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1 Introduction

In this project, you will use msprime [1] to check for bias in the estimates from your Legofit project.
This will involve the following steps:

1. Install msprime on your computer.

2. Modify the Python script described below, so that it simulates your own model of history.

3. Run the script to generate simulated data, and pipe the output into simpat, from the Legofit
package, to generate site pattern frequencies in .opf format.

4. Use legofit to analyze the simulated data.

5. Make a graph that compares the true parameter values (the ones used in the simulation) with
the estimates obtained by running legofit on the simulated data. This will show you whether
the legofit estimates are biased.

2 Installing msprime

If you already have Python 3 on your computer, installation is very simple:

python3 -m pip install msprime

3 A Python script to run msprime

On the class website, you will find a Python script called msp.py. This script describes a simple
model of history, involving 2 modern populations and 1 archaic. You will modify this code to
describe your own model of history. Before explaining how it works, I will show you what it does.

By default, the script does not run a simulation. Instead, in invokes the msprime “demography
debugger.” To use it in this mode, type

python3 msp.py

and stare at the output. It’s fairly self explanatory and you can google “msprime demography
debugger” for details.

To simulate data, you must use the -r command-line option. Here’s how to look at the first
few lines of simulated data:

python3 msp.py -r | head

1

./msp.py


You should get something like

npops = 3

pop sampsize

x 1

y 1

n 1

0 1 1 0

0 0 0 1

0 0 0 1

0 1 1 0

0 1 1 0

This will be followed by an error message about a “Broken pipe,” which is generated because the
“head” program stopped reading after 10 lines, and so Python had no place to put its output. In
this output, the first few lines are a header, which will be read by simpat. It gives the number of
populations, their names, and sample sizes. After that (the lines beginning with “0”) comes the
data. Each line consists of four numbers: first the chromosome, and then the genotypes (0 or 1) of
the haploid samples from “x,” “y,” and “z.”

We now dive into the code, so that you will understand what you need to change to build your
own model of history. Here is a listing of “msp.py:”

1 #!/usr/bin/python3

3 # Before running this: "python3 -m pip install msprime"

import msprime as msp

import os, sys

6

def usage():

print("Usage: ./msp.py [options]")

9 print(" where options may include:")

print(" -r or --run: run simulation. Default: run")

print(" DemographyDebugger")

12 sys.exit(1)

do_simulation = False

15 for arg in sys.argv[1:]:

if arg == "-r" or arg == "--run":

do_simulation = True

18 else:

usage()

21 # time parameters in generations

Txyn = 25920

Txy = 3788

24 Ta = 1760 # age of Altai fossil

Talpha = 1897 # time of Neanderthal admixture

27 # population sizes
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Nxyn = 64964.1/2.0 # ancestral population

Nxy = 44869.2/2.0

30 Nn = 9756.8/2.0

Nx = 20000/2.0 # modern Africa

Ny = 20000/2.0 # modern Europe

33

# admixture

mAlpha = 0.05

36

nchromosomes = 10 # number of chromosomes: increase to 1000

basepairs = 2e6 # number of nucleotides per chromosome

39 u_per_site = 1.4e-8 # mutation

# Recombination rate. recomb is the probability of recombination

42 # between sites at opposite ends of the simulated sequence.

c = 1e-8 # rate per base pair per generation

45 dem = msp.Demography()

# Populations

48 dem.add_population(

name = "X",

description = "African",

51 initial_size = Nx

)

dem.add_population(

54 name = "Y",

description = "Eurasian",

initial_size = Ny

57 )

dem.add_population(

name = "Y1",

60 description = "Y before delta gene flow",

initial_size = Ny

)

63 dem.add_population(

name = "N",

description = "Neanderthal",

66 initial_size = Nn

)

dem.add_population(

69 name = "XY",

description = "early modern humans",

initial_size = Nxy

72 )

dem.add_population(

name = "XYN",

75 description = "ancestral population",
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initial_size = Nxyn

)

78

# N->Y gene flow

dem.add_admixture(

81 time = Talpha,

derived = "Y",

ancestral = ["Y1", "N"],

84 proportions = [1-mAlpha, mAlpha]

)

87 # X-Y split

dem.add_population_split(

time = Txy,

90 derived = ["X", "Y1"],

ancestral = "XY"

)

93

# XY-N split

dem.add_population_split(

96 time = Txyn,

derived = ["XY", "N"],

ancestral = "XYN"

99 )

# One haploid sample from each of 3 populations: 2 modern (X,Y),

102 # and 1 archaic (N).

samples = [

msp.SampleSet(num_samples=1, population="X", time=0, ploidy=1),

105 msp.SampleSet(num_samples=1, population="Y", time=0, ploidy=1),

msp.SampleSet(num_samples=1, population="N", time=Ta, ploidy=1),

]

108

if do_simulation:

# Seed for random number generator. Uses 4 bytes (32 bits) from

111 # /dev/urandom.

seed = int.from_bytes(os.urandom(4), "big")

114 # Simulate gene genealogy. When sim_ancestry is called without

# num_replicates, it returns a value of class

# tskit.trees.TreeSequence. But when it’s called with

117 # num_replicates, it returns a "generator", which can be

# used in a loop to deal with each replicate in turn.

chr_generator = msp.sim_ancestry(samples = samples,

120 demography = dem,

sequence_length = basepairs,

random_seed = seed,

123 recombination_rate = c,
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num_replicates = nchromosomes

)

126

# header

lbl = ["x", "y", "n"]

129 print("npops = %d" % len(lbl))

print("%s %s" % ("pop", "sampsize"))

for s in lbl:

132 print("%s %d" % (s, 1))

# Put mutations onto the gene genealogy

135 for i, chr in enumerate(chr_generator):

sim = msp.sim_mutations(chr, rate = u_per_site)

138 for variant in sim.variants():

# Use only biallelic sites

141 if len(variant.alleles) != 2:

continue

144 print(i, end="")

for g in variant.genotypes:

print("", g, end="")

147 print()

else:

# Run demography debugger and quit

150 print(dem.debug())

print("Use \"./sim -r\" to run simulation")

In this program, line 4 imports msprime and abbreviates its name as “msp.” Lines 7–12 define
a function that prints a usage message message and then aborts. It is used if some problem is
detected in parsing the command-line arguments. Line 14 sets do_simulation equal to false.
Unless this is changed by a command-line argument, the program will not execute a computer
simulation. Lines 15–19 parse command-line arguments and set do_simulation equal to true if
the user specifies the -r argument. Lines 21–35 define population history parameters. These values
should reflect the fitted parameters of your own model of history. Lines 37–43 define parameters
relating to the simulation. In this code, I have set nchromosomes equal to 10. You will eventually
want to increase it to 1000. The basepairs parameter is the length of a chromosome. I have set
it to 2e6, because there isn’t much linkage disequilibrium between sites that are farther apart than
that. Using a large number of relatively short chromosomes makes the simulations faster.

Line 45 defines a variable called dem, which will hold our model of demographic history. It is in
instance of the Demography class, which is defined by msprime. Lines 48–77 define the populations
used in the model. Each population has a short name, a description, and an initial size. This size
represents the diploid size of the population at the recent end of its temporal extent. My model
of history does not include growth within populations, so the initial size of a population is its size
throughout its history.

Lines 79–85 define an episode of admixture, giving the time at which it occurs, the name of
the derived population, those of the two ancestral populations, and the proportions of the derived
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population that came from each of the two parents. Msprime does not allow you to specify the
same population as both derived and ancestral within the same episode of admixture. That is why
I define Y1 to represent the pre-admixture portion of population Y.

Lines 87–99 define two population splits, one separating XY into X and Y, and the other separating
XYN into XY and N. A population split is similar to admixture, except that there are two derived
populations and only one derived one.

Lines 103–107 define a list called samples, each element of which is an object of class SampleSet.
The arguments are self explanatory. I set ploidy=1 for consistency with Legofit.

Lines 109–147 execute only if we are doing a simulation. The only line you will need to change
is 128, which defines the labels of the populations. These should be consistent with the population
parameters specified in lines 103–107. There is presumably a way to read these labels directly from
the samples array, but I haven’t yet figured out how to do that. This is why I define a separate
lbl array on line 128.

Even though you won’t need to change the other lines, let me explain what is going on in
lines 109–147. The variable seed is set using random data provided by the operating system. This
value is used to initialize the random number generator so that each run of the program will use a
different sequence of pseudo-random numbers.

Lines 119–125 simulate the population history, using msprime’s sim_ancestry function. The
type of the value returned by this function depends on whether the num_replicates parameter is
used. Without num_replicates, sim_ancestry returns an object of type TreeSequence, which is
defined by msprime. With num_replicates, it returns a Python “generator,” which can be used
to iterate over the TreeSequence objects of the replicates.

That is the purpose of the loop beginning at line 135. Each pass through that loop handles a
different replicate, which I think of as a different chromosome. Within the loop i is the number
of the current chromosome, and chr is an object (defined by msprime) that describes the current
chromosome. Line 136 creates sim, which holds all the data about genetic variation on the current
chromosome. This variable can be thought of as a list of polymorphic loci, or “variants.” We loop
across these variants beginning at line 138, ignoring those that aren’t biallelic (lines 141–142). Each
variant includes a list of genotypes, which we loop over in lines 146–147.

4 Generate site pattern frequencies

The output of “msp.py” is designed for use with the “sitepat” program, which is part of Legofit.
To run a simulation and tabulate site pattern frequencies, type

python3 msp.py -r | simpat

You should get something like this:

# simpat version 2.3.8-12-gf1f00c9

# Including singleton site patterns.

# Number of site patterns: 6

Doing single pass through data to tabulate patterns..

# Nucleotide sites: 66238

# Sites used: 66238

# SitePat E[count]

x 13779.0000000

y 12838.0000000

n 20232.0000000
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x:y 11146.0000000

x:n 3535.0000000

y:n 4679.0000000

simpat is finished

As you can see, this run only generated 66,238 polymorphic sites. You’ll need more sites than this
in your analysis. To produce them, edit msp.py and increase the value of nchromosomes to 1000.

In the scaled-up analysis, you’ll need an additional file called “sim.sh.” This is a shell script
that runs the simulation and puts the output into files whose names are determined by $1, its first
command-line argument. This file looks like this:

# msp.py is a Python script that executes msprime and generates output

# in the "sim" format, which is described in the document of simpat,

# within the Legofit package. simpat is a program that reads sim

# format and tabulates site patterns.

ofile=sim${1}.opf # standard output

efile=sim${1}.err # error output

python3 msp.py -r | simpat 1>${ofile} 2>${efile}

To generate 50 sets of simulated data, you will use a command I describe below, but don’t do this
on your laptop. The command launches 28 parallel processes, and your laptop probably dosn’t
have that many cores. Do it on the CHPC server, but not on one of the login nodes. (Users are not
allowed to use these for substantial calculations.) Instead, start a job on one of my owner nodes
by typing

salloc -t 2:00:00 -n 28 -N 1 -A rogersa-kp -p rogersa-kp

This starts an interactive session on an owner node. The command above will work on the kingspeak
cluster. On notchpeak, change rogersa-kp to rogersa-np. Once you’re in that interactive session,
type:

seq 0 49 | xargs -n 1 -P 28 bash sim.sh

Here, “seq 0 49” prints the integers from 0 through 49. The “xargs” command reads this input,
and launches processes that look like “bash sim.sh 0,” “bash sim.sh 1,” and so on up to “bash
sim.sh 49.” These jobs run in parallel, 28 at a time.

When these jobs finish, you will have files with names like sim0.opf, sim1.opf, and so on up
to sim49.opf. You can use these in Legofit analyses similar to the ones you have already done.

5 Using Legofit to study simulated data

The analysis pipeline for simulated data hardly differs from the one you used earlier on a real data
set and 50 bootstrap replicates. The only difference is that now there is no real data set, and you
have simulation replicates instead of bootstrap replicates.

Here is the slurm script, a1.slr, for stage 1 of the analysis:

#!/bin/bash

#SBATCH -J a1

#SBATCH --account=rogersa-np

#SBATCH --partition=rogersa-np
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#SBATCH --time=0:10:00

#SBATCH --nodes 1

#SBATCH --ntasks 1

#SBATCH -o a1-%a.legofit # stdout

#SBATCH -e a1-%a.err # stderr

i=${SLURM_ARRAY_TASK_ID}

ifile=‘printf "../sim/sim%d.opf" $i‘ # input file

stateout=‘printf "a1-%d.state" $i‘

time legofit -1 -d 0 --stateOut ${stateout} --tol 3e-6 -S 5000 a.lgo ${ifile}

On the server, you would launch this command like this:

sbatch --array=0-49 a1.slr

6 Graphing estimates from simulated data

Figure 1 is copied from a recent preprint [2]. It compares estimates from 50 simulated data sets
with the true parameter values, as specified in the input to msprime. The horizontal spread of
the blue values measures the uncertainty of each estimated parameter. The horizontal distance
between the red crosses and the center of the blue distribution measures bias.

The code that produced this graph is on the class website in a file called b2.r. For your project,
modify this code to reflect the parameter names and the true parameter values of your own project.
You may want to remove the code that graphs mα + mε and mα −mε. These were relevant to a
point I was making, but may not be of interest in your project.

Once you have edited b2.r as needed, you can run it from the command line by typing Rscript

b2.r. This will produce a file called b2dot.pdf.
Here is a listing of b2.r:

1 # File b2.r: This script reads file "b2.flat", which contains

# parameter estimates from several sets of simulated data. It then

3 # makes a 1-dimensional scatter plot for each parameter, which

# includes the estimate from each simulation replicate along with the

# true parameter value, as specified in the input to msprime. The true

6 # parameter values are hard coded into this file, rather than being

# read as input.

9 library(ggplot2)

library(cowplot)

library(tidyr)

12

# Adjust text size. Default is 11

mytheme = theme_get()

15 mytheme$text$size = 18

theme_set(mytheme)

18 # Input file
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mα − mε

mα + mε

mε

mα
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Figure 1: Parameter estimates from 50 simulated data sets. Blue circles are estimates and red
crosses are the true parameter values. Symbols for simulation estimates have been jittered vertically.
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wide <- read.table("b2.flat", header=T)

21 # parameter names

parnames <- c("mAlpha", "mEpsilon", "Txy", "Tnd", "Ta", "Td",

"twoNxynd", "twoNxy", "twoNnd", "twoNn", "twoNd")

24

# Subset data, keeping only the parameters we wish to plot.

wide <- wide[,parnames]

27

# Parameter labels, using R’s "expression" syntax to make subscripts.

lbl <- expression("m"[alpha], "m"[epsilon], "T"["XY"], "T"["ND"],

30 "T"["A"], "T"["D"],

"2N"["XYND"], "2N"["XY"], "2N"["ND"], "2N"["N"], "2N"["D"])

33 # Make graph of migration parameters.

mpar <- c("mAlpha", "mEpsilon")

mdat <- subset(wide, select=mpar)

36

## Create two new parameters

mdat$msum <- mdat$mAlpha + mdat$mEpsilon

39 mdat$mdif <- mdat$mAlpha - mdat$mEpsilon

## Labels of migration parameters

42 mlbl <- expression("m"[alpha], "m"[epsilon], "m"[alpha]+"m"[epsilon],

"m"[alpha]-"m"[epsilon])

45 ## Convert "wide" data format to "long".

mdat <- gather(mdat, par, value, mAlpha, mEpsilon, msum, mdif)

48 ## Create column of true parameter values.

mdat$tru <- rep(NA, nrow(mdat))

mdat$tru[mdat$par == "mAlpha"] <- 0.05

51 mdat$tru[mdat$par == "mEpsilon"] <- 0.025

mdat$tru[mdat$par == "msum"] <- 0.075

mdat$tru[mdat$par == "mdif"] <- 0.025

54 mpar <- c("mAlpha", "mEpsilon", "msum", "mdif")

## This controls the order in which parameters appear on the graph.

57 mdat$par <- ordered(mdat$par, levels=rev(mpar))

## Plot migration rate

60 mplt <- ggplot(mdat, aes(value, par)) +

xlab("Admixture Fraction") +

theme(aspect.ratio=0.2,

63 axis.title.y = element_blank()) +

scale_x_continuous(limits=c(-0.005,0.08)) +

scale_y_discrete(labels=rev(mlbl)) +

66 geom_jitter(height=0.2, width=0, shape=1, alpha=0.5, size=4, color="blue") +
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geom_point(mapping=aes(tru, par), shape=4, size=4, color="red") +

ggtitle("Deterministic algorithm")

69

# Make graph of time parameters

tpar <- c("Txy", "Tnd", "Ta", "Td")

72 tlbl <- expression("T"["XY"], "T"["ND"], "T"["A"], "T"["D"])

tdat <- subset(wide, select=tpar)

tdat <- gather(tdat, par,value)

75 tdat$tru <- rep(NA, nrow(tdat))

tdat$tru[tdat$par == "Txy"] <- 3788

tdat$tru[tdat$par == "Tnd"] <- 15000

78 tdat$tru[tdat$par == "Ta"] <- 1760

tdat$tru[tdat$par == "Td"] <- 1734

tdat$par <- ordered(tdat$par, levels=tpar)

81

tplt <- ggplot(tdat, aes(29*value/1000, par)) +

xlab("Thousands of Years") +

84 theme(aspect.ratio=0.2,

axis.title.y = element_blank()) +

scale_y_discrete(labels=tlbl) +

87 geom_jitter(height=0.2, width=0, shape=1, alpha=0.5, size=4, color="blue") +

geom_point(mapping=aes(29*tru/1000, par), shape=4, size=4, color="red")

90 # Make graph of population-size parameters

npar <- c("twoNxynd", "twoNxy", "twoNnd", "twoNn", "twoNd")

nlbl <- expression("2N"["XYND"], "2N"["XY"], "2N"["ND"], "2N"["N"],

93 "2N"["D"])

ndat <- subset(wide, select=npar)

ndat <- gather(ndat, par,value)

96 ndat$tru <- rep(NA, nrow(ndat))

ndat$tru[ndat$par == "twoNxynd"] <- 64964.1

ndat$tru[ndat$par == "twoNxy"] <- 44869.2

99 ndat$tru[ndat$par == "twoNnd"] <- 5000.0

ndat$tru[ndat$par == "twoNn"] <- 9756.8

ndat$tru[ndat$par == "twoNd"] <- 5000

102 ndat$par <- ordered(ndat$par, levels=npar)

nplt <- ggplot(ndat, aes(value, par)) +

105 xlab("Haploid Population Size (2N)") +

theme(aspect.ratio=0.3,

axis.title.y = element_blank()) +

108 scale_y_discrete(labels=nlbl) +

geom_jitter(height=0.2, width=0, shape=1, alpha=0.5, size=4, color="blue") +

geom_point(mapping=aes(tru, par), shape=4, size=4, color="red")

111

# Combine the 3 graphs into a single graph

plot_grid(mplt, tplt, nplt, align="hv", ncol=1)

114
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# Save graph in pdf format.

ggsave("b2dot.pdf")
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