosome [58]. Alternatively, it has

been proposed that the high density of L1 elements may

be related to the lower level of interchromosomal recom-

bination for the X chromosome relative to autosomes [59].

Consistent with this argument is the finding of even higher

levels of long L1 elements on the Y chromosome [55,59].

Conclusions
Mobile elements are a ubiquitous and abundant compo-

nent of eukaryotic genomes. These elements create a

diverse set of genomic changes, both during and after

their integration, that are subject to population influences

and major changes in amplification potential of different

elements with evolutionary time. Currently, L1 domi-

nates this process in the mammalian genome, both

directly and by driving the retrotransposition of other

RNA species.
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