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1 Introduction

In this project, you will look under the hood to see how coalescent simulations are written in either
Python or Julia. I’ll provide a working program, which uses the coalescent algorithm to build a
gene genealogy, assuming selective neutrality, random mating, and constant population size. There
is no mutation.

Your first step is to get it running on your own machine. The next step is to modify the code
so that it simulates the site frequency spectrum. For this purpose, you will write a function that
traverses the gene genealogy, simulates mutations on each branch, and allocates these mutations
to the relevant entry of the site frequency spectrum.

The initial code is available in two versions. This one is in Python, and this one is in Julia.
Both versions implement the same algorithm. I include the Python version, because Python is
widely used and easy to learn. The Julia version is much much faster and would be a better choice
in real research.

Download the version of your choice, and make sure you have a recent version of Python and/or
Julia. Here’s an interaction that illustrates how to use the Python version:

$ python3

Python 3.10.2 (v3.10.2:a58ebcc701, Jan 13 2022, 14:50:16) \

[Clang 13.0.0 (clang-1300.0.29.30)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> from coalesce import *

>>> main()

Repetition 0

tree depth : 109193.49879333175

total branth length: 357621.02604959125

number of tips : 5

Repetition 1

tree depth : 168516.8538641843

total branth length: 566500.3139273041

number of tips : 5

I’ve written this code so that all it does is define functions. Consequently, when you import it,
nothing runs. There is a function called main, which will run the coalescent simulation several
times and print some output. After importing the code into the Python shell, type main() to run
this program.

Here is an illustration of the Julia version:
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$ julia

_

_ _ _(_)_ | Documentation: https://docs.julialang.org

(_) | (_) (_) |

_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 1.7.0 (2021-11-30)

_/ |\__’_|_|_|\__’_| | Official https://julialang.org/ release

|__/ |

julia> include("coalesce.jl")

main (generic function with 3 methods)

julia> main()

Repetition 1

tree depth : 45006.27393393751

total branth length: 130365.20506580963

number of tips : 5

Repetition 2

tree depth : 52792.55282534899

total branth length: 131608.06412097567

number of tips : 5

2 Nodes

The coalescent algorithm builds a gene genealogy—a tree of connected nodes, each of which repre-
sents a piece of DNA (perhaps a single nucleotide site) at some point in time. There is one node for
each nucleotide in our modern sample. These “tip nodes” have age 0, and they have no children,
but each of them has a parent. The oldest node in the genealogy is called the “root;” it has two
children but no parent. All others are “internal nodes” and have two children and one parent.

To implement this in software, we define something called “Node,” which is a “class” in the
Python version. It has four data fields:

age a floating-point number

parent either another Node or None

left a child, which is either another Node or None

right a child, which is either another Node or None

Here is the Python code that defines class Node:

class Node:

def __init__(self, left=None, right=None, age=0.0):

self.parent = None

self.left = left

self.right = right

self.age = age

if self.left != None:

self.left.parent = self
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if self.right != None:

self.right.parent = self

The __init__ method is a constructor, which builds an instance of class Node. This method is
called in response to statements such as

a = Node()

b = Node()

This says that a and b will refer to newly created objects of type Node. Since I called Node with
no arguments, the defaults of the __init__ method will be used: the new nodes will have age 0,
and their parent, left, and right fields will all equal None. The Node constructor is also used to
link nodes together. For example,

c = Node(a, b, 1.234)

creates node c, whose children are a and b, and whose age is 1.234. This statement also modifies
nodes a and b so that their parent fields are no longer None, but instead refer to c. The parent

field of c equals None.

3 The coalescent algorithm

For background on coalescent theory, see chapters 4–5 of Lecture Notes on Gene Genealogies. That
document focuses on the expectations of statistics related to gene genealogies. Here, our emphasis
is on the variation around these expectations. Computer simulations are useful in studying this
variation, and the coalescent algorithm is central to this endeavor. It is an approximation to the
Wright-Fisher model of genetic drift. The Wright-Fisher model measures time in discrete genera-
tions. The coalescent algorithm treats time as continuous and is therefore only an approximation.
It is an excellent approximation, however, if the population is at all large.

We start with a sample of k modern gene copies and trace their ancestry backwards into the
past. Now and then, two of the lineages will coalesce into a single ancestral lineage. This is called a
coalescent event. As we travel backwards into the past, how long is the interval until the next such
event? If there are k lines of descent, this interval is an exponential random variable with mean
4N/k(k − 1). When a coalescent event occurs, we choose a random pair of lineages, join them to
form a single parental node, reduce the number of lineages by 1, and then proceed with the next
coalescent interval.

Let us work our way through a Python function that implements this algorithm. The first line
is

def coalesce(rng, n = 10000, k=5):

This defines a function called “coalesce,” which takes 3 arguments: rng is a random number
generator, n is the diploid population size, and k is the haploid sample size (number of gene
copies). Next, we define several variables:

age = 0.0

fourN = 4*n

nodes = [Node() for i in range(k)]
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Here, age represents time in generations measured backwards from the present. Each time we
define a new Node, its age will equal the current value of this variable. The fourN variable is just
4 times n. It is defined outside the “while” loop below to avoid doing this multiplication over and
over again within the loop. The variable nodes is a list of k objects, each created by a call to
Node(). These represent the gene copies of our modern sample.

The heart of the algorithm is a “while” loop. Each pass through the loop deals with one
coalescent interval. The first pass deals with the most recent interval, in which the number of
lineages equals the size of the modern sample. At the end of each pass through the loop, the
number of lineages is reduced by 1. We fall out of the loop when k=1. The loop begins like this:

while k > 1:

tmean = fourN/(k*(k-1))

age += rng.exponential(tmean) # time until next coalescent event

Here, we have set tmean, the expected time until the next calescent event. Using this value, we
draw a random value from the exponential distribution and add this to the current value of age.
This establishes the time of the next coalescent event. Having chosen the time, the next step is to
choose two random nodes, i and j, ensuring that i < j.

i = rng.integers(k)

j = rng.integers(k-1)

if j == i:

j = k-1

if j < i:

i, j = j, i

Next, join nodes i and j, and put their parent into position i within the array of nodes.

nodes[i] = Node(nodes[i], nodes[j], age)

Finally, shorten the array, and forget about node j.

if j < k-1:

nodes[j] = nodes[k-1]

k -= 1

We are now out of the “while” loop, and the number, k, of nodes is equal to 1. This last node is
the root of the gene genealogy. This root node is the value returned by the function.

return nodes[0]

4 Using recursive functions to work with gene genealogies

Your project will involve writing a function that calculates the site frequency spectrum. Before
discussing that problem, let’s consider a simpler one: calculating the number of tip nodes that are
descendants of a given node. Here’s a function that does this job:

def ndescendants(node):

if node.left == None:

return 1

else:

return ndescendants(node.left) + ndescendants(node.right)
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This is an example of a recursive function—one that calls itself. The function begins by ask-
ing whether node.left equals None. This is true only for tip nodes, and a tip node has 1
“descendant”—itself. Therefore, if this condition is true, the function returns 1.

Otherwise, we’re at either the root or an internal node, and the number of descendants is the
sum of the descendants of the left and right children. The function therefore calls itself twice (once
for the left child and once for the right) and returns the sum of the two results.

Once you get the hang of recursive functions, you will find that they often make things far far
simpler. Without recursion, the ndescendants function would be much more complex.

5 Calculating the site frequency spectrum

A function that calculates the site frequency spectrum will need several arguments:

node a reference to the current node in the gene genealogy. On the initial call, node will refer to
the root of the gene genealogy. But then the function will call itself recursively to traverse
the entire genealogy.

rng a random number generator. This isn’t needed in Julia, because the random number generator
is global. The rng is used to generate mutations by sampling from the Poisson distribution.

mu the mutation rate, a floating point number.

spec an array of integers, whose length should equal k-1, where k is the number of gene copies
in the sample. On the initial call, all entries of spec should equal 0. On return from the
Python version of the code, spec[i] will equal the number of mutations that have i+1

descendants within the sample. In Julia, spec[i] will equal the number of mutations that
have i mutations within the sample. This difference arises because the first entry in the array
is spec[0] in Python but spec[1] in Julia.

The first line of the function looks like this in Python:

def spectrum(node, rng, mu, spec):

and like this in Julia

function spectrum(node::Node, mu::Float64, spec::Array{Int64})

The function will use a random number generator to determine the number of mutations that arose
along the branch between the current node and its parent. Then it will add those mutations to the
appropriate entry of the spec vector. The appropriate entry depends on how many descendants the
current node has within the modern sample. For example, suppose that there are nmut mutations
and nkids descendants. Then we would want to execute this statement in Python:

spec[nkids-1] += nmut

or this one in Julia

spec[nkids] += nmut

To determine nkids, the function should visit descendant nodes before modifying spec, and it (like
ndescendants above) should return the number of descendants the current node has within the
modern sample.
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The behavior of the spectrum function should depend on whether the current node is the root,
a tip, or an internal node. The root node has no parent. Furthermore, mutations upstream from
the root node do not contribute to the site frequency spectrum. For this reason, if the current node
is the root, the function should not modify spec. It should call itself recursively on the left and
right children. These calls will return the numbers of descendants of the two children. At the root
node, the function should do nothing but return the sum of these two values.

If the current node is a tip, then there are no children: left and right will equal None (in
Python) or nothing (in Julia). Nonetheless, a tip node does have one descendant: itself. Thus,
nkids=1 and there is no need for recursive calls to spectrum.

If the current node is neither the root nor a tip, then it is an internal node. Before modifying
spec, it will be necessary to call spectrum on the left and right children in order to determine
nkids, the number of descendants. Then, the length of the branch connecting the current node to
its parent is

brlen = node.parent.age - node.age

and the expected number of mutations is mu * brlen. This quantity can be handed to a Poisson
random number generator in order to determine the number of mutations. This looks like

nmut = rng.poisson(mu * brlen)

in Python, or

nmut = rand(Poisson(mu * brlen))

in Julia. After adding nmut to the appropriate entry of spec, the function returns nkids.
This leads us to the following algorithm:

1. If node.parent equals None (in Python) or nothing (in Julia), then the current node is the
root. Call spectrum on the left child and on the right child, and return the sum of the two
resulting values.

2. If we reach this step, then we’re at either a tip or an internal node, and we need to set nkids.
If node.left equals None (Python) or nothing (Julia), then set nkids = 1. Otherwise, set
nkids equal to the sum of the values obtained by calling spectrum on the left and right

children.

3. Calculate brlen and nmut as explained above.

4. Add nmut to spec[nkids-1] (Python) or spec[nkids] (Julia).

5. Return nkids.

6 Additional functions

The files coalesce.py and coalesce.jl contain two additional functions, which will be useful in
the assignment below:

espectrum calculates the expected value of the site frequency spectrum [1, Ch. 6], a function of k
(the haploid sample size), and θ = 4Nµ, where N is the diploid population size and µ the
mutation rate per site per generation.

msqdiff returns the mean squared difference between two vectors.

In the assignment below, you will use espectrum to calculate the expected spectrum, and msqdiff

to compare the observed and expected spectra.
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7 Assignment

Coalescent theory tells us that the expected value of the site frequency spectrum depends on only
two parameters: the haploid sample size, and θ = 4Nµ, where N is the diploid population size and
µ is the mutation rate. If you double N and also halve µ, the expected spectrum is unchanged.
But what about the variation about this expected value? Does it vary in response to N , even when
θ is constant? This exercise will use computer simulations to answer this question.

1. Write the spectrum function described above, either in Python or in Julia.

2. Modify the main function so that it calls spectrum each time it runs a coalescent simulation.
This just involves removing comment characters from several lines in function main.

3. Calculate the mean squared difference between the simulated spectrum and its expected value
[1, Ch. 6]. This also involves removing comments from lines in main.

4. Average this mean squared difference across at least 10,000 coalescent simulations.

5. Repeat this experiment for diploid population sizes 100, 1000, 10,000, 100,000, and 1,000,000,
using a haploid sample size of 30 in each case. For each of these experiments, adjust the
mutation rate so that θ doesn’t change.

6. How does the variation of the site frequency spectrum about its expectation depend on pop-
ulation size, when θ is held constant?

Your report should include your code, sample output, and a few sentences summarizing your
conclusions.
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