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Chapter 1

Introduction

1.1 Overview

This text introduces some of the models and analytical methods used most frequently in evolution-
ary ecology. It covers:

• population genetics

• optimization (with applications to clutch size and foraging ecology)

• the covariance formulation of natural selection (with application to kin selection)

• game theory

• demography and the evolution of life histories

Extensive use is made of the Maple computer package for graphics and symbolic mathematics.

1



Chapter 2

Introduction to Maple

2.1 Getting into and out of Maple

The technique for invoking Maple will depend on which operating system you are using, and on
whether you want the graphical user interface (GUI) or the command line interface (CLI). You
can launch the GUI from the menus by clicking on the Maple icon. This works on every operating
system. On linux, you can also get the GUI by entering xmaple at the command prompt. For the
moment, this is all you need to know. I will discuss the command line interface later in the chapter.

To get out of Maple, you must either type “quit;” and hit return or select exit from the FILE

menu.

2.2 Maple as a calculator

Maple will work just like a calculator: > 1+2;

3

Here, the “>” character is the prompt that Maple typed to indicate that it was ready to receive
input. I typed “1+2;” and then hit the return key. The semicolon marks the end of the command,
and Maple will not do anything until you type it. After I hit “return,” Maple typed the result “3”
on the line that followed.

Maple pays no attention to the line-breaks in your com-
mands. I could have achieved the same result this way:

> 1

> +2;

3

Remember that Maple will not do anything until it sees a semicolon. If you leave off the semicolon
and simply hit return, Maple will just sit there waiting for you to complete the command.

2



2.2. MAPLE AS A CALCULATOR 3

Here are a few additional arithmetic commands: > 3 - 1; # subtraction

2

> 3*2; # multiplication

6

> 3/2; # division

3/2

> 12/8; # division again

3/2

This example illustrates two new ideas. First, “#” is the comment symbol. Maple ignores every-
thing from the “#” to the end of the line. This makes it possible to put comments into your
input. Second, Maple does not automatically represent fractions in decimal notation. Instead, it
represents them as ratios of integers. Note that 3/2 and 12/8 yield the same output, since they
are really the same number. When it works with integers, Maple’s arithmetic is exact: there is no
round-off error.

For a decimal approximation to the answer, use the evalf
function:

> evalf(3/2);

1.500000000

You can get the same result another way: > 3.0/2.0;

1.500000000

Maple assumes that 3.0 and 2.0 are already decimal approximations, so there is no point in doing
exact arithmetic.

Maple understands parentheses, and all of the standard
mathematical functions.

> 2*(3+4); # using parentheses

14

> log10(10); # logarithm to base 10

log10(10)

> evalf(%);

1.000000000

The last line introduces the “%” symbol, which stands for the result of the previous operation
(log10(10)). I used the evalf function to get a decimal representation of the answer. The “%”
symbol saved me some typing.
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You can also type “%%” to get the result from two lines
back:

> 1+2;

3

> 2+3;

5

> %%;

3

Finally, you can type “%%%” to get the result from three lines back.

2.3 Defining variables

The symbol “:=” is used to assign values to variables. > z := 3;

z := 3

> z;

3

This creates a new variable called z, and assigns to it the value 3.

Variables can also be given symbolic values. > z := x^2;

2

z := x

Now z has the value x2, but x has not been given a value. Therefore, z and x are both symbolic
expressions.

If we give a numeric value to x, this will also give z a
numeric value:

> x := 3;

x := 3

> z;

9

Suppose that we wanted to undo the assignment to x so that z will once again become a symbolic
expression. There are two ways to do this.

Like this: > x := ’x’;

x := x

> z;

2

x
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or like this: > unassign(’x’);

> z;

2

x

To tell Maple to forget everything, use the restart command.

The subs command is used to assign a value to an ex-
pression temporarily:

> subs(x=10,z);

100

> z;

2

x

In the first line above, the subs command prints the value of z after replacing x with 10, i.e. after
substituting 10 for x. Since z = x2, the answer is 100. The next line shows that no permanent
change has been made in either x or z.

When you are defining expressions, it is always best to define numeric values last. To see why,
let us enter the formula for the area of a circle.

a is the area of a circle with radius r: > a := evalf( Pi * r^2);

2

a := 3.141592654 r

After setting r = 3, a gives the area of a circle with radius
3:

> r := 3;

r := 3

> a;

28.27433389

Here, Pi is Maple’s builtin symbol for the mathematical constant π.

To look at a circle with a different radius, we need only
give a different value to r:

> r := 2;

r := 2

> a; #area of circle with radius 2

12.56637062

Now, I will illustrate a mistake.

Without unassigning any of these variables, I enter the
formula for the circumference of a circle:

> c := evalf( 2 * Pi * r );

c := 12.56637062

Next, I change the value of r in an effort to calculate the
circumference of a circle with a different radius:

> r := 6;

r := 6

> c;

12.56637062
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The value of c did not change. This is because at the time I defined c, r already had a numeric
value. Therefore, c became a numeric constant rather than an algebraic expression.

Here is what I should have done: > r := ’r’;

r := r

> c := evalf( 2 * Pi * r );

c := 6.283185308 r

Now I can check the circumference of circles with various
radii:

> subs(r=1, c); #radius 1

6.283185308

> subs(r=2, c); #radius 2

12.56637062

2.4 Manipulating symbolic expressions

Before proceding, enter the restart command to clear Maple’s memory. This done, we don’t need
to worry about inadvertently using one of the earlier definitions.

Maple often generates complicated expressions, which become useful only after they have been
simplified algebraically. A variety of commands are useful for this purpose, including expand and
factor, which are illustrated below.

A product: > (x-2)*(x-3);

(x - 2) (x - 3)

Re-expressing the product in expanded form, as a poly-
nomial:

> expand(%);

2

x - 5 x + 6

Factoring recovers the original product > factor(%);

(x - 2) (x - 3)

Other useful commands include simplify and combine.

2.5 Getting help

There is extensive on-line documentation about each command. To find out more about the expand
command introduced in the preceding section, type ?expand or help(expand) and read the result-
ing output. These commands are synonyms. Note that the semicolon is not needed (I have no
idea why) after the ?expand command. Use the on-line documentation to read about the following
commands: evalf, simplify, factor, expand.
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2.6 Making plots

Maple makes beautiful plots in two and three dimensions. The simplest facility is plot,
which does two-dimensional plots. For example, enter the command plot(x^2, x=0..5). This
tells Maple to plot the function x2 from x = 0 to x = 5. To make a 3-D plot, type
plot3d(x^0.7 * y^0.3, x=0..1, y=0..1). The form of these plots will depend on which version
of Maple you are running.

2.7 Solving equations

Define an expression f := (x-3)^2, which is a function of x. To get a sense of how f behaves,
plot it using plot(f, x=0..4). Notice that f = 0 when x = 3. Now let us see whether Maple can
discover this rather obvious fact. Type solve(f=0, x).

2.8 Defining procedures

Suppose that we wanted to evaluate the function f(x) = x2 at several values of x.

We might begin by defining: > f := x^2

and then issue commands such as: > subs(x=2, f);

4

> subs(x=3, f);

9

> subs(x=4, f);

16

This works, but it takes too much typing. It is more convenient to define f as a function of x.
There are two ways of doing this, which have exactly the same effect. The first method is shown
below.

The first line defines f as a function of x, whose value
equals x2. Thereafter, expressions like f(y) are inter-
preted as y2.

> f := (x) -> x^2;

2

f := x -> x

> f(2);

4

> f(3);

9

> f(y);

2

y
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Here is another way to do the same thing: > f := proc(x) x^2 end proc;

f := proc(x) x^2 end proc

This has exactly the same meaning as the previous definition. The first form is often used for short
function definitions, whereas the second form is preferred for long definitions.

2.9 Maple’s command line interface (CLI)

Maple’s GUI has a serious disadvantage. It allows you to scroll up the page and reset the value of
a variable without automatically recalculating everything from there on down.

For example, suppose that you begin by typing: > x := 2;

x := 2

> x^2;

4

So far, so good. But now use the arrow key to move up
the page and then change the 2 to a 3. You can generate
output that makes no sense:

> x := 3;

x := 3

> x^2;

4

You can fix things by clicking on the !!! icon, which recalculates the entire worksheet, but people
often forget to do this, and then get frustrated trying to figure out what is wrong.

For these reasons, I use the command-line interface (CLI) nearly all the time. I write my Maple
commands into a file using a text editor. From a separate window, I then run these commands
using Maple’s CLI. I will explain these steps in reverse order.

You can launch Maple’s CLI from within the CLI of your operating system. Type cmaple under
Windows or maple under Linux or Mac OS 10. You will see something like this:

|\^/| Maple 11 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2007

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

>
If you type a Maple command, Maple will type the answer back at you. You can edit the current
line of input using the left and right arrows, the delete key, and the backspace key. You can scroll
back and forth through Maple’s list of previous commands using the up and down arrows.

Maple’s CLI launches faster than its GUI, so I always use it for small jobs unless I need pretty
graphics. For larger programs, I always put the commands into a text file, using a text editor. You
can use any editor you choose. Just be sure you are producing output as plain text, including line
breaks.

Use a text editor to create a file named circle.mpl that contains the following:
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unassign(’r’);

area := proc(r)

RETURN( Pi*r*r );

end proc;
Next, read these commands into Maple, using the read command. The syntax of this command is
very simple:

read "circle.mpl";

This command assumes that circle.mpl resides in the current working directory (or folder). It
will fail if your file is somewhere else.

The next step is to set Maple’s current working directory. Things are simplest if you launch
Maple from the command line of your operating system. Before launching Maple, make sure you
are in the directory that contains circle.mpl. Then Maple will know where to find your input file.

If you launch Maple by clicking an icon, you will have to reset Maple’s current working directory
from within Maple, using the currentdir command. The procedure is explained in Box 1.

When you want pretty graphics, you need to read your file of commands into Maple’s GUI.

1. Open a windows CLI and cd into the directory containing your file of Maple input commands.

2. Type cd and hit return. Windows will tell you the full path name of this directory. Let’s
assume the name is C:\full\path\name.

3. Launch the GUI by clicking on the Maple icon in the Program menu.

4. Use Maple’s ”currentdir” command to reset Maple’s idea of the current directory:

currentdir("C:\\full\\path\\name");

Note that the path name is within double quotes and that each backslash is written twice.

5. Then use the read command as usual.

Box 1: Importing a file of commands into the Maple GUI

2.10 Maple’s Graphical User Interfaces (GUIs)

I only use Maple’s GUI when I want to make pretty graphs. You may prefer to use it all the time.
Either way, you need to know a little about it.

The first thing to understand is that Maple has two GUIs. The one that Maple introduced first
is now called the “classic worksheet” and is much easier to use. To launch it, type maple -cw at
the Windows command prompt. The other one is called the “Java worksheet,” and it is the one
you get when you click on an icon in the Windows menu system.

The problem with the new worksheet involves the way you type equations into it. In the old
Maple, you typed lines like those illustrated in this chapter. In the new Maple worksheet, equations
are beautifully formatted as you type them in, but you have to use the arrow keys to move from
one part of the equation to another. This is appreciably slower, and it’s easy to get confused.
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In either GUI, you can scroll up and change the values of variables anywhere in the worksheet.
Whenever you do this, click on the !!! icon, which recalculates the entire worksheet. Otherwise,
your worksheet will be in an inconsistent state.

Exercises

Use Maple for all of the calculations in the exercises below.

?EXERCISE 2–1 What is 37× 73?

?EXERCISE 2–2 What is 37− 73?

?EXERCISE 2–3 What is 2701/2847 as a ratio of integers?

?EXERCISE 2–4 What is the floating point approximation to 2701/2847?

?EXERCISE 2–5 What is 27× (19 + 88)?

?EXERCISE 2–6 A circle with radius r has area πr2. Type this formula into Maple, and then use
the subs command to find the areas of circle with the following radii 1, 2, 3, 4, and 5.

?EXERCISE 2–7 Expand the following formula as a polynomial: (x− 2)(x+ 4)(x− 5).

?EXERCISE 2–8 Factor this polynomial: 24 + x4 − 10x3 + 35x2 − 50x.

?EXERCISE 2–9 Use Maple’s help facility to look up the solve command, and write a paragraph
explaining what it does. Feel free to quote from Maple’s online documentation.

?EXERCISE 2–10 Plot the function f(x) = x1/3 from x = 0 to x = 1, and describe the output in
words. What does the function look like?

?EXERCISE 2–11 Plot the function f(x) = 1 − e−x from x = 0 to x = 1, and describe the output
in words. What does the function look like?

?EXERCISE 2–12 Use the solve command to find the value of x at which 1− e−x = 1/2.

?EXERCISE 2–13 Write a Maple procedure that calculates f(x) = 1 − e−x. Use a text editor to
write this procedure into a file. Then use Maple’s read command to read the file. Demonstrate
that the procedure gives correct answers.



Chapter 3

Calculus

Calculus is used in various ways by evolutionary ecologists. This chapter provides a (very) brief
introduction. If you have never learned calculus, this chapter is unlikely to be very useful. But if
you had the course several years ago and are now rusty, this chapter may refresh your memory.

3.1 Slope

Figure 3.1 shows two straight lines. When the function f(x) increases with x, its slope is said to be
positive. When it deceases with x, the slope is negative. If the function describes a straight line,
its slope is measured by

slope =
f(x1)− f(x0)

x1 − x0
(3.1)

where x0 and x1 are two values of x, and f(x0) and f(x1) are the corresponding values on the
y-axis. For the left-hand graph, this will give a positive number since f(x1)− f(x0) has the same
sign as x1−x0. The right-hand graph has a negative slope because the numerator and denominator
have opposite signs.

In the right-hand graph, x0 = 0.5, x1 = 0.8, f(x0) = 0.5 and f(x1) = 0.26. The slope is
therefore

slope =
0.26− 0.5

0.8− 0.5
= −0.8

•EXAMPLE 3–1

What is the slope of the left-hand graph in Figure 3.1, whose values are x0 = 0.5, x1 = 0.8, f(x0) = 0.5, and
f(x1) = 0.74.

f(x0)

f(x1)

x0 x1

Positive Slope
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............
............
............
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............
............
............
............
............
............
............
............
....

f(x0)

f(x1)

x0 x1

Negative Slope

........................................................................................................................................................................................................................................

Figure 3.1: Straight lines with positive and negative slope

11
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Figure 3.2: Graph of f(x) = x2

The dashed line is tangent to f(x) = x2 at the point x = x0 and has slope 2x0.

◦ANSWER

The slope is (0.74− 0.5)/(0.8− 0.5) = 0.8.

3.2 The derivative of x2

Slope calculations run into difficulty when the line is curved, like that in figure 3.2. The slope is
positive, but gets steeper as one moves from left to right across the graph. Therefore, this function
has no single slope. It has a different slope for every value of x.

Suppose we wanted to calculate the slope of the curve at the point where x = x0. We could
approximate this slope by choosing a second value, x1, and then applying formula 3.1. Let us
choose x1 = x0 + ∆x. Here, the symbol ∆ is pronounced “delta” and represents change. Eqn. 3.1
can be re-written as

∆f(x)

∆x
=
f(x0 + ∆x)− f(x0)

∆x
(3.2)

On both sides, the denominator is the change in x and the numerator is the corresponding change
in f(x). Thus, this is nothing more than the old familiar formula for the slope of a straight line. If
we wished, we could substitute numbers into this formula and thus calculate the approximate slope
at any point along the curve. These approximations will be most accurate if we choose points close
together so that ∆x and ∆f(x) are both small.
•EXAMPLE 3–2

In figure 3.2, x0 = 0.5, x0 + ∆x = 0.6, f(x0) = 0.25 and f(x0 + ∆x) = 0.36. What is the approximate slope of
f(x) at the point where x = x0?
◦ANSWER

The approximate slope is (0.36− 0.25)/(0.6− 0.5) = 1.1.

These numerical approximations are cumbersome, so let us look for a better approach. The
curve in figure 3.2 was calculated from the formula

f(x) = x2

This means that f(x0) = x20 and that f(x+ ∆x) = (x0 + ∆x)2. Plugging these into Eqn. 3.2 allows
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us to re-write the approximate slope as

(x0 + ∆x)2 − x20
∆x

=
x20 + 2x0∆x+ (∆x)2 − x20

∆x
= 2x0 + ∆x

To make our approximation accurate, we want to make ∆x as small as possible. As ∆x gets
smaller and smaller, the approximate slope gets closer and closer to 2x0. This limiting value of our
approximate slope is called the derivative and is written as df(x)/dx or as dx2/dx.

The derivative at point x = x0 can be interpreted as the slope of a straight line that is tangent
to the curve at point where x = x0. This straight line is shown as a dashed line in figure 3.2.

Notice that dx2/dx is not a single number, but an entire function. The function

dx2

dx
= 2x

tells us that at each value of x, the slope of f(x) = x2 is twice the value of x. Thus, the slope is
greater at large values of x than at small ones, just as figure 3.2 would suggest.

3.3 Notation

Derivatives are written in several different ways. The derivative of f with respect to x can be
written either as

df

dx
or as

d

dx
f or as f ′ or as ḟ

These all mean exactly the same thing. Sometimes they are modified to emphasize that the deriva-
tive is itself a function, becoming

df(x)

dx
or

d

dx
f(x) or f ′(x) or ḟ(x)

These all mean the same thing too.
Often, we wish to refer to the value of the derivative at some particular value of x. The derivative

of f(x) at the point where x = 3 is written either as

df

dx

∣∣∣∣
x=3

or as f ′(3) or as ḟ(3)

For example, we know already that the derivative of x2 is 2x. When x = 2, this derivative is equal
to 4. This fact can be expressed by writing either

df

dx

∣∣∣∣
x=2

= 4 or as f ′(2) = 4 or as ḟ(2) = 4

•EXAMPLE 3–3

What is the derivative of x2 when x = 0.5.
◦ANSWER
dx2

dx

∣∣∣
x=0.5

= 1.

3.4 Derivatives of other functions

To find the derivative of a function is to “differentiate” it. One can differentiate any smooth function
using the method outlined above. This is the subject of the first semester of college calculus, which
I will not try to replicate here. For reference, however, I will tabulate some of the main results in
Box 2.
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Power rule dkxn

dx = nkxn−1

Log rule d lnx
dx = 1/x

Exponential rule dekx

dx = kekx

Sum rule d[f(x)+g(x)]
dx = f ′(x) + g′(x)

Product rule df(x)·g(x)
dx = f ′(x)g(x) + f(x)g′(x)

Quotient rule df(x)/g(x)
dx = f ′(x)g(x)−f(x)g′(x)

g2(x)

Chain rule df(g(x))
dx = df

dg ·
dg
dx

Box 2: Miscellaneous derivatives. In these formulas, k is a constant; e = 2.718 is the base of
natural logarithms; and ln is the logarithm to base e, also called the “natural log”.

3.5 Optima

In evolutionary ecology we are often concerned with optimization problems. For example, in order
to build a theory of reproduction, we ask (among other things) “At what age does it become
advantageous for an individual to stop growing and begin reproducing?” Or in other words: What
is the optimal age of reproductive maturity?

To show how such problems are solved, I will use the simplest optimization problem that I
know. Suppose that we have 40 feet of fence and want to use it to enclose a rectangular area (a
new garden). We wish to choose the garden’s width w and length l so as to make the garden’s area
A as large as possible. In this effort, we are constrained by the consideration that the perimeter of
our garden must equal the length of the available fencing: 40 feet. Our problem can be stated as
follows:

maxA = lw

subject to: 2 · (l + w) = 40

The first line above says that we wish to maximize the area A, which is equal to the product lw
of length and width. The function A, which we are trying to maximize, is called the objective
function. The second line specifies a constraint and says that the perimeter must equal 40 feet.

This is a problem of constrained optimization. I will illustrate here the simplest techniques
for solving such problems. The first step is to use the constraint equation to eliminate one of the
variables. Rearranging the constraint gives

l = 20− w

and substituting this into the formula for A gives

A = 20w − w2

Our problem is to choose the value of w that will make this as large as possible.
The garden’s area is graphed as a function of its width in figure 3.3. Clearly, the maximum

is attained by a point at or near w = 10. Many optimization problems can be solved simply by
graphing the objective function.
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Figure 3.3: Garden’s area A as a function of its width w

Another method is suggested by the observation that the derivative of the objective function is
positive to the left of the maximum point, negative to the right, and zero at the optimum. Thus,
we could also have found the equilibrium by solving the equation

dA

dw
= 0 (3.3)

I will take this derivative both “by hand” and also using Maple. To take it by hand, I first note
that the function A = 20w−w2 is a sum of 20w and −w2. Therefore, the sum rule (Box 2) implies
that

dA

dw
=

d

dw
(20w) +

d

dw
(−w2)

Each of the derivatives on the right-hand side can be evaluated using the power rule (Box 2). The
result is

dA/dw = 20− 2w

Setting this equal to zero gives w = 10, as we inferred above from the figure.

Maple gives the same answer: > A := 20*w - w^2;

2

A := 20 w - w

> dA := diff(A,w);

dA := 20 - 2 w

> solve(dA = 0, w);

10

The answer, which we have now obtained three ways, tells us that the garden should be 10 feet
wide. To satisfy the constraint, it must also be 10 feet long. Thus, a rectangular garden must be
square if it is to maximize the area enclosed by a given length of fence.

(I specified at the outset that the garden had to be rectangular. Had I relaxed this restriction,
we might have found a garden that was even larger.)
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Figure 3.4: Fitness and its derivative

3.6 Second-order condition for a local maximum

Eqn. 3.3 is what is known as the first-order condition for a local maximum. It must be satisfied at
any internal maximum, but it can also be satisfied at points that are not maxima. It is a necessary
condition but not a sufficient condition. Thus far, we have relied on graphical methods to separate
maxima from minima and other kinds of extreme points. This section will introduce a non-graphical
method, the so-called second-order condition for a local maximum.

The upper panel of figure 3.4 graphs a fitness function.1 It shows that the extreme point at
x = 1.5 is indeed a local maximum. But how could we have determined this without drawing a
graph? The lower panel of figure 3.4 suggests an answer. Since x̂ is a local maximum, w′(x) is
positive to the left of x̂ and negative to the right of x̂. Consequently, the slope of w′(x) is negative
where x = x̂. This suggests a second means of determining whether x̂ is a local maximum: It is a
maximum only if the derivative of w′(x) is negative at the point x = x̂.

The derivative of a derivative is called a second derivative and is written using such notation as
d2w(x)/dx2 or w′′(x). The second derivative at some particular value of x (say x̂) is written either
as

d2w(x)

dx2

∣∣∣∣∣
x=x̂

or as w′′(x̂)

If we find a point x̂ for which (1) f ′(x̂) = 0, and (2) f ′′(x̂) < 0, then it is bound to be a local
maximum. However, there are some maxima at which f ′′(x̂) = 0. Such cases require use of
additional criteria, which are beyond my scope here. You will find this issue discussed in any text
on mathematical optimization [12].

3.7 A palette of functions

Functions are the building blocks of ecological models. Suppose an ecologist is interested in the
probability s(x), that an offspring will survive, given that it receives x units of resource. Presumably,

1You will meet this function later, in example 7–1 on p. 45.
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Figure 3.5: Increasing functions with different shapes

more is better, so s must increase with x. But how does it increase? Maybe each unit of resource
helps more than the last. If so, then s would increase at an increasing rate, as in Figure 3.2. This,
however, seems unlikely. Surely food is worth more to a hungry offspring than to one that is well
nourished. Consequently, our ecologist might decide that s should increase at a decreasing rate,
like the function in left panel of Figure 3.5.

On the other hand, another ecologist might argue that a starving offspring is unlikely to survive
anyway, so a unit of food isn’t worth much if x is very small. Consequently, this second ecologist
would prefer the function in the right panel of Figure 3.5.

Once the ecologist knows what he wants to assume, his next problem is to choose a function that
captures that assumption. To do so, he needs to know something about the shapes of functions.
Since he thinks s increases with x, the ecologist wants a function whose first derivative is positive.
This is true of all the functions in Figures 3.2 and 3.5. To distinguish between these shapes, he
needs to look at the second derivative.

Consider Figure 3.2. The derivative is small when x is near 0, but gets larger as x increases. In
other words, the derivative is an increasing function of x. This means that the second derivative is
positive. Thus, if the ecologist wanted a function like this, he should look for one whose first and
second derivatives are both positive.

Now consider the function on the left side of Figure 3.5. It’s derivative is large when x is small,
but decreases as x increases. In other words, the second derivative is negative. The function on
the right side of Figure 3.5 combines both of the previous cases. Its second derivative is positive
for small values of x, but negative for large values.

Now we know what to look for. Let us evaluate some specific functions: (a) xa, (b) 1 − e−ax,
(c) ax2/2− bx3/3, and (d) [x/(1 + x)]2.
•EXAMPLE 3–4

Calculate the first and second derivatives of each function. Based on these derivatives, describe the shape of each
function in words. How do these shapes depend on the values of a and b?

Exercises

Do these exercises either by hand or using Maple’s diff function.
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?EXERCISE 3–1 Use Maple’s diff command to check formulae in Box 2.

Use the method illustrated in section 3.2 to differentiate (i.e. find the derivatives of) the following
functions.

?EXERCISE 3–2 f(x) = a, where a is a constant

?EXERCISE 3–3 f(x) = ax

?EXERCISE 3–4 f(x) = ax2

?EXERCISE 3–5 f(x) = ax3

Your answers to the last few questions should be as predicted by the power rule (Box 2).

?EXERCISE 3–6 Differentiate f(x) = a+ bx+ cx2 + dx3, where a, b, c, and d are constants.

?EXERCISE 3–7 What is the derivative of 3?

?EXERCISE 3–8 What is the derivative of 3x?

?EXERCISE 3–9 What is the derivative of 3x− 3x2?

?EXERCISE 3–10 What is the derivative of 3x(1− x)?

?EXERCISE 3–11 What is the derivative of 3e3x?

?EXERCISE 3–12 What is the derivative of ln(3x)?

?EXERCISE 3–13 What is the derivative of 3+4x−5x2
x2+ex

?



Chapter 4

Selection

Most of the theory in evolutionary ecology involves natural selection, so that is where we begin.
This chapter covers the subject from the point of view of population genetics. It is about alleles
and how their frequencies change. This theory provides the foundation on which other chapters
will build. In addition, I use it as a vehicle for teaching a little more about Maple.

4.1 A recurrence equation

Suppose there is a locus with two alleles A1 and A2, whose relative frequencies in some generation
are p and q ≡ 1 − p, respectively. What makes this locus interesting is that the three genotypes
differ in their Darwinian fitness. In general, variation in fitness might be due either to differences
in fertility or to differences in survival. The math is simpler in the latter case, so I will assume that
our three genotypes differ only with respect to their probabilities of survival.

Let wij denote the probability that an individual of genotype AiAj will survive to reproduce.
This probability is called the fitness of genotype AiAj . The genotypic fitnesses and frequencies
are shown in table 4.1. The frequencies before selection are obtained from the Hardy-Weinberg
formula.1 This should give the right answer provided that the population is not too small and that
mating is at random. The contribution of each genotype to the gene pool of the next generation is
proportional to the product of its frequency and fitness. Dividing by w̄, the mean fitness, ensures
that the genotypic frequencies after selection sum to unity.

1Since our locus has 2 alleles, there are three genotypes A1A1, A1A2, and A2A2. In a large population that mates
at random, the frequencies of these genotypes will be close to p2, 2pq, and q2. This is called the Hardy-Weinberg
principle.

Table 4.1: Genotypic fitnesses and frequencies

Genotype A1A1 A1A2 A2A2

Freq. before sel’n p2 2pq q2

Fitness w11 w12 w22

Freq. after sel’n p2w11/w̄ 2pqw12/w̄ q2w22/w̄

Where q = 1− p
and w̄ = p2w11 + 2pqw12 + q2w22

19
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The frequency of allele A1 is p = P11 + 1
2P12, where P11 and P12 are the frequencies of A1A1

and A1A2.

?EXERCISE 4–1 Show that p = P11 + 1
2P12.

Applying this to the last row of table 4.1 gives the frequency of A1 after selection.

p(t+ 1) =
p2(t)w11 + p(t)q(t)w12

w̄(t)
(4.1)

As usual, p(t) refers to the allele frequency in generation t, while p(t+1) refers to that in generation
t + 1. Equation 4.1 tells us p’s value in one generation as a function of its value in the previous
generation. Such equations are called recurrence equations. They provide recipes for getting from
one generation to the next.

4.1.1 The change per generation

Given an equation that gets us from one generation to the next, the next question to ask is: How
much change is there between successive generations? To find out, we need to calculate a quantity
called ∆p(t) (pronounced “delta pee of t”), which is defined to equal p(t + 1) − p(t). ∆p is often
useful because it is positive when p is increasing, and negative when p is decreasing. When there is
no tendency to change, the system is said to be at equilibrium, and ∆p = 0. Subtracting p(t) from
equation 4.1 gives (after some algebra)

∆p(t) =
p(t)q(t)

w̄(t)
[p(t)(w11 − w12) + q(t)(w12 − w22)] (4.2)

This equation provides a great deal of intuition concerning the dynamics of natural selection. First,
the rate of change is proportional to pq, and will therefore be very slow when either allele is near
zero. Response to selection should therefore be slow both when p is very rare and when it is very
common. Second, if w11 ≈ w12, then the term in square brackets will be small when p ≈ 1 and
q ≈ 0. This means that response will be slow when a dominant allele (one for which w11 = w12)
is common. Third, the same reasoning implies that response will be slow when a recessive allele is
rare.

?EXERCISE 4–2 Use Maple to verify that the rate of change is fast when a dominant allele is rare,
and slow when it is common.

?EXERCISE 4–3 Use Maple to verify that equation 4.2 can be derived from equation 4.1. Hint:
Enter Eqns. 4.1 and 4.2. Subtract p from the first, and from this subtract the second. Then
simplify. Don’t bother with the “(t)” in p(t) and q(t): just write p and q.

4.2 The same result in terms of genic fitnesses

In later chapters I will often use a slightly different formulation of equation 4.2:

∆p(t) =
p(t)q(t)(w1 − w2)

w̄(t)
(4.3)
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Here, w1 and w2 are the genic fitnesses of A1 and A2. The genic fitness of allele Ai is simply the
average fitness of copies of Ai.

In diploid organisms, genes occur in pairs. Each copy of the A1 allele is paired with some other
gene. What is the probability that this second gene is also a copy of A1? If mating is at random,
then the second gene is (in effect) drawn at random from among all the genes in the population.
Since a fraction p of these are copies of A1, p is also the probability that the second gene is an A1.
In this case, the original copy of A1 resides in an A1A1 homozygote with fitness w11. On the other
hand, the original A1 might (with probability q = 1 − p) be paired with a copy of A2. If so, then
the initial A1 resides in a heterozygote with fitness w12. The mean fitness of allele A1 is therefore

w1 = pw11 + qw12

A similar argument applies if the initial gene is a copy of A2 and leads to

w2 = qw22 + pw12

To justify equation 4.3, subtract w2 from w1. The result is equivalent to the quantity in square
brackets in equation 4.2.

?EXERCISE 4–4 Verify that w1 − w2 is equal to p(w11 − w12) + q(w12 − w22).

Since p(1− p)/w̄ is always positive, equation 4.3 implies that allele A1 will increase whenever

w1 − w2 > 0 (4.4)

Thus, to figure out which allele is being favored by selection, it is only necessary to calculate the
genic fitnesses, w1 and w2. This trick is central to much of the theory in evolutionary ecology.

?EXERCISE 4–5 Suppose that there are three genotypes, A1A1, A1A2, and A2A2, with fitnesses 1,
1.5, and 0.5. Calculate the two genic fitnesses under the assumption that p = 0.1. Which allele is
being favored by selection?

?EXERCISE 4–6 Repeat this calculation assuming that p = 0.9. Which allele is being favored by
selection?

?EXERCISE 4–7 Equation 4.3 also tells us that equilibrium will occur when w1 = w2. Use this
principle to find the equilibrium value of p from the genotypic fitnesses above.

4.3 A Worked Example

I begin by using a text editor to create a file called selection.mpl:

1 unassign(’wbar,’q’,’p’,’p2’,’dp’,’w11’,’w12’,’w22’);

2 p2 := (w11*p^2 + w12*p*q)/wbar;

3 dp := p*q*((w11 - w12)*p + (w12 - w22)*q)/wbar;

4 wbar := w11*p^2 + w12*2*p*q + w22*q^2;

5 q := 1-p;

6 w11 := 1.0;

7 w12 := 1.4;

8 w22 := 0.7;
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The first few lines (1) initialize parameters, just in case they have been given values before the file
is read into Maple, (2) define p2 using Eqn. 4.1, (3) define dp using Eqn. 4.2, and (4) define w̄ as
shown in Table 4.1. The remaining lines define q and the three genotypic fitnesses.

Having created this disk file, I invoked Maple and typed read ‘selection.mpl‘:

> read ‘selection.mpl‘;

2

w11 p + w12 p q

p2 := ----------------

wbar

p q ((w11 - w12) p + (w12 - w22) q)

dp := -----------------------------------

wbar

2 2

wbar := w11 p + 2 w12 p q + w22 q

q := 1 - p

w11 := 1.0

w12 := 1.4

w22 := .7

Maple did not echo my commands, but did print its response to each command. At this point dp

looks like this:
> dp;

p (1 - p) ( - 1.1 p + .7)

------------------------------------

2 2

1.0 p + 2.8 p (1 - p) + .7 (1 - p)

Note that, dp is a function of a single variable, p. Thus, if we give p a numeric value (say p = 0.5),
then dp will also have a numeric value:

> subs(p=.5,dp);

.03333333333

This is a useful check to make sure that you have made no mistake. When you have assigned
numeric values to all the quantities in the model, your results should not contain non-numeric
symbols.

The easiest way to find equilibria (i.e. points at which ∆p = 0) is to plot ∆p against p. This can
be done in Maple by typing plot(dp,p=0..1), and should give you a graph that looks like Fig. 4.1.
The figure shows that ∆p = 0 when p = 0, when p = 1, and also when p is at an intermediate value
of approximately 0.6. These are the three equilibria of this equation. The equilibria at p = 0 and
p = 1 are easy to understand. A population can respond to selection only if it contains variation.
This, after all, was one of Darwin’s original premises. But variation is lacking when p = 0 or p = 1,
for then there is only one allele in the population. The equilibria at 0 and 1 can also be understood
algebraically. As I noted above, equation 4.2 tells us that ∆p is proportional to p(t)q(t), and must
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Figure 4.1: Change per generation under
natural selection. The curve is drawn from
Eqn. 4.2. The equilibrium value, p̂, is the
point at which ∆p = 0.

therefore equal zero if p is equal either to 0 or to 1. This accounts for the fact that the curve in
Fig. 4.1 equals zero at the left and at the right. But what about the equilibrium in the middle?

We can find this equilibrium more accurately by solving the equation ∆p = 0:

> solve(dp=0, p);

0, 1., .6363636364

Maple gives three solutions to the equation, which correspond to the three points at which ∆p equals
zero in Fig. 4.1. Thus, we see that the internal equilibrium occurs at the value p̂ = 0.6363636364.

Equilibria are interesting only if the population evolves toward them reasonably rapidly, and
this is not always the case. For example, mutation is such a weak force that allele frequencies may
take many millions of years to reach the equilibria implied by their mutation rates. When progress
is that slow, one must think seriously about other forces such as genetic drift. The present model
is about selection, which is often much faster than mutation. But not always, so we should check.
The Maple output below shows a numerical experiment that begins with p(0) = 0.1 and then uses
the recurrence equation above to get from each generation to the next. I will supress blank lines
to save space:

> subs(p=0.1, p2); # Find p(1)

.1640530760

> subs(p=%, p2); # Now p(2)

.2432133616

> subs(p=%, p2); # Now p(3)

.3248181678

> subs(p=%, p2); # Now p(4)

.3971767598

> subs(p=%, p2); # Now p(5)

.4553692119

> subs(p=%, p2); # Now p(6)

.4998761659

> subs(p=%, p2); # Now p(7)

.5332408700

> subs(p=%, p2); # p(8)

.5581434063

> subs(p=%, p2); # p(9)

.5767780168

> subs(p=%, p2); # p(10)

.5907937712
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Figure 4.2: Time path of allele frequency.
The curve is drawn using the results of the
numerical example in section 4.3. The dot-
ted line indicates the equilibrium value,
p̂ ≈ 0.636.
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> subs(p=%, p2); # p(11)

.6013945473

> subs(p=%, p2); # p(12)

.6094541224

Another 10 generations the quick way. (If you’re curious, look up “for” in the Maple documenta-
tion.)

> pp := %; # For intermediate results

pp := .6094541224

> for i from 1 by 1 to 10

do pp := subs(p=pp,p2) od;

pp := .6156092326 #p(13)

pp := .6203275030 #p(14)

pp := .6239553742 #p(15)

pp := .6267516688 #p(16)

pp := .6289111975 #p(17)

pp := .6305815324 #p(18)

pp := .6318750562 #p(19)

pp := .6328777273 #p(20)

pp := .6336555245 #p(21)

pp := .6342592332 #p(22)

Note that the allele frequency is converging toward the equilibrium at p̂ = 0.6363636364. A
better view of this process is obtained by graphing the results, as shown in Fig. 4.2. There, it
is clear that p approaches its equilibrium value within a small number of generations. Thus, the
equilibrium in this model is one worth considering.

4.4 Wright’s equation

Sewall Wright [79] often expressed equation 4.2 as

∆p(t) =
p(t)q(t)

2w̄(t)
· dw̄(t)

dp(t)
(4.5)

This equation is equivalent to 4.2, but provides a different kind of insight. Notice that pq/w̄ is
always positive when p is neither zero nor unity. This means that p will increase when dw̄/dp > 0
and will decrease when this derivative is negative. In other words, the allele frequency always moves
in a direction that increases w̄, the mean fitness. The allele frequency is always moving “uphill”
on the function w̄. This suggests that selection will tend to maximize mean fitness. Fig. 4.3 shows
that this is indeed the case.
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Figure 4.3: w̄ as a function of p.
The curve is drawn from equation 4.2.
The equilibrium value, p̂, is the point
at which w̄ is maximized, which is also
the point at which ∆p = 0.

?EXERCISE 4–8 Repeat all steps of the worked example, assuming that genotypes A1A1, A1A2,
and A2A2 have fitnesses 0.1, 1, and 1, and that p(0) = 0.1.

?EXERCISE 4–9 Verify (using Maple if you wish) that equations 4.5 and 4.2 are equivalent.

4.5 Monomorphic and polymorphic equilibria

Equilibria are points at which there is no tendency for allele frequencies to change, i.e. values of p
for which ∆p = 0. Equation 4.5 shows that there are two kinds of equilibrium:2

Monomorphic equilibria These occur when p = 0 or p = 1, i.e. when there is only one allele in
the population.

Polymorphic equilibria According to Wright’s formula, these occur when dw̄/dp = 0, or in
other words, when p is at a maximum point on the function relating mean fitness w̄ to allele
frequency3.

Wright’s formula provides a new method for finding evolutionary equilibria: They are points at
which mean fitness is maximal.

?EXERCISE 4–10 Define w11 = 1, w12 = 1.1, and w22 = 0.8. Find the equilibria in this system by
graphing ∆p as a function of p.

?EXERCISE 4–11 Find the equilibria by using Maple to solve the equation ∆p = 0.

?EXERCISE 4–12 Find the equilibria by graphing w̄ against p and searching for the maximum by
eye.

?EXERCISE 4–13 Find the equilibria by solving the equation dw̄/dp = 0.

In these exercises, you will find that the methods using ∆p give more equilibria than those using
w̄, since they tell you about the “trivial” equilibria at which p = 0 and p = 1.

2We will encounter additional kinds of equilibria when we allow fitnesses to change in response to allele frequencies.
3For an explanation of this point, see section 3.5 of Ch. 3.
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4.6 Numerical Example Revisited

Wright’s equation (equation 4.5) suggests that internal equilibria are the point(s) at which w̄ reaches
its maximal value(s).

The graph of w̄ has a peak at about 0.6—very close to the equilibrium value that we found
before. To see whether it is indeed the same equilibrium, we solve the equation dw̄/dp = 0:

> solve(diff(wbar, p) = 0, p);

.6363636364

4.7 Summary

This chapter has introduced two ways to describe evolutionary change: recurrence equations, and
difference equations. The variant formulation involving genic fitnesses will turn up in later chapters.
Equilibria occur where ∆p = 0. We are particularly interested in stable equilibria, because these
are the ones we are likely to see in nature. Wright’s formulation justifies the idea of an adaptive
landscape. In that conception, populations move uphill, and equilibria are the tops of peaks in the
adaptive landscape.



Chapter 5

More Maple

This chapter begins with a digression on using Maple to calculate derivatives and integrals. The
rest of the chapter shows how to use Maple to study the equations introduced in Ch. 4.

5.1 Calculus

Maple can take derivatives: > diff(x^2, x);

2 x

Here, diff(f,x) is Maple’s way of representing the derivative of f with respect to x. The preceding
dialog is Maple’s way of saying that

dx2

dx
= 2x

Maple can also do integrals: > int(x, x);

2

1/2 x

This says that the indefinite integral of x is equal to x2/2. This answer is not quite complete. In
calculus, we learn that ∫

x dx = x2/2 + C

where C is an arbitrary constant of integration. Maple omits the constant of integration.

?EXERCISE 5–1 Use Maple’s diff and solve commands to find the value of x that maximizes
f(x) = x− 2x2. Don’t forget to check the 2nd-order condition.

?EXERCISE 5–2 Repeat the preceding exercise for the function f(x) = xe−x.

5.2 Writing a Maple procedure

Chapter 4 introduced the idea of a recurrence equation. It showed how one can calculate p(1) from
p(0), then p(2) from p(1), and so on. In principle, one could use this method to find p(1000), but
it would be tedious.

27
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To automate this procedure, we can write a Maple procedure. (These were introduced in Ch. 2,
p. 7.) Here is a Maple procedure that implements Eqn. 4.1.

unassign(’w11’, ’w12’, ’w22’);

p := proc(t)

if t <= 0 then RETURN(p0) end if;

pp := p(t-1);

wbar := pp^2*w11+2*pp*(1-pp)*w12+(1-pp)^2*w22;

(pp^2*w11+pp*(1-pp)*w12) / wbar;

end proc;

p0 := 0.1; # initial value of p

Compare this code to Eqn. 4.1 on page 20. You should be able to recognize the code for mean
fitness and the code for the recurrence equation itself. You may however be puzzled by the line
that reads pp := p(t-1). In this line, the procedure calls itself.

The reason for this is straightforward. When I invoke the procedure by typing p(2), I am asking
for the allele frequency in generation 2. However, the code only knows how to find p(2) from
p(1), which it has to obtain somehow. It finds this value via the call to p(t-1). Thus, a call to
p(2) generates a call to p(1), which in turn generates a call to p(0). At this point, the cascade of
procedure calls stops. (Can you see why?)

This procedure is long enough that I didn’t want to enter it directly into Maple, so I used a
text editor to create a text file named seln1.mpl. Then I launched Maple and entered the command
read ‘seln1.mpl‘. In response, Maple printed out just what it would have printed had I entered
the commands by hand. Next, I entered the genotypic fitnesses interactively:

> w11:=1; w12:=1.2; w22:=0.1;

w11 := 1

w12 := 1.2

w22 := 0.1

Finally, I used the procedure to calculate p(t) at several value of t.

> p(1);

0.3843648208

> p(10);

0.8176882252

> p(100);

0.8461538431

> p(1000);

bytes used=4001180, alloc=1244956, time=0.06

0.8461538448

This output tells me the value of p in generations 1, 10, 100, and 1000.
There is a pitfall in this sort of code. Consider the following procedure, which implements a

different recurrence equation.
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p := proc(t) (1.0-u)*p(t-1) + v*(1 - p(t-1)) end proc;

p(0) := 0.1; u := 0.00001; v := 0.000002;

If you enter this into Maple, you will discover that p(1) and p(10) work fine, but p(100) fails
miserably. Instead of an answer, you get a succession of messages indicating that Maple is gobbling
up an ever larger fraction of your computer’s memory.

The problem is that the procedure calls p(t−1) twice. When I type p(2), each of these references
generates a separate call for p(1). Then, each call to p(1), generates two calls to p(0). We end up
with one call to p(2), two to p(1), and four to p(0), a total of seven. When I call p(100), however,
I generate about 1031 procedure calls. No wonder the procedure never finishes!

This problem is even more acute in the procedure above for selection, where pp appears seven
times. If each of these had been a call to p(t-1), there would have been hell to pay. Instead, the
code calls p(t-1) just once and stores the result in a variable (pp), which it can use over and over.

However, there is still room for improvement. Suppose I call p(1000). This invokes the pro-
cedure 1000 times. (p(1000) calls p(999), which calls p(998) and so on.) If I then call p(1001),
Maple will have to do this work all over again. It would be better, wouldn’t it, if the Maple could
simply remember these values, and re-use them, rather than calculating them over and over again?
Here is a re-write that shows how this can be done.

unassign(’w11’, ’w12’, ’w22’);

p := proc(t)

option remember;

if t <= 0 then RETURN(p0) end if;

pp := p(t-1);

wbar := pp^2*w11+2*pp*(1-pp)*w12+(1-pp)^2*w22;

(pp^2*w11+pp*(1-pp)*w12) / wbar;

end proc;

p0 := 0.1; # initial value of p

The command option remember tells Maple to remember the results of all calls to procedure p,
and to re-use them when needed. You will discover that it takes awhile to calculate p(1000). But
having done so, the calculation of p(1001) is almost instantaneous.

The remember option has one drawback: once Maple has remembered the value of p(10), say, it
doesn’t forget that value when you change the parameters such as w11, w12, and w22. The simplest
solution is to re-define your function every time you want to change parameter values. This is easy
if you keep the function definition in an external file, as described in Section 2.9 of Chapter 2.

?EXERCISE 5–3 Create a file that contains the Maple procedure shown above, and use it in the
following exercises. (Avoid the “remember” option so that you won’t need to worry about restarting
Maple after each change in parameter values.) Set p(0) = 0.1, w11 = 1, w12 = 0.8, and w22 = 0.6.
What is p(t) for t = 1, 2, 3, 10, and 100.

?EXERCISE 5–4 Repeat the preceding exercise, but this time with w12 = 1.2.

5.3 The “for loop”

Suppose you wanted to calculate the sum of the even integers from 2 through 10. You might write



30 CHAPTER 5. MORE MAPLE

1 s := 0;

2 s := s+2;

3 s := s+4;

4 s := s+6;

5 s := s+8;

6 s := s+10;

Here is a program that does the same calculation using Maple’s for statement:

1 s := 0;

2 for i from 2 by 2 to 10 do

3 s := s + i;

4 end do;

Line 1 initializes s (gives it an initial value). Lines 2–4 constitute the “for loop.” When this runs,
line 3 will execute five times. The variable i is set equal to 2 the first time, to 4 the second time,
and so on. At the end, s equals 30 and i equals 12.

The loop above contains only one statement (line 3), but that was just to keep things simple.
Maple can accomodate many lines of code between for and end do.

The for statement has many variants, which you can read about in Maple’s online docu-
mentation. An online tutorial can be found at http://www.mth.uea.ac.uk/~h007/MTH-2G22/

mapleprog.pdf. The easiest way to learn is to study examples, so here are a few that I copied
from Maple’s online documentation.

1 # Find the sum of all two-digit odd numbers from 11 to 99.

2

3 > tot := 0:

4 > for i from 11 by 2 while i < 100 do

5 > tot := tot + i

6 > end do:

7 > tot;

8

9 2475

1 # Add together the contents of a list.

2

3 > tot := 0:

4 > for z in [1, x, y, q^2, 3] do

5 > tot := tot + z

6 > end do:

7 > tot;

8

9 2

10 4 + x + y + q

1 # Multiply the entries of an expression sequence.

2

3 > tot := 1:

4 > for z in 1, x, y, q^2, 3 do

5 > tot := tot * z
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6 > end do:

7 > tot;

8

9 2

10 3 x y q

5.4 Sums and products

For sums and products, Maple makes things even easier. You can calculate the sum

1/1 + 1/2 + 1/3 + · · ·+ 1/100

like this: sum(1.0/i, i=1..100). The product of the integers from 1 to 10 is

1 > product(i, i=1..10);

2 3628800

These expressions work even if the limits are variables. For example:

1 > sum(k,k=0..n-1);

2

3 2

4 1/2 n - 1/2 n

?EXERCISE 5–5 Calculate the product of 1/i2 from i = 1 to i = 10 using (a) a for loop, and
(b) the product statement.

?EXERCISE 5–6 To calculate variances and covariances, the first step is to calculate means, mean
of squares, and the mean of cross products. In other words, given data like this:

X Y

3 6
2 8

12 4
12 8

We need to calculate
∑
X/N ,

∑
Y/N ,

∑
X2/N ,

∑
Y 2/N , and

∑
XY/N , where N is the number

of observations. Do this in Maple using a single for loop.
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Clutch Size

6.1 Natural selection as a “strategist”

Plants and animals are marvels of engineering. Many have justified religious beliefs on the argument
that where there is design, there must be a designer. However, evolutionists draw a different
conclusion. The appearance of design could have been produced by natural selection. When the
fitnesses of genotypes do not depend on their frequency, selection will cause a population to crawl
uphill on a surface that relates mean fitness to allele frequencies. Over time, this process leads to
adaptation—the appearance of design. Selection favors those designs that are best able to get their
genes into subsequent generations. It is often illuminating to ask whether the characteristics of
plants, animals, or people make sense as part of a strategy designed for survival and reproduction.
This usage is strictly metaphorical—it does not imply that plants, animals, or people are conscious
of their strategies.

6.2 The phenotypic gambit

In studying a particular character such as parental care, we confront a dilemma. We might begin
with a model from population genetics, such as that outlined in Ch. 4. This would involve expressing
the fitness of each genotype as a function of the sort of care that a parent provides. The various
genotypes might adopt differing strategies and thus earn differing fitnesses. But in the end, this
approach would seem unsatisfactory because our results would depend so heavily on something
that we do not know: the genetic system that underlies parental care.

Alternatively, we could abandon the effort to work out the entire time path of allele frequency
change and concentrate instead on a simpler questions: Under what circumstances can a gene
encouraging one strategy invade a population dominated by another? When an allele is rare,
nearly all carriers are heterozygotes, and nearly all carriers of the other allele are homozygotes. If
the rare heterozygote outcompetes the common homozygote, then the rare allele can invade. Thus,
we only need to compare two genotypes.

This makes the problem much simpler, but we can make it simpler still. Sewall Wright’s theory
of natural selection (Eqn. 4.5) shows that, so long as genotypic fitnesses are constant, selection will
tend to increase the mean fitness of the population. If there is no shortage of genetic variation in,
say, clutch size, then selection will adjust clutch size toward the value that maximizes mean fitness.
If we are prepared to assume an ample supply of genetic variance, then we can simply ask which
clutch size maximizes fitness. We don’t need to worry about genes at all.

Alan Grafen [26] calls this the “phenotypic gambit,” and it is somewhat controversial. There

32
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is, after all, no guarantee that a population can reach the optimal character value. The genes that
affect clutch size may also be intimately connected with something else, so that selection cannot
improve clutch size without doing damage elsewhere. There is also the problem of maladaptive
intermediates. The population’s current physiology may be far from the global optimum, but it
will stay where it is if it is on a local optimum. For example, squid do not swim as efficiently as
fish. At any given speed, they require more energy than a fish of comparable size. Presumably,
they would be better off with tails like fish yet do not evolve them because the intermediate forms
would be maladaptive [1, p. 149].

Nonetheless, the phenotypic gambit is a useful way to generate hypotheses. If often yields
predictions that are in good agreement with Nature. When it fails, we must turn to the detailed
models of population genetics.

6.3 Components of an optimization model

6.3.1 A currency

To carry out this program, one must first decide what variable to maximize. Fitness seems an
obvious choice, but there are others. For example, perhaps animals forage in a way that maximizes
their rate of energy capture. This assumption is favored by foraging theorists because it avoids the
issue of how nutrition affects fitness. Foraging theory simply assumes that fitness increases with
energy acquired, so that maximizing the one amounts to maximizing the other. The variable that
is optimized is the “currency” of the optimization problem.

6.3.2 Constraints

Not all strategies are feasible. For example, time spent searching for mates cannot also be used
to care for children. Consequently, the better one cares for one’s children, the lower one’s mating
success. Life is full of such constraints, and they play a major role in evolutionary ecology. The
constraints introduced into a model determine which strategies are feasible. The problem is then
to search among these feasible strategies for the one(s) that maximize the currency.

6.4 The tradeoff between quantity and quality of offspring

To illustrate these ideas, I begin with the model of Smith and Fretwell [66], which deals with the
tradeoff between the quantity of one’s children and the probability that each will survive. Smith
and Fretwell chose to optimize fitness itself, which they expressed as

w = s(x)b

where w is fitness, b is the number of offspring born, x is the amount of resource allocated by
the parent to each offspring, and s(x) is the probability than an offspring who receives x units of
resource will survive. Fitness is thus the product of quantity and quality, where quantity is the
number of offspring and quality is is the probability that each one survives.

What can we say about the function s(x)? It seems safe to assume that offspring cannot survive
at all unless they get at least a critical minimum (x0) of nutrition. Beyond this point, more food
is better than less, so s should increase with x, but not at a constant rate. A unit of food is worth
more to a hungry offspring than to one that is full, so s should increase with x at a decreasing rate.
Thus, we assume that s′(x) is 0 when x ≤ x0 but positive when x > x0. At these larger values of
x, we also assume that s′′(x) < 0.



34 CHAPTER 6. CLUTCH SIZE

To make this problem interesting, we must introduce some constraint. If each of the b offspring
gets the same quantity x of resources, then the total expended is xb. Smith and Fretwell assumed
that this product equals a constant T , the total amount of the parent’s resources that is available
for reproduction. Our constrained optimization problem is thus

maxw = s(x)b

subject to: xb = T

This problem can be solved using the method introduced in section 3.5. The first step is to rearrange
the constraint equation as b = T/x. Next, substitute b into w, producing

w = Ts(x)/x (6.1)

This makes fitness a function of only one variable (x), so the optimization problem is easy. A
maximum (if one exists) will require that dw/dx = 0. But rather than solving this problem
directly, it is slightly easier to solve d logw/dx = 0.1

Using Maple, I solved the problem as follows: > w := T * s(x) / x;

T s(x)

w := ------

x

> expand(diff(log(w),x));

d

-- s(x)

dx

------- - 1/x

s(x)

(Here, expand makes Maple’s answer more readable.) This derivative is zero when

ds(x)

dx
=
s(x)

x
(6.2)

This condition must hold at a maximum point, but it would also hold at a minimum point. The
final step is to determine which type of point we have found.

There are several ways to do this. In Ch. 3, I discussed the “second-order” condition for a local
maximum, but I will not use that here. Instead, I use a graphical method. Consider the two lines
drawn in figure 6.1. Point A, at which the straight and curved lines touch, is x̂ units to the right of
the vertical axis, and s(x̂) units above the horizontal axis. Thus, the straight line has slope s(x̂)/x̂.
Furthermore, at this point the two lines have equal slope, so Eqn. 6.2 holds when x = x̂. This
shows that the figure corresponds to the equation. But is it really a local maximum?

To see that it is, note that the slope of the straight line is steeper than that of any other straight
line from the origin to a point on the curve. Thus, point A identifies the largest possible slope,
s(x)/x. Now according to Eqn. 6.1, this slope is proportional to fitness. Consequently, x̂ maximizes
not only the straight line’s slope, but also the parent’s fitness.

It is surprising that the optimal investment, x̂, does not depend on the wealth of the parent.
Poor parents (who have low values of T ) should allocate the same to each offspring as do rich parents
(with high values of T ). This seems counterintuitive, but it may account for the remarkable fact

1This gives the same answer because, since log x increases monotonically with x, the value of x that maximizes
logw will also maximize w.
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Figure 6.1: Smith & Fretwell model.
Offspring cannot survive if x < x0. Be-
yond x0, s increases with x at a decreasing
rate. The slope of a straight line from the
origin through s(x) is maximized when
x = x̂. In maximizing this slope, x̂ also
maximizes the parent’s fitness. Since the
two lines have equal slope at point A,
Eqn. 6.2 is satisfied.

that many plant species produce seeds of nearly uniform size regardless of the size of the parent.
Some species have seeds of such uniform size that in ancient times they were used as units of
measure.

On the other hand, other species produce young of varying size. The model of Smith and
Fretwell does not tell the whole story, as we will see in more detail below.

?EXERCISE 6–1 In the standard model of Smith and Fretwell, suppose that

s(x) = x3/(1 + x)3

Find the stable equilibrium graphically and then using calculus. Demonstrate that it is stable.

?EXERCISE 6–2 In the standard model of Smith and Fretwell, suppose that

s(x) = 1− e−(x−1)

Find the equilibria graphically and then using calculus. Which equilibria are stable?

6.5 Evaluating the Smith-Fretwell model against data

The Smith-Fretwell model makes a very detailed prediction about the amount of resource devoted
to each offspring and about the number of offspring produced. Ideally, one would evaluate the
model by comparing this detailed prediction to data from particular species. Unfortunately, this
effort is unlikely to succeed. It would need detailed knowledge about s(x), which is seldom available.

Fortunately, the Smith-Fretwell model also makes another prediction: the size of an offspring
should not depend on the resources available to the mother. Ordinarily, large mothers will be able
to mobilize more resources than small ones, yet the result predicts that large and small mothers
should produce offspring of equal size.

Figure 6.2 compares the volumes of eggs against the sizes of mothers in a series of species
from two different taxonomic groups—crustaceans and fish. In both groups, large species tend to
produce large eggs. This appears to contradict the prediction of the Smith-Fretwell model.

There is good reason, however, to be skeptical of this test. Each point in figure 6.2 refers to
a different species, and there is no reason to think the these different species share a common
function, s(x). The pattern seen in the figure could reflect some variation across species in the
shape of this function. To test the model, we really need to look at variation across individuals
within a single species.

This is done in figure 6.3, which plots the mean birth weight of Red Deer offspring against the
mean weight of their mother’s cohort. Some cohorts are larger than others, presumably because



36 CHAPTER 6. CLUTCH SIZE

Figure 6.2: Individual egg volume versus maternal weight for fish, and for crustaceans. Straight
lines show regression of log egg volume on log maternal weight for each group separately and for
both groups combined. [3], cited in [14, p. 60]

Figure 6.3: Mean birth weight of Red Deer hinds versus mean weight of mother’s cohort. [13,
Fig. 21.7]



6.6. MODIFYING THE MODEL 37

they had better nutrition as they were growing. The hinds of large cohorts presumably have more
resources to allocate toward reproduction. The Smith-Fretwell model predicts that this should not
affect the size of the offspring. Clearly, the prediction fails for Red Deer.

6.6 Modifying the model

How should the model be modified? Perhaps offspring from large clutches waste resources in conflict
with other siblings [53]. Sibling rivalry might affect the fitness of offspring in several ways. Most
obviously, the offspring may kill one another. Yet rivalry can be costly even if they do not, for the
more energy one spends on conflict, the less one can spend on growth, defense against pathogens
and so on. Here, I focus on this second cost.

One approach is to leave s(x) alone and modify the constraint function. Suppose that each
offspring wastes c units of resource in conflict with each of its b − 1 siblings. Then the constraint
function becomes

xb+ cb(b− 1) = T

What is the optimal value of c? In other words, how much energy should an offspring allocate
to conflict? The answer depends on what other offspring are doing. The more one allocates to
conflict, the more the others should allocate. This kind of problem requires evolutionary game
theory, which I introduce later in this book (Ch. 8). Here, I cheat by treating c as an exogeneous
constant. I assume, in other words, that the value of c is determined in advance. This approach
may give the wrong answer if (in a more realistic model) c varies in response to T .

The new model is studied in Box 3, leading to

ds(x)

dx
=

s(x)

[(x− c)2 + 4cT ]1/2
(6.3)

When there is no sibling rivalry, c = 0, and Eqn. 6.3 reduces to Eqn. 6.2. This is reassuring, for
when c = 0 there is no difference between the two models.

The constraint can be written in the form of a quadratic equation: cb2 + (x − c)b − T = 0, and
solved using the quadratic formula. The equation has two roots, one of which is negative and thus
irrelevant. The positive root is b = [−(x − c) + ((x − c)2 + 4cT )1/2]/2c. The fitness function is
w = bs(x), so

d logw

dx
=

1

b

db

dx
+

1

s(x)

ds(x)

dx

= − 1

[(x− c)2 + 4cT ]1/2
+
s′(x)

s(x)

At the optimal value of x, this derivative will equal 0. Setting it to 0 and rearranging gives Eqn. 6.3.

Box 3: Derivation of Eqn. 6.3

It is also reassuring that T appears in the answer, for we are trying to understand how T affects
x̂. But it is hard to tell, by staring at Eqn. 6.3, whether x̂ increases or decreases with T . In
Box 4, I prove that dx̂/dT > 0. In other words, females with ample resources (large T ) should
produce larger offspring (large x̂). However, don’t bother with Box 4 unless you are comfortable
with calculus. Look instead at Box 5, which makes the same point using a numerical example. Both
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If T changes, what happens to the optimal value of x? This box will get the answer with calcu-
lus. Skip to the next box unless you are comfortable with caculus. We begin with the equation
∂ logw(x̂, T )/∂x̂ = 0, which holds because x̂ maximizes w. This equation defines x̂ as an implicit
function of T . Consequently, we find dx̂/dT using the rule for implicit functions (see Appendix E).
This rule allows us to write

dx̂

dT
= − ∂2 logw/∂x∂T

∂2 logw/∂x2

∣∣∣∣∣
x=x̂

In section 3.6 (p. 16), I discussed the second-order condition for x to be a local maximum. As that
section explains, the denominator of the expression above is negative provided that x̂ is a local
maximum. Thus, the sign of dx̂/dT is the same as the sign of the numerator,

∂2 logw/∂x∂T = 2c((x− c)2 + 4cT )−3/2

Since everything within this expression is positive, the expression must be positive too. This proves
that dx̂/dT > 0. In other words, females with ample resources should produce larger offspring.

Box 4: Proof that x̂ increases with T in the model of sibling rivalry.

Suppose that s(x) = 0 if x ≤ x0 and equals (x − x0)1/2 if x > x0. This function equals 0 when
x < x0 and increases at a decreasing rate when x > x0. In addition, I assume arbitrarily that
x0 = 1 and c = 1. Here is a Maple program that evaluates this model:

interface(echo=4);

# Definitions

w := b*s(x);

constr := c*b^2 + (x-c)*b - T = 0;

s := proc(x) (x-1)^(1/2) end proc;

c := 1;

# Solve constraint for b using positive root of quadratic formula

b := (-(x-c) + sqrt((x-c)^2 + 4*c*T))/(2*c);

# Derivative of log of fitness

dlw := diff(log(w), x):

# Find value of x that makes dlw equal zero.

solve(dlw=0, x);

When you run this program, the last line of output should contain two formulas, which represent
the two values of x for which d logw/dx = 0. One of these is negative unless T is very small
and is thus irrelevant to our problem. The other is equivalent to x̂ = 1 +

√
4T/3 and implies the

x̂ increases with T . If you have trouble seeing this, then calculate a few numerical values using
different values of T . The result predicts that well-fed mothers (large T ) should produce larger
offspring (large x̂).

Box 5: Numerical example of model of clutch size with sibling rivalry
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boxes show that the model predicts what we observe in red deer: females with ample resources
produce large offspring.

Although the model predicts what we observe, this does not prove that it is correct. It could be
giving the right answer for the wrong reason. To test it further, it would be interesting to compare
species with and without sibling rivalry. We should find a positive relationship between x̂ and T
where sibling rivalry is important, but not where it is absent. This is a new prediction that could
be tested through empirical research.

6.7 On abstraction

In this chapter, the focus has been on abstract models rather than living, breathing organisms.
For many people, abstract models are hard. I might have taken a different approach, discussing a
particular organism, the surival chances of its offspring, and how these are affected by provisioning
and sibling rivalry. This would have made the argument less abstract and perhaps easier to grasp.
But this advantage would have come at a cost.

First, it is never possible to estimate anything without error, and we would have had to consider
how these errors affected our answers. The model would have needed a statistical component, a
layer of complexity that the abstract models above did not need. Furthermore, the model would
have been less general. If it were tuned to estimates from a single population, then it would tell
us only about that population. No general insights would have emerged. Thus, abstraction has
benefits, and theoreticians often make their models as abstract as possible.

6.8 Conclusions

This chapter has illustrated the interaction between modeling and data analysis. We started with
a simple model that seemed to explain some things but failed to explain others. This led to a
second model, which explained what was not explained before and which suggested other kinds of
empirical research.

?EXERCISE 6–3 Box 5 assumes that s(x) = (x − 1)1/2. Use this model to determine x̂ in (a) the
Smith-Fretwell model and (b) the sibling rivalry model, with c = 1. In both cases, assume that
T = 20. In which model is x̂ larger?



Chapter 7

Foraging

7.1 Diet choice

The next problem on our agenda is that of diet choice, and illustrates an optimization problem
that does not require calculus. Suppose that a foraging animal encounters potential prey of several
different types. At each encounter, it must decide whether to attack the prey or pass it up. How
should such decisions be made? Which species of prey should be attacked, and which ignored?

I shall simplify this problem by assuming that there are only two species of prey, and that each
of these is attacked either never or else at each opportunity. I am ruling out, in other words, the
possibility that the forager might attack some species on 40% of encounters, but ignore it the rest
of the time. This is true of any optimal strategy, but I will not prove that here. For details, see
[69, p. 18].

In this problem, fitness would be a poor currency. As explained in section 6.3.1, foraging
theorists usually assume that selection favors the strategy that maximizes the animal’s supply of
some nutrient such as energy. This supply is often measured by the rate at which energy is acquired,

R = A/T

where A is the amount of energy acquired and T the total time spent foraging.

It is easy to misunderstand the meaning of this assumption. Suppose that I live in a habitat in
which I can expect to acquire, on average, 10 calories per minute while foraging. But one morning,
1/2 minute after I leave home, some kind person gives me a piece of chocolate cake containing 400
calories. Then my rate of energy capture is already 800 calories per minute. If I continue foraging
at 10 calories per minute, my rate of energy capture will fall. Therefore, if I were really trying to
maximize R, I should stop foraging. Furthermore, I should never forage again. This program can
hardly be optimal, for if I followed it I would eventually starve to death.

But this argument misunderstands what is meant by rate maximization. By maximizing R, we
usually mean either: (a) maximizing the amount of energy acquired over some fixed period of time,
(b) minimizing the time required to acquire some fixed amount of energy, or (c) maximizing the rate
over a long but unspecified period of time. In what follows, I use the first of these interpretations.

For simplicity, suppose that prey species 1 is better than species 2, in that a forager who took
only species 1 would acquire more energy that a forager who took only species 2. Our only question,
then, is: Should the forager take only species 1 or should it take both species? The answer depends
on two quantities: A1 (the energy acquired by taking species 1 only) and A2 (that acquired by
taking both species). If A2 > A1 then the forager should take both species. Otherwise it should
take only species 1.

40
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These amounts will depend on the following variables.

Ts = “search time,” the time spent searching for prey

Th = “handling time,” the time spent pursuing, attacking, and eating prey;

λi = the number of prey species i encountered per minute;

ei = net energy acquired from an individual of prey species i;

hi = handling time per individual of prey species i.

Suppose the forager takes only species 1. In Ts minutes of searching, it will encounter Tsλ1 prey
of species 1, which will provide a total of

A1 = Tsλ1e1

calories. To determine the magnitude of A1, we must first find Ts. In other words, we must find
out how much of the total T minutes is spent searching. Ts can be calculated from the following
constraint:

Ts + Th = T

which says that search time and handling time must together equal the total foraging time T .
Handling time is Th = Tsλ1h1, since the Tsλ1 prey items each require h1 minutes. Substituting this
back into the constraint equation yields Ts = T/(1 + λ1h1) and

A1 = T
λ1e1

1 + λ1h1
(7.1)

A similar argument shows that a forager taking both species will acquire

A2 = T
λ1e1 + λ2e2

1 + λ1h1 + λ2h2
(7.2)

calories. Note that A1 and A2 are both proportional to T , the total foraging time. If we divided
by T on both sides of each equation, we would obtain the expressions for rates of return that are
usually studied in models of foraging ecology.

The forager should take both prey species if A2 > A1, i.e. if

λ1e1 + λ2e2
1 + λ1h1 + λ2h2

>
λ1e1

1 + λ1h1

which is true provided that1

e2
h2

>
λ1e1

1 + λ1h1
= R1

1Here is the algebra behind this claim:

λ1e1 + λ2e2
1 + λ1h1 + λ2h2

>
λ1e1

1 + λ1h1

λ2e2
1 + λ1h1 + λ2h2

> λ1e1

(
1

1 + λ1h1
− 1

1 + λ1h1 + λ2h2

)
λ2e2

1 + λ1h1 + λ2h2
> λ1e1

(
(1 + λ1h1 + λ2h2) − (1 + λ1h1)

(1 + λ1h1)(1 + λ1h1 + λ2h2)

)
λ2e2 >

λ1e1 · λ2h2

1 + λ1h1

e2
h2

>
λ1e1

1 + λ1h1
= R1
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Figure 7.1: Choice of an optimal
prey set. Open circles (◦) show ei/hi
for prey type i, with the prey types
ranked in order of descending ei/hi.
Bullets (•) show Ri for a diet consist-
ing of prey types 1, 2, . . . , i. The opti-
mal diet consists of all prey types for
which ei/hi > Ri−1, i.e. all prey types
to the left of the vertical line.
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Table 7.1: Data on three hypothetical prey species

Prey λi ei hi ei/hi
1 0.1 20 10 2.00
2 1.0 3 2 1.50
3 2.0 10 15 0.67

This tells us that species 2 should be included in the diet only if e2/h2 exceeds the overall rate of
return for a forager specializing in species 1.

This model can be generalized to deal with more than two species of prey. In this more general
context, prey species i should be added to the diet if ei/hi exceeds the average rate of return, Ri−1,
for the items already in the diet [69, p. 22]. This makes intuitive sense: When a prey of type i is
attacked, the rate of return during the attack is ei/hi. If the prey is not attacked, the predator can
expect to gain calories at the usual rate, Ri−1. Thus, it makes sense to attack if ei/hi > Ri−1.

This decision rule is illustrated graphically in Fig. 7.1. The optimal diet there consists of all
prey types to the left of the vertical line.

Numerical example Suppose that a forager is confronted with the three types of prey described
in table 7.1. If it eats prey type 1 alone, its rate of return will be

R1 =
0.1× 20

1 + 0.1× 10
= 1

Should it add prey type 2 to its diet? The answer is yes, since e2/h2 = 1.5, and this exceeds
R1 = 1. After adding prey species 2, the overall rate becomes

R2 =
0.1× 20 + 1× 3

1 + 0.1× 10 + 1× 2
= 1.25

This exceeds R1, as expected. Having added prey species 2, should the forager now add species 3?
The answer is no, since e3/h3 = 0.67, which is less than the new overall rate, R2 = 1.25. To check
this conclusion, let us calculate the rate that all three species would provide.

R3 =
0.1× 20 + 1× 3 + 2× 10

1 + 0.1× 10 + 1× 2 + 2× 15
= 0.74

This rate is less that R2 = 1.25, as expected.
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Table 7.2: Parameters of the bluegill experiments of Werner and Hall [74]

Prey Density
Low Medium High

Prey ei hi ei/hi λi Ri λi Ri λi Ri

1 371 1.2 309.167 0.035 12.496 0.207 61.564 1.057 172.881
2 108 1.2 90.000 0.025 14.658 0.147 65.086 0.751 149.327
3 18 1.2 15.000 0.009 14.661 0.056 62.833 0.285 136.226

Note: The λi are based on Fig. 4 of [74].
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Figure 7.2: Choice of an optimal prey set in
the experiment of Werner and Hall [74]. The
vertical axis is on a logarithmic scale. Filled
circles (•) show ei/hi for prey type i, with
the prey types ranked in order of descending
ei/hi. Open circles (◦) show Ri = Ai/T for
a diet consisting of prey types 1, 2, . . . , i. For
each density, the optimal diet consists of all
prey types for which ei/hi ≥ Ri−1. Figure is
based on data in Table 7.2

7.2 Diet choice among bluegill sunfish

The diet breadth model has been tested many times, often with great success. One such test was
published by Werner and Hall [74], using data from the bluegill sunfish (Lepomis macrochirus)
feeding on the zooplankton (Daphnia magna). In their experiments, a mixture of Daphnia of
varying size was stirred into the pool that contained the sunfish. The fish were later sacrificed to
find out how many Daphnia in each size class were taken. Handling time was the same for all
of the size categories of prey, but ei was largest for large prey. Thus, the theory predicts that
the sunfish should take all prey sizes if prey are rare but should take only large prey if prey are
common. To test this prediction, Werner and Hall repeated their experiment several times with
different concentrations of prey. The parameters of their experiments are shown in table 7.2.

In the table, R1 is the rate of return from a diet that includes only prey type 1, R2 is the
return from a diet including types 1 and 2, and R3 is the return from a diet including all three
types. The table shows that when prey density is low, R3 greater than R1 or R2. Consequently,
the optimal diet includes all three types of prey. We should expect the proportion of each prey
type in the bluegill’s diet to mirror the frequencies (the λi) with which they are encountered. At
medium density, R2 is larger than R1 or R3, so the optimal diet includes prey types 1 and 2 but
not type 3. At high density, the optimal diet includes only prey type 1.

These predictions may be easier to grasp when the data in table 7.2 are presented in graphical
form, as is done in Fig. 7.2. There, the ei/hi value for each prey species is shown as a filled circle
and the Ri values are shown as open circles. For each level of prey density, the optimal diet consists
of those prey items for which ei/hi > Ri−1. This is true of all three prey items at low density, of
items 1 and 2 at medium density, but only of item 1 at high density. Thus, we end up with the
same predictions from the graph as from the table.



44 CHAPTER 7. FORAGING

1 2 3

Prey

0.0

0.5

1.0

Low Density

◦
◦

◦

. . . . . . . . . . . . . . . . . . . . . . . .

•
•

•

. . . . . . . . . . . . . . . . . . . . . . . .

1 2 3

Prey

Medium Density

◦

◦

◦

.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . . . . .

•

•

•

.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . . . . .

1 2 3

Prey

0.0

0.5

1.0

High Density

◦

◦ ◦

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . . . .

•

•
•

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . . . .

Figure 7.3: Results from bluegill experiment of Werner and Hall [74]. Filled circles show the
frequencies of prey types in the stomach contents of the fish. Open circles show the frequencies
predicted by the model.

So what did the bluegills actually do? The results are shown in Fig. 7.3. The open circles there
show the prey-type frequencies that were predicted by the model and the filled circles show the
frequencies among the prey that were recovered from the stomachs of the fish. For the low- and
medium-density experiments, the agreement between prediction and observation is remarkable. In
the high-density experiment, the agreement is also good, but it is not perfect. The fish took more
prey in size-class 2 than the model says they should have. Similar discrepancies have appeared
in experiments published by other authors, and these authors often make the same suggestion: a
forager cannot make optimal decisions without sampling its environment. Perhaps these bluegills
were taking the occasional prey from size-category 2 in order to make sure that they were not
missing out on something good.

7.3 The patch model

We turn now to a different problem. Many resources occur in patches. Patches exist on many
different scales. For example, a pine cone is a patch to a chickadee, but not to a human forager.
For the human, an entire grove of pinyon pines might represent a patch. But regardless of these
differences in scale, these foragers all face the same decision: How long should one forage in a patch
before moving to another?

As before, I assume that selection favors the strategy that maximizes the energy obtained in
some fixed time T . Let g(x) denote the energy acquired from a patch if one forages there for x
minutes. Then the total energy gained is Ng(x), where N is the number of patches visited. If it
takes on average a minutes to travel from patch to patch, then the number of patches visited must
satisfy N · (x+ a) = T . The optimization problem is

maxw = Ng(x)

subject to: N · (x+ a) = T

In the literature, this problem is referred to as the Marginal Value Theorem after a paper by Eric
Charnov [10]. It is similar to the Smith-Fretwell model and can be solved by repeating the steps
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Figure 7.4: The patch model
Between-patch travel time, a, is measured from the vertical line towards the left; in-patch foraging
time, x, is measured from the vertical line towards the right. Curve g(x) measures the energetic
gain from in-patch foraging. The dotted line shows that x̂ satisfies the first-order condition for a
maximum, Eqn. 7.4.

used there (see Ch. 6). This gives

lnw = lnT + ln g(x)− ln(x+ a)

d lnw

dx
=

g′(x)

g(x)
− 1

x+ a
(7.3)

Setting the derivative equal to zero gives the first-order condition for a local maximum:

g′(x) =
g(x)

x+ a
(7.4)

The graph illustrating this solution is shown in figure 7.4. Note that the straight dotted line with
slope g(x̂)/(x̂+ a) is tangent to g(x) at x̂.
•EXAMPLE 7–1

If g(x) = 1− e−x and x̂ = 1.5, then what is the travel time a?
◦ANSWER

First define the gain function:

> g := proc(x) 1.0 - exp(-x) end;

g := proc(x) 1.0 -exp(-x) end

Then solve for the equilibrium:

> solve(subs(x=1.5,

> diff(g(x), x)) = g(1.5)/(1.5+a), a);

1.981689071

Eqn. 7.4 would be satisfied not only by a local maximum, but also by a local minimum. To
separate the two possibilities, we need the second-order condition discussed in section 3.6. The
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Table 7.3: Results from Cowie’s [16] experiment on foraging by Great Tits

Hard Easy
Variable environment environment

Time in patch 73.67 45.80
Travel time 21.03 4.76

answer is a local maximum only if the second derivative of lnw is negative. Differentiating Eqn. 7.3
gives

d2 lnw

dx2
=
g′′(x)

g(x)
−
(
g′(x)

g(x)

)2

+
1

(x+ a)2

Now substitute the first-order condition (Eqn. 7.4) to obtain

d2 lnw

dx2

∣∣∣∣∣
x=x̂

=
g′′(x̂)

g(x̂)

Since g(x) is always positive, the sign of this result is the same as the sign of g′′(x̂). Thus, x̂ is
a local maximum if g increases at a decreasing rate because in that case it will have a negative
second derivative.

?EXERCISE 7–1 In the patch model, suppose that a = 1, and that the gain function is g(x) =
1 + x2. (1) Plot this function. (Hint: In your plot command, specify the vertical range using
a command such as plot(g(x), x=0..2, g=0..5).) (2) At what value of x is the first-order
condition (Eqn. 7.4) satisfied? (3) Use the second-order condition to determine whether this value
is a local maximum. (4) Confirm your answer by plotting the fitness function.

7.4 How long do great tits stay in patches?

The patch model has been used many times in field studies and experiments. In one series of exper-
iments, Richard Cowie [16] studied great tits (Parus major) foraging in an artificial environment.
Cowie had constructed a series of artificial trees (really just arrangements of poles), each containing
several patches consisting of holes filled with sawdust and meal worms.

The patch model predicts that the tits will forage longer in each patch if the travel time between
patches is large. Cowie wanted to test this prediction, but had a problem. The obvious way to
make travel time large is to move the patches far apart, but Cowie’s aviary was too small. He
tried another approach. Each patch was fitted with a lid, which the birds had to pry out before
they could begin foraging. In some experiments, the lids were loose and easy to remove. In others,
the lids were tight and had to be pried out. Cowie called these the “easy environment” and the
“hard environment,” respectively. Cowie’s results, shown in table 7.3, are just as the patch model
predicts. Tits spend more time foraging within patches when travel time is large.

These results are in qualitative agreement with the patch model, but are they also in quantitative
agreement? To find out, Cowie considered a gain curve of form

g(x) = Q[1− e−mx]

where x is the time in patch, and Q and m are constants that determine the shape of the curve.
Cowie estimated these constants from his data, using a method that he did not describe in detail.
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He then used Eqn. 7.4 to predict the optimal time in patch in each experiment. It turned out that
the birds usually stayed longer in patches than the model predicted.

What might account for this discrepancy? Cowie proposed adding the energetic costs of travel
and search into the model. Can you think of other alternatives?



Chapter 8

A Graphical Approach to
Evolutionary Game Theory

The optimization models discussed in in previous chapters all assume that the value of a strategy
to one individual does not depend on the strategies of others. This is often a poor assumption. For
example, a female should produce male offspring if other females are producing females. If you are
cooperative, then perhaps I should cooperate too. If one tennis player serves consistently to the left
side of the court, then the other should position himself to defend against such serves. If everyone
else drives on the left side of the road, then that is where I should drive too. In all these cases,
payoffs are said to be frequency dependent because the optimal strategy depends on the frequencies
of strategies within the population. Evolutionary game theory was developed to find evolutionary
equilibria in such cases [49].

To keep the exposition simple, I will stick to the simplest possible genetic system: that of
asexual, haploid inheritance. In this system, each individual has just one parent, and each daughter
inherits her mother’s strategy. The results, however, will also apply (with restrictions) to organisms
with diploid inheritance. I will also consider only two alleles, A and B. These alleles encourage their
bearers to adopt behaviors called strategy A and strategy B. As usual, the frequencies of A and B
are written as pA and pB = 1− pA. Under haploid inheritance these are not only allele frequencies,
they are also the frequencies with which strategies A and B are exhibited in the population.

In evolutionary game theory, an equilibrium is called an evolutionarily stable strategy, or ESS.
An ESS is a strategy that is unbeatable: Once fixed in the population, an ESS can resist invasion
by all alternative strategies.

How can such equilibria be found? It will not help to search for the strategy that maximizes
mean fitness, for with frequency-dependent fitnesses there is no longer any guarantee that selec-
tion will maximize mean fitness. Indeed, the ESS may even minimize mean fitness. Nonetheless,
inequality 4.4 still holds (see p. 21). In the present context, it says that pA will increase at the
expense of pB whenever

wA > wB (8.1)

where wA and wB are the genic fitnesses of the two alleles. This principle underlies evolutionary
game theory.

There are two types of ESS to consider: those at which the population is dominated by one
of the two strategies, and those at which both strategies are maintained at some intermediate
frequency. The former are called pure ESSes, and the latter mixed ESSes.
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Figure 8.1: Two Pure ESSes at pA = 1

8.1 Pure ESSes

It is often helpful to plot the fitnesses of both strategies against the frequency of one strategy. This
is done for two hypothetical cases in Figure 8.1. In each panel, fitnesses are plotted on the vertical
axis. As one moves from left to right, pA increases from 0 to 1, and pB decreases from 1 to 0. Let
us use these graphs to figure out whether each of two strategies (A and B) can resist invasion by
the other.

A resists invasion by B if B is selected against when A is common. To figure out whether this is
so, we need to look at the right edge of each graph, where pA = 1 and pB = 0. In panel 1, wA > wB
when pA = 1. Thus, in a population dominated by A, a rare B would have lower fitness. In other
words, A resists invasion by B. Now consider strategy B. It is common at the left edge of the graph,
where pA = 0 and pB = 1. At that edge, wB > wA. Consequently, a population dominated by B
would resist invasion by A. Either of these strategies would resist invasion by the other.

These results illustrate the general principal that:

Result 8.1 Strategy X resists invasion by Y if wX > wY when pX = 1.

Panel 2 of Fig. 8.1 illustrates a case in which this result is not useful. At the right edge of that
graph, both strategies have the same fitness. Yet it is clear that A does resist invasion by B: if
pA < 1 then wA > wB, and pA must increase toward pA = 1. This is always the case when the
derivative of wB exceeds that of wA where pA = 1. Thus, we have another way to recognize an
ESS:

Result 8.2 A strategy X resists invasion by another strategy Y if wX = wY when pX = 1, but
wX > wY when pX is slightly less than 1.

Results 8.1 and 8.2 state conditions under which one strategy resists invasion by another. A strategy
that resists invasion by all alternate strategies is called an evolutionarily stable strategy, or ESS.
Results 8.1 and 8.2 make is possible to find a ESS algebraically, even when it isn’t possible to draw
graphs such as those the figure.

?EXERCISE 8–1 Use results 8.1 and 8.2 to show that pA = 0 is an ESS in both panels of figure 8.2,
assuming that A and B are the only feasible strategies.
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Figure 8.2: Two Pure ESSes at pA = 0
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Figure 8.3: A Mixed ESS at pA = 0.5

8.2 Mixed ESSes

A mixed ESS is an equilibrium at which both strategies are maintained at nonzero frequencies.
Figure 8.3 illustrates such a case. In this figure, the two fitness curves cross. At the point of
intersection, the two strategies have equal fitness and there is no tendency to change. Thus, the
intersection is an equilibrium. To figure out whether this equilibrium is stable, we need to ask what
would happen to a population whose value of pA differed slightly from the equilibrium value. To
the left of the equilibrium, wA > wB, so pA tends to increase. To the right, the reverse is true, so
pA decreases. Either way, the the movement is toward the equilibrium. Thus, if pA were perturbed
away from this equilibrium, it would tend to return. This is a stable equilibrium.

The conditions for a mixed ESS may be summarized as follows:

Result 8.3 The point pA = p̂A is a mixed ESS if the wA − wB is positive to the left of p̂, zero at
p̂, and negative to the right.

8.3 Pairwise Interactions

Consider now the special case of interactions between pairs of individuals. Frequency dependence
arises because the fitness of each individual depends on the opponents he encounters, and the
likelihood that he will encounter one type rather than another depends on the frequencies of those
types.

As before, I consider two strategies only, and label them A and B. To distinguish between the
two individuals in an interaction, I will label them Ego and Opponent. Ego’s fitness depends both
on his own strategy and on that of his opponent. Let Π(i, j) denote the payoff to Ego when Ego
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Figure 8.4: Pairwise interactions. Panel 1: Pure ESSes at pA = 0 and pA = 1. Panel 2: Mixed
ESS at p̂A.

plays strategy i against an opponent who plays j. The various payoffs can be arranged into a
matrix whose ijth entry is Π(i, j). One such matrix is shown in Table 8.1, where Π(A,A) = a,
Π(A,B) = b, and so on. Ego encounters opponents of types A and B with probability pA and
1− pA, respectively. Thus, if Ego adopts strategy A his fitness will be

wA = apA + b(1− pA)

= b+ pA(a− b) (8.2)

Similarly, if Ego adopts strategy B his fitness will be

wB = cpA + d(1− pA)

= d+ pA(c− d) (8.3)

This gives us simple expressions for the fitnesses of the two strategies as a function of pA. What
makes these expressions interesting is that they are linear—straight lines—as shown in figure 8.4.
These graphs are read the same way as the others. In panel 1, there are ESSes at pA = 0 and at
pA = 1. There is an unstable equilibrium where the lines cross. In panel 2, the two pure strategies
are unstable, but there is a mixed ESS where the lines cross. In panel 3, A is stable and B unstable.

8.4 The Hawk-Dove Game

The Hawk-Dove game models conflicts between individuals over resources. Animals often fight,
yet injuries are uncommon, even in carnivore species such as the wolves in figure 8.5. It used to
be argued, by way of explanation, that if animals fought more aggressively the resulting injuries
would threaten the survival of the species. Evolutionary game theory was introduced in an effort to
provide an alternative explanation, which relies on selection among individuals rather than among
groups [50, 48]. The version of the model discussed here is based on [49].

Imagine that two individuals both want the same resource. Each must choose between two
strategies: The “hawk” strategy fights for the resource; the “dove” strategy gives up without a
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Figure 8.5: Wolves (Canis lupus) fighting

Table 8.2: Payoffs to Ego in the Hawk-Dove Game

Opponent
Hawk Dove

Hawk (V − C)/2 V
Ego

Dove 0 V/2

fight. The resource has value: it adds V to the fitness of the winner. Furthermore, the loser of the
fight may be injured, and this possibility subtracts C from the loser’s fitness. The fitness effects of
this interaction are shown in table 8.2.

The entries in this table reflect the following reasoning. (1) When hawk meets hawk, they
fight and each has an equal chance of winning (thus gaining V ) or losing (thus gaining −C). The
expected fitness benefit is (V − C)/2. (2) When hawk meets dove, the dove withdraws and the
hawk wins V without a fight. (3) When dove meets hawk, the dove withdraws without a fight, and
there is no effect on its fitness. (4) When dove meets dove, there is no fight, and each individual has
an equal chance of receiving the benefit V . The expected effect on each dove’s fitness is thus V/2.
If fitnesses are graphed against the frequency pH of hawks, the diagram describing this interaction
is as shown in figure 8.6.

The figure’s left panel illustrates the case in which V > C, so that the hawk strategy has a
positive fitness effect even when hawks are common. In this case, hawk is the only ESS. The right
panel illustrates the case in which V < C, so that hawk versus hawk yields a negative contribution
to fitness. In this case, there is a mixed ESS with an intermediate frequency of hawks and doves.

?EXERCISE 8–2 Draw a graph of the Hawk-Dove game for the case in which V = 1 and C = 2.

?EXERCISE 8–3 Use Result 8.3 to prove that the mixed equilibrium in the Hawk-Dove game is
stable.

The lesson taught by this model is that selection between individuals can favor a strategy other
than “Hawk.” It leads to an equilibrium at which individuals fight over resources only occasionally.
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Figure 8.7: Sex Ra-
tio. pm is the fraction of
the population that is
male, wm is the fitness
of a male and wf is the
fitness of a female.

At other times, one individual gives way to the other without a fight. The frequency of serious
fights diminishes still further when there is some role-asymmetry between the contestants. This
may explain why, in disputes over territories, the owner of the territory usually defeats the intruder.

8.5 The Sex Ratio

When a mother produces offspring, what fraction should be boys and what fraction girls? This
question puzzled Darwin because the ratio of boys to girls need have no affect on the number of the
mother’s offspring. Ronald Fisher solved the puzzle by counting grandchildren rather than children
[23]. The idea is not hard to grasp. Suppose that a fraction pm of the offspring in some generation
are sons, the remaining pf = 1 − pm being daughters. If N offspring are produced in all, then
there are Npm sons and Npf daughters. If N grandchildren are produced, then mothers average
N/(Npm) = 1/pm grandchildren per son and 1/pf grandchildren per daughter. If pm > pf , then
daughters are more productive than sons and mothers would gain by biasing their progeny in favor
of daughters. On the other hand, if pm < pf , mothers should bias their progeny in favor of sons.
This moves the population toward a balanced sex ratio.1 The graph of this process is shown in
Figure 8.7.

?EXERCISE 8–4 Suppose that sons were twice as expensive to produce as daughters, so that mothers
were forced to choose between producing one son or two daughters. Then the fitness of a mother who

1There is a subtle assumption here that mating is at random. See Charnov [11].
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produces sons is wm = 1/pm, whereas that of a mother who produces daughters is wf = 2/(1−pm).
Draw a graph using these fitnesses, and use it find the ESS.



Chapter 9

The Algebra of Evolutionary Game
Theory

A strategy that resists invasion by all rare mutants is called an evolutionarily stable strategy or
ESS. This chapter, like the last one, is about methods for finding such strategies. The previous
chapter focused on graphical methods, which are excellent for building intuition. They fail however
when there are more than two strategies. Furthermore, one cannot make graphs without assigning
numerical values to all parameters. Consequently, the graphical approach makes it hard to find
general answers. To relax these restrictions, we turn in this chapter to algebraic methods.

These algebraic methods deal exclusively with rare invaders, and in doing so they lose something.
The graphical methods of the previous chapter could deal with common alleles and rare alleles with
equal ease. The methods developed below work only when one allele is very rare. Consequently,
they tell only part of the story.

The sections that follow will introduce methods used for several types of game. The first section
deals with pairwise games with discrete strategies, the second with N -person games with discrete
strategies, and the last deals with games with continuous strategies.

9.1 Pairwise games with discrete strategies

A pairwise game is one in which there are two opponents. A game with discrete strategies is one
in which, on each turn, each player must choose between a limited set of alternative strategies. For
example, in the Hawk-Dove game discussed below there are only two strategies: Hawk and Dove.

9.1.1 Recognizing the ESS

How can we recognize an ESS? I will start with the answer and then explain why it makes sense.
First some notation. The name “Ego” will refer to the individual whose fitness is being calculated.
In this section I will assume that the game is between a pair of individuals so that Ego has a single
opponent. Below, this logic will be extended to the case of games between N individuals.

The symbol I will represent some strategy in which we are interested. Let Π(I, J) denote the
payoff to an individual who plays I against an opponent who plays J . There are two ways in
which I can be an ESS. Strategy I is an ESS if either of the following conditions holds for every
alternative strategy J :

Π(I, I) > Π(J, I) (9.1)
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or
Π(I, I) = Π(J, I) and
Π(I, J) > Π(J, J)

}
(9.2)

To understand these conditions, the first step is to realize that we are only interested in what
happens when I is very common. This is a matter of definition: an ESS is a strategy that resists
invasion by rare mutants. It need not resist invasion by common ones. This restriction is reasonable
because every mutant is rare to begin with.

If the mutant J is rare, then nearly all individuals (of either type) will play against I. Conse-
quently, the fitness of I is Π(I, I) and that of J is Π(J, I). Thus, strategy I has the higher fitness
if inequality 9.1 is satisfied.

Inequality 9.1 is just another way of saying that strategy I has higher fitness when strategy J
is rare. We have seen this condition already—it is a paraphrase of result 8.1 from chapter 8. Refer
back to panel 1 of Figure 8.4 on page 51. There, strategies A and B are both ESSes because each
has a higher fitness when common than its alternative. These strategies each satisfy inequality 9.1.
But this inequality cannot help us with panels 2 and 3. In panel 3, wA = wB when pA = 1, so
Π(I, I) = Π(J, I) and inequality 9.1 does not hold. Yet we already know that strategy A is an ESS.
Condition 9.2 is designed to deal with cases such as this.

To justify condition 9.2, write the fitnesses of the two types as

wI = Q0Π(I, I) +Q1Π(I, J)

wJ = Q0Π(J, I) +Q1Π(J, J)

where Q0 is the probability that Ego’s opponent is of type I and Q1 is the probability that this
opponent is of type J . (The subscript counts the number of opponents of type J .) Since we are
concerned here with the case in which Π(I, I) = Π(J, I), the difference between these two fitnesses
is

wI − wJ = Q1[Π(I, J)−Π(J, J)]

Thus, wI > wJ whenever (9.2) holds and Q1 > 0.

9.1.2 The Hawk-Dove game

We used graphical methods to study the Hawk-Dove game in section 8.4. Here, we re-visit that
game in order to illustrate the algebraic approach described above. For ease of reference, I re-write
the payoff matrix (table 8.2, page 52) using the new notation:

Π(H,H) = (V − C)/2

Π(H,D) = V

Π(D,H) = 0

Π(D,D) = V/2

Recall from the graphical analysis that Dove is never an ESS. This conclusion also follows from
the observation that since, Π(D,D) < Π(H,D), Dove satisfies neither condition 9.1 nor 9.2. The
graphical analysis also showed that Hawk is an ESS when V > C. To verify this using condition 9.1,
note that Π(H,H) > Π(D,H) when V > C.

But what if V < C? In that case no pure strategy can be stable, because neither pure strategy
satisfies either of the conditions for an ESS. Let us therefore consider a mixed strategy. Let I denote
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a strategy that plays Hawk with probability p and Dove with probability 1 − p. In a population
playing I, the fitnesses of hawks and doves are

Π(H, I) = pΠ(H,H) + (1− p)Π(H,D)

= p(V − C)/2 + (1− p)V
Π(D, I) = pΠ(D,H) + (1− p)Π(D,D)

= (1− p)V/2

These fitnesses must be equal if I is an ESS.1 This requires that p = V/C.

?EXERCISE 9–1 Verify that Π(H, I) = Π(D, I) when p = V/C.

The algebra above shows that, when the population is playing I, a mutant playing hawk would
have exactly the same fitness as a mutant playing dove. What about a mutant playing some mixed
strategy? It turns out that their fitnesses are identical. Thus, all strategies—pure or mixed—receive
the same payoff when the population is dominated by strategy I, so strategy I satisfies the first
half of condition 9.2.

?EXERCISE 9–2 Explain why any mixed strategy would receive the same payoffs as Hawks and
Doves in a population dominated by strategy I.

The second half of condition 9.2 requires that Π(I, J) > Π(J, J) for any J . We cannot guarantee
that I is an ESS until we have checked that this condition holds for all conceivable invaders. It
must resist invasion by hawks, by doves, and by other invading mixed strategies. Each of these
potential invaders requires its own paragraph of algebra. I illustrate this rather tedious process in
the appendix to this chapter. Here, I take a short cut that avoids a lot of algebra.

9.1.3 Shortcut for pairwise games with only two strategies

You can avoid a lot of algebra if you are dealing with a symmetric pairwise game in which there
are two pure strategies. Recall that, in strategy I of the Hawk-Dove game, p was chosen so as to
make the fitness of Hawk equal to that of Dove. These fitnesses would also be equal in a population
comprising a fraction p of Hawks and a fraction 1 − p of Doves. Thus, p is a point where the
lines cross in a graph like those in panels 1 and 2 of Figure 8.4. The question is, which of these
graphs is relevant? p is not an ESS in panel 1 but is an ESS in panel 2. There is an easy way
to distinguish the two cases: in panel 1 the two pure strategies (p = 0 and p = 1) are stable,
whereas in panel 2 they are unstable. In the Hawk-Dove game the two pure strateies are unstable,
so panel 2 is relevant and the mixed equilibrium must be stable. This reasoning is fair because
we are dealing with a pairwise interaction, where the lines in the graph necessarily are straight.
In N -person games this reasoning would not apply, and you would need to do the sort of analysis
illustrated in the appendix to this chapter.

1If Hawk had a higher fitness than Dove, then it would also have a higher fitness than I since I is a mixture of
Hawk and Dove. Consequently I cannot be an ESS unless the two pure strategies have equal fitness.
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Figure 9.1: Perissodus eccentri-
cus, a scale-eating fish.

9.2 Asymmetric games

In Lake Tanganyika, in the African Rift Valley, there is a fish (Perissodus eccentricus) that lives by
eating the scales of larger fish [39]. It attacks from behind, snatching a scale or two from the side
of its prey. P. eccentricus is aided in this effort by an interesting adaptation: its mouth is twisted
to one side (figure 9.1). Some individuals have mouths twisted to the right (so-called right-handed
fish) whereas others are left-handed. Right-handers attack from the left, left-handers from the
right. Prey try to avoid attacks, but they cannot watch their left and right at the same time. If
they are watching left, then attacks from the left seldom succeed but attacks from the right usually
do.

This is an example of an asymmetric game—one in which the two parties to the contest play
different roles. The scale-predator chooses between two strategies: right-handed (RH) and left-
handed (LH). These strategies are not relevent to the prey, whose choice is between: watch left
(WL), and watch right (WR). In an asymmetric game, the row and column player need not even
have the same number of strategies to choose from.

For asymmetric games, the payoff matrix must include not only the payoffs to row but also those
to column. This is done in Table 9.1 by writing each entry in the matrix as a pair of numbers (j, k),
where j is the payoff to row and k is the payoff to column. The payoff matrix shown here embodies
the following assumptions: (1) When the predator attacks the side that is defended, the attack fails
and neither party gains or loses anything. (2) When the predator attacks the undefended side, the
predator gains a units of fitness and the prey loses b units.

9.2.1 Response functions

We can study this game using the method of response functions. In this model, x is the probability
that a random predator is right-handed, and y is the probability that a random prey watches left
(guarding against right-handed attacks). The method of response curves asks first how the optimal
y depends on x, and then how the optimal x depends on y.

Let RX(y) denote the value of x that maximizes the fitness of predators given y. It is called the

Table 9.1: Payoffs to scale-eating fish
and their prey. Within each pair of
parentheses, the first number is the
payoff to row and the second is the
payoff to column.

Prey
WL WR

RH (0, 0) (a,−b)
Scale-Eater

LH (a,−b) (0, 0)
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response function of the predator. Similarly, let RY (x) (the response function of the prey) denote
the value of y that maximizes the fitness of prey given x. We will use these functions to search for
(x, y) values such that x is the best reply to y, and y is also the best reply to x.

If the value of y were fixed, then fitnesses would be density-independent and selection would
increase the mean fitness of the predator population by moving x toward RX(y). Similarly, if x
were fixed, then selection would move y toward RY (x). Even when x and y are not fixed, selection
tends to change the value of x whenever x 6= RX(y) and to change that of y whenever y 6= RY (x).
Thus, equilibria occur where x and y are each equal to their corresponding response functions.

To calculate the optimal response function of the scale-eating fish, we begin by writing down
the fitnesses of strategies RH and LH as a function of y. From Table 9.1, these are

wRH = (1− y)a and wLH = ya

The mean fitness of the predator population is

w1 = xwRH + (1− x)wLH

= x(1− y)a+ (1− x)ya

= x(1− 2y)a+ ya

Notice that if y < 1/2, then w1 increases with x so the optimal value of x is one. On the other
hand, if y > 1/2 then w1 decreases with x so the optimal x is zero. Thus, the optimal response
function of the predator is

RX(y) =

{
1 if y < 1/2
0 if y > 1/2

This expresses the obvious fact that left-handers have the advantage if prey are guarding against
right-handers, and vice versa. An analogous argument gives the optimal response function of the
prey:

RY (x) =

{
1 if x > 1/2
0 if x < 1/2

?EXERCISE 9–3 Calculate the optimal response function of the prey.

Let us now use these response functions to find the game’s equilibrium. An equilibrium point
is a pair of values (x̂, ŷ) such that

x̂ = RX(ŷ) and ŷ = RY (x̂)

An easy way to find the equilibrium is to draw a graph such as that in Figure 9.2, where the
horizontal axis is x and the vertical axis is y. The prey response function, RY (x), is graphed
against the horizontal (x) axis as a solid line; the predator response function, RX(y), is graphed
against the vertical (y) axis as a dashed line. The lines cross at the point where x and y both equal
1/2, i.e. where the predators are divided equally between left-handers and right-handers and the
prey spend half their time looking over each shoulder. When the system is at this point, neither
species can gain any advantage by changing. Thus, this point is an equilibrium.

It is not yet clear, however, that this equilibrium is stable. Suppose that x > 1/2 and y > 1/2
so that the system is in the upper-right quadrant. Because most predators are right-handed, it is
advantageous for the prey to defend against right-handers, so y will increase. But because most
prey defend against right-handers left-handed predators flourish, and x will decrease. As a result,
the system moves in the direction of decreasing x but increasing y, as indicated by the arrow in
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Figure 9.2: Response curves for
scale-predators and their prey. Solid
line shows the response curve RY (x)
of prey; dashed line shows the re-
sponse curve RX(y) of predator.
Arrows show the direction of mo-
tion. (I apologize for the form of
the graph. No political message is
intended.)
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the upper-right quadrant of the figure. Similar reasoning justifies the arrows shown in the other
quadrants of the figure. Taken together, these arrows suggest that the system will tend to cycle in
a counter-clockwise direction. This is exactly what is shown by the field data.

There are several possibilities that we have not resolved. The cycles may be damped, growing
smaller and smaller in magnitude until they eventually converge to the equilibrium in the middle.
On the other hand, they may be undamped, continuing to swirl around forever. In order to find
out, we would need to turn the model into a system of differential equations [38]. These methods
are beyond our scope here.

9.3 Games with continuous strategies: The clutch size game

2Wasps lay eggs in fly pupae. Let us assume that the survival probability of young wasps is a linear
function of crowding,

s = a− bc

where a and b are positive constants and c is the number of eggs laid in the pupa. Assume further
that two wasps lay eggs in each pupa, so that

c = c1 + c2

where c1 and c2 are the eggs laid by wasps 1 and 2. The fitnesses of the two wasps are

w1 = c1s = c1(a− b(c1 + c2))

w2 = c2s = c2(a− b(c1 + c2))

The optimal value of c1 depends on the value of c2 and vice versa. To find the equilibrium, we need
game theory. I will treat c1 and c2 continuous variables so that I can use this example to illustrate
the methods that are used for games with continuous strategy spaces.

There are two equivalent ways to attack this problem, which I will illustrate one at a time.

2I thank Eric Charnov for this example.
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Figure 9.3: Response curves for wasp
clutch size game

9.3.1 Response curves

To find a response curve for individual 2, we need to find the value of c2 that maximizes fitness,
taking c1 as given. This requires that ∂w2/∂c2 = 0. The solution to this equation is the response
curve for individual 2:

R2(c1) = (a/b− c1)/2 (9.3)

Similarly, the response curve for individual 1 is

R1(c2) = (a/b− c2)/2 (9.4)

These can be plotted on the same graph as shown in figure 9.3.

Let (c∗1, c
∗
2) denote the value of (c1, c2) at equilibrium. Graphically, (c∗1, c

∗
2) is the point where

the two lines cross in figure 9.3. We can find this point algebraically as follows. First note that
since, c∗1 and c∗2 are optimal responses to each other,

c∗1 = R1(c
∗
2)

c∗2 = R2(c
∗
1)

Substituting each of these into the other gives

c∗1 = R1(R2(c
∗
1))

c∗2 = R2(R1(c
∗
2))

These give

c∗1 = c∗2 =
a

3b
(9.5)

The stronger the effect, b, of crowding, the fewer eggs should be laid in each pupa.

9.3.2 An alternative approach for symmetric games

In this game, wasps 1 and 2 face an identical decision problem so at equilibrium, their behavior
must be the same. The method of response functions, shown in the previous section, works even
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when this sort of symmetry does not exist. But where it does exist the problem can be solved more
simply. Imagine that most wasps lay c1 eggs, but a very few (rare mutants) lay c2 eggs. If c1 is
an ESS, then the optimal value for the mutant is c2 = c1. We can find the ESS in two steps: The
first step finds the optimal value of c2 as a function of c1; then the second asserts that this optimal
value is the same as c1.

First step The mutant’s fitness is

w2 = c2(a− b(c1 + c2)),

just as above. The question is, what value of c2 will maximize w2? Let us call this value c∗2. The
value of c∗2 is given above by Eqn. 9.3:

c∗2 = (a/b− c1)/2

Second step If c1 is an ESS, then the most invasive mutant must be c1 itself. The final step is
thus to set c∗2 = c1 and simplify. This yields

c1 = c∗2 = (a/b− c1)/2

This is an equation in one variable, c1. Solving it gives

c1 =
a

3b
,

just as we obtained using response curves.

Note that if only one female parasitized each pupa, the optimal number of eggs would be larger:
R1(0) = a/(2b). Parasitism reduces the optimal number of eggs laid by each female.

Appendix: Is the mixed strategy stable against invaders in the
Hawk-Dove game?

This section completes the analysis of section 9.1.2 above by demonstrating that the mixed strategy,
I, resists invasion by rare individuals playing either hawk, dove, or some mixed strategy that differs
from I.

Resistance to invading Hawks When J is Hawk, the second half of condition 9.2 becomes
Π(I,H) > Π(H,H), or

pΠ(H,H) + (1− p)Π(D,H) > Π(H,H)

After substituting values from the payoff matrix, this becomes p(V − C)/2 > (V − C)/2, which is
true because 0 < p < 1 and V − C is negative. Thus, I resists invasion by Hawk.

Resistance to invading Doves When J is Dove, the second half of condition 9.2 becomes

pV + (1− p)V/2 > V/2

which is always true because the left-hand side is an average of V/2 and something larger than
V/2. Thus, I resists invasion by Dove.
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Resistance to invading mixed strategies Suppose that mutants play a mixed strategy, J ,
which plays H with probability u and D with probability 1 − u. When I is pitted against J , the
payoff to I is

Π(I, J) = pu(V − C)/2 + p(1− u)V + (1− p)(1− u)V/2

Here, pu is the probability that both contestants play H, p(1− u) is the probability that I plays H
and and J plays D, and so on. When J is pitted against J , the payoff to each contestant is

Π(J, J) = u2(V − C)/2 + u(1− u)V + (1− u)2V/2

We already know that Π(I, I) = Π(J, I), because every strategy gets the same payoff against I. To
ensure that I is an ESS using Eqn. 9.2, we must show that Π(I, J)−Π(J, J) > 0. The left side of
this inequality reduces, after some algebra, to

Π(I, J)−Π(J, J) = (C/2)(V/C − u)2, (9.6)

which is clearly greater than zero whenever u 6= V/C. Thus, both of the conditions in Eqn. 9.2 are
satisfied and strategy I is an ESS.



Chapter 10

N-Person Games with Discrete
Strategies

10.1 Recognizing the ESS

It adds hardly any difficulty to generalize conditions 9.1 and 9.2 to the case of a game played
between N competitors. Once again, I start with the answer. I assume now that Ego competes
against K opponents that are drawn at random from some large population. Let Π(I, JxIK−x)
denote the payoff to an individual who plays I against K opponents of whom x play J , and K − x
play I.1

As in the case of pairwise games, there are two conditions to consider: I is an ESS either if

Π(I, IK) > Π(J, IK) (10.1)

or

Π(I, IK) = Π(J, IK) and
Π(I, J1IK−1) > Π(J, J1IK−1)

}
(10.2)

These conditions are perfectly analogous to conditions 9.1 and 9.2 and can be justified in the same
way. For details, see the appendix to this chapter.

10.2 Hunting group size

The optimal size of a hunting group is N ≡ K + 1 and gives fitness w to each group member. If
another member joins, fitness drops to w − c. There are two strategies:

Strategy C (Cooperate) Fights to keep others from joining. Fighting reduces the fitness of each
C-strategist by k.

Strategy D (Defect) Doesn’t fight.

The group will remain at optimal size if it contains at least one C.

Payoffs to row are

1This notation is not meant to imply that some number J is raised to the xth power and multiplied by the
(K − x)th power of I. I and J are not numbers at all; they are simply symbols that indicate different strategies.

64
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Figure 10.1: Equilibria in non-linear games
In panel 1 the, the two pure strategies (pA = 0 and pA = 1) are unstable. The mixed equilibrium at p = 0.5
is unstable. The other two mixed equilibria are stable. Panel 2 shows fitnesses in the game of hunting group
size. The two pure strategies are unstable; the single mixed equilibrium is stable.

At least one All
opponent opponents

plays play
C D

C w − k w − k
D w w − c

If c < k, D is an ESS. If c > k there is no pure ESS, so consider a mixed strategy:

Strategy I (Mixed) play D with probability p

Payoffs to C and D in a population of Is are

Π(C, IK) = w − k
Π(D, IK) = pK(w − c) + (1− pK)w = w − cpK

since pK is the probability that none of Ego’s opponents play C. If I is an ESS, then the two pure
strategies must have equal fitness, so Π(C, IK) = Π(D, IK). This requires that

p = (k/c)1/K (10.3)

This makes all fitnesses equal, and is a necessary condition for an ESS. To guarantee that I is an
ESS, we must also satisfy the inequality in condition 10.2 for all possible alternatives.

The straightforward approach would take the possibilities one at a time. Does I resist invasion
by D? By C? By some different mixed strategy J? But this is tedious, and there is a quicker way.
We know that the two pure strategies are unstable. If the fitnesses were linear functions of pD,
then we could reason as in section 9.1.3: In a pairwise game, the fitnesses are straight lines and
can therefore cross only once. If the two pure strategies are unstable, the mixed strategy in the
middle is bound to be stable. But here the fitnesses are not linear functions of pD. It is conceivable
that the graph of this game may look like panel 1 of figure 10.1. The game depicted there has
unstable pure strategies, yet the mixed equilibrium at p = 0.5 is unstable. This is a point worth
remembering: In nonlinear games, mixed equilibria may be unstable even when all pure strategies
are unstable.
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So far the news is bad, but there is better news in sight. The unstable mixed equilibrium
in panel 1 of figure 10.1 occurs because the fitness functions cross several times. Algebraically,
this means that there are several solutions to the equation wA(pA) = wB(pA). Yet in the game of
hunting group size, there is only one solution to this equation. This means that the fitness functions
cross at only one value of pD. This is another point worth remembering: If a game has just two
pure strategies, both of which are unstable, and the game has a single mixed equilibrium, then that
equilibrium must be stable. Thus, the mixed equilibrium in the game of hunting-group size is an
ESS.

Appendix

Derivation of inequalities 10.1 and 10.2

If the mutant strategy, J , is rare, then most copies of the non-mutant strategy, I, will be in groups
that contain no Js at all, and most copies of J will be in groups that contain no other J . Thus, the
fitness of I is Π(I, IK) and that of J is Π(J, IK). Strategy I has the higher fitness if inequality 10.1
is satisfied.

To justify condition 10.2, write

wI = Q0Π(I, IK) +Q1Π(I, J1IK−1) +Q2Π(I, J2IK−2) + · · ·
wJ = Q0Π(J, IK) +Q1Π(J, J1IK−1) +Q2Π(J, J2IK−2) + · · ·

Qi is now the probability that an individual plays against i opponents of type J and K−i opponents
of type I. Since we are concerned only with the case in which Π(I, IK) = Π(J, IK), the difference
between these two fitnesses is

wI − wJ = Q1[Π(I, J1IK−1)−Π(J, J1IK−1)]

+Q2[Π(I, J2IK−2)−Π(J, J2IK−2)]

+ · · ·

If J is sufficiently rare, then Q1 is much larger than any of the other Qi, and this difference is
approximately

wI − wJ ≈ Q1(Π(I, J1IK−1)−Π(J, J1IK−1))

Thus, if condition 10.2 is satisfied, then wI > wJ , at least when J rare.

Resistance to invading strategies in the hunting group size game

This section illustrates the use of condition 10.2. In each of the two sections below, I use it to ask
whether strategy I resists some category of invaders.

Invading mixed strategies For invading mixed strategies, condition 10.2 becomes

Π(I, J1IK−1) > Π(J, J1, IK−1)

where J is some mixed strategy. If J plays D with probability q, then

Π(I, J1IK−1) = w − cqpK − k(1− p)
Π(J, J1IK−1) = w − cq2pK−1 − k(1− q)
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The difference between the two is

δ ≡ Π(I, J1IK−1)−Π(J, J1IK−1)

= (q − p)(cqpK−1 − k)

If I is an ESS, then δ must exceed 0 whenever q 6= p. To see that this is so, consider first the case
in which q−p > 0. Then cqpK−1 > cpK = k, so both of the factors in δ are positive. Next consider
the case in which q − p < 0. Then cqpK−1 < cpK = k, so both of the factors in δ are negative.
Either way, δ > 0 when p 6= q. This shows that I is indeed an ESS. We have

Condition ESS

k > c D
k < c I

Resistance to invading Cs We already know that Π(C, IK) = Π(D, IK) (see the argument
leading to equation 10.3 on page 65). This implies that

Π(I, IK) = Π(C, IK)

as required by the first part of condition 10.2. (To see why, note that Π(I, IK) = pΠ(D, IK) + (1−
p)Π(C, IK). The right-hand is a weighted average of two numbers both of which equal Π(C, IK).
Consequently, the average is also equal to Π(C, IK).) The second part of condition 10.2 becomes

Π(I, C1IK−1) > Π(C,C1IK−1)

or
pw + (1− p)(w − k) > w − k

The left-hand side is an average of w − k and w, so it must be greater than w − k. Consequently,
the inequality is satisfied and I resists invasion by C.



Chapter 11

Does Biology Constrain Culture?

This chapter is a slightly revised version of an article of mine that appeared in 1988 [60].

Abstract Most social scientists would agree that the capacity for human culture was probably
fashioned by natural selection, but they disagree about the implications of this supposition. Some
believe that natural selection imposes important constraints on the ways in which culture can
vary, while others believe that any such constraints must be negligible. This paper employs a
“thought experiment” to demonstrate that neither of these positions can be justified by appeal to
general properties of culture or of evolution. Natural selection can produce mechanisms of cultural
transmission that are neither adaptive nor consistent with the predictions of acultural evolutionary
models (those ignoring cultural evolution). On the other hand, natural selection can also produce
mechanisms of cultural transmission that are highly consistent with acultural models. Thus, neither
side of the sociobiology debate is justified in dismissing the arguments of the other. Natural selection
may impose significant constraints on some human behaviors, but negligible constraints on others.
Models of simultaneous genetic/cultural evolution will be useful in identifying domains in which
acultural evolutionary models are, and are not, likely to be useful.

11.1 Introduction

The term culture means different things to different people [43]. At least within anthropology,
however, there is consensus on one point: culture is viewed as something that we learn from
each other. When individuals learn from each other, each generation may inherit the knowledge,
attitudes, and behaviors of its predecessors even if these are not transmitted genetically. This
constitutes a mechanism of cultural inheritance. I use a definition of culture that is broad enough
to encompass most others; the term will refer here to any pattern of behavior that is influenced by
cultural inheritance.

This definition emphasizes that social learning is the basis of culture. Most social scientists
would agree that human learning mechanisms were, in all likelihood, crafted by natural selection.
They are in profound disagreement, however, about the implications of this supposition. Some
scientists believe that the action of natural selection on learning mechanisms constrains culture in
important ways, while others are convinced that any such constraints are negligible.

This disagreement is most clearly displayed in the debate over human sociobiology. Critics of
sociobiology often argue as follows:

Argument for Weak Constraints

68
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1.1 Any biological constraints on culture are too weak to be significant.

1.2 Therefore, models of genetic evolution will be of little use in understanding variation
in human behavior.

Thus, evolutionary biology has little to offer the social sciences, and further progress in that field
will require attention to the dynamics of cultural transmission [71, 24, 33, 25, 42, 64].

Against this position, sociobiologists offer what Boyd and Richerson [4] have termed the “ar-
gument from natural origins” [2, 40, 44, 19, 20, 67]:

Argument from Natural Origins (i.e., For Strong Constraints)

2.1 If culturally acquired behaviors tended to reduce Darwinian fitness, then the ca-
pacity for culture would be altered or destroyed by natural selection.

2.2 Therefore, behavior should tend to enhance fitness whether transmission is cultural
or not.

This argument implies that biological constraints on culture are so strong that it is reasonable for
social scientists to ignore cultural transmission. It provides a rationale for the use of what I shall
call acultural evolutionary models—those that ignore the dynamics of cultural evolution—even in
species where cultural transmission is known to exist.

The argument for weak constraints has been strengthened by recent demonstrations [7, 4] that,
under some models of cultural transmission, cultural evolution leads to patterns of behavior that
are inconsistent with acultural models. However, neither of these demonstrations is conclusive.
Cavalli-Sforza and Feldman [7] do not deal with the simultaneous evolution of genes and culture,
and their work therefore tells us little about the extent to which genetic evolution constrains the
evolution of culture. Boyd and Richerson [4] do study simultaneous genetic/cultural evolution, but
their conclusions concerning the argument from natural origins are based on other models in which
genes and culture evolve independently. Thus, the extent to which culture is constrained by the
natural selection is still an open question.

A comprehensive theory of behavior, of course, would incorporate both cultural and genetic
evolution. The dynamics of cultural evolution, however, are complex, and the comprehensive
theory is still beyond our grasp. For the present, all theories of behavior rely on some form of
simplification. This article considers the merits of two such simplifications: purely cultural models,
which ignore genetic evolution, and purely acultural models, which ignore cultural evolution. The
first are justified only when biological constraints on culture are weak, the second only when they
are strong.

11.2 Methods

This article will evaluate the premises of the two arguments above, a much easier task than eval-
uating the truth of their conclusions. This task is especially easy because these premises (propo-
sitions 1.1 and 2.1) have been advanced, not as peculiar features of human culture, but as general
properties of culture or of evolution. If they hold in general, then they must also hold in any
particular case that we care to examine. If either fails in any particular case, then we can conclude
that it does not hold in general.

Rather than search for particular cases in nature, it will be convenient to conduct a “thought
experiment”. I shall consider the evolution of a hypothetical species, the “snerdwump”, which is
characterized by a rudimentary form of culture, described below. By analysis of a graphical and a
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mathematical model of simultaneous genetic and cultural evolution, it will be shown that neither of
the premises above is justified for snerdwumps. I will conclude that, since they fail for snerdwumps,
they cannot be general properties of culture or of evolution.

The proposition that species having culture will behave as predicted by acultural models is
often confused with another—that such species will behave “adaptively”. The latter proposition is
not justified by the argument from natural origins since natural selection does not necessarily lead
to adaptation. Apparently, this fact is appreciated mainly by population geneticists and behavioral
ecologists [28, p. 119][79, 68], for the distinction between adaptation and agreement with acultural
models is often ignored. Thus, it will be useful evaluate what might be called the strong form of the
argument from natural origins—the proposition that, if the capacity for culture evolved by natural
selection, then culture must be adaptive.

11.3 Culture and Adaptation

Naturalists have long been impressed with the many ways in which plants and animals seem suited
to their environments, and refer to the characteristics that make them so as adaptations. The
importance of Darwin’s theory stems in large part from its success in explaining these adaptations.
This usage of “adaptation” is widespread in the literature of evolutionary biology [23, p. 41][28],
and is also found in standard dictionaries. Unfortunately, another usage is also common. For
some evolutionists, natural selection produces adaptation by definition [77, p. 25] [78, pp. 47–48]
[63, p. 49]. This, however, confuses what is being explained (adaptation) with the theory used to
explain it (natural selection). If adaptation is defined to be the product of natural selection, then
some other word is needed to refer to the observation that individuals seem well suited to their
environments, and no such word has been suggested. Use of the same word for both purposes is
confusing, and has probably contributed to the misconception that Darwin’s theory is circular (see
Dunbar [18]). To avoid confusion, I use the word “adaptation” only to refer to the observation that
organisms are somehow suited to their environments. In any particular case, the relationship of
adaptation to natural selection is a matter of hypothesis, not of definition.

Two hypotheses are involved: selection can account for adaptation only when (1) those indi-
viduals with highest fitness are also those that are “best adapted”, by the criteria being used to
recognize adaptation, and (2) selection tends to increase the mean fitness of the population. Fisher’s
[23] “fundamental theorem of natural selection” specifies circumstances under which selection will
increase mean fitness. This theorem, however, is not nearly as general as was once thought [79, 21].
When selection does not maximize mean fitness, there is no reason to think that it will produce
adaptation. Thus, the capacity for culture is expected to be adaptive only if the mean fitness of a
population with culture is higher than that of one without.

Most of us would agree that human culture is an adaptation [75, p. 8]. It is widely assumed
that this is to be expected if the capacity for culture evolved through natural selection [19]. Thus,
no special explanation has been sought for the adaptiveness of human culture. As we shall see,
however, it is far from obvious that the forms of cultural transmission produced by natural selection
will be adaptive.

Cultural transmission occurs when individuals learn from each other as well as from the environ-
ment. Thus, to understand the evolution of the capacity for culture, we must study the evolutionary
forces that affect mechanisms of learning. The graphical argument presented below is adapted from
that of Harpending, Rogers, and Draper [32], and incorporates ideas developed by Boyd and Rich-
erson [4]. Following Boyd and Richerson, I distinguish individual learning (i.e., learning directly
from the environment) from social learning (i.e., learning from others). For example, consider the
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Figure 11.1: The fitnesses of
both learning strategies and also
the mean fitness of the population
are plotted against the frequency
of social learning, assuming that
w = b = 1, c = 0.9, s = 0, and
u = 0.8. The numbers refer to the
following assumptions: (1) the costs
and benefits of individual learning
are independent of its frequency;
(2) when social learning is rare, its
fitness value exceeds that of indi-
vidual learning because it provides
relatively up-to-date information
at low cost; and (3) when social
learning is very common, its fitness
value falls below that of individual
learning because the information it
provides is out of date.

problem of deciding what foods to eat. One way to do this is by experiment—to eat things that
you encounter, and wait to see what happens. If you get sick, you would be wise not to try that
food again. Otherwise, you might include it in your diet. This is individual learning, and rats are
very good at it. Because of their willingness to experiment with novel foods, they have been able
to expand over the much of the world, occupying many new habitats.

However, individual learning entails costs as well as benefits. Rats, for example, undoubtedly
ingest poison from time to time. Thus, the value of individual learning reflects a tradeoff between
the benefit of a broad diet and the cost of occasional poisoning. A rat that learned his diet socially,
by copying an elder, would be less often poisoned, but would be unable to use novel foods. Thus,
cultural transmission of diet reduces the risk of being poisoned, at the cost of a narrower diet.
Similar remarks have been made by Pulliam and Dunford [58] and by Boyd and Richerson [4].

To clarify the implications of these assumptions, let us perform a “thought experiment”. Con-
sider the evolution of culture in a hypothetical species, the snerdwump, which inhabits a varying
environment. Snerdwumps may adopt various behaviors, and the fitness consequences of each be-
havior depend on the state of the environment. Some snerdwumps cope with this situation by
individual learning—they obtain, at some cost, information about the environment, and then ex-
hibit the behavior most appropriate to that environment. Flexible responses such as this are often
favored by selection in varying environments [6, 73, 4]. Other snerdwumps employ social learning;
they simply adopt the behavior of some individual—their “cultural parent”—of the previous gen-
eration. For the moment, it will not matter much whether the cultural parent is also a biological
parent or not.

The implications of these assumptions are illustrated graphically in Fig. 11.1. The numbers
there refer to the numbered paragraphs below.

1. The fitness effect of individual learning depends on its costs and benefits, but not on what
others are doing. Thus, its fitness is a horizontal line in Fig. 11.1.

2. If social learning is very rare, nearly all cultural parents will be individual learners. Thus,
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social learners will acquire relatively recent information about the environment. They will
acquire, that is, behaviors that were appropriate in the immediately preceding generation.
Their fitness will therefore exceed that of individual learners, provided that social learning is
sufficiently cheap and environmental change sufficiently slow.

3. When all learning is social, no one is monitoring the environment, and the information ac-
quired will eventually be many generations old. Social learning will then have lower fitness
than individual learning because, by assumption, information is worthless if sufficiently out
of date.

These assumptions imply that the fitness of social learning exceeds that of individual learning
when its frequency is low, but falls below as its frequency increases. The shape of the curve
connecting points 2 and 3 will depend on the structure of the cultural inheritance system, i.e. on
the tendency of social learners to learn more from some individuals than from others. The curve
in Fig. 11.1 was drawn using the mathematical formulation presented below, but any monotonic
curve connecting these points will produce a graph of the same general form. The conclusions that
follow hold regardless of the structure of the cultural inheritance system.

This representation is consistent with a variety of assumptions about the genetics of social
learning. It applies equally when social learning is inherited as a single Mendelian character, and
when what is inherited is merely a propensity to learn socially, affected by genes at many loci.
Under most (but not all) forms of genetic inheritance, natural selection will tend to increase the
frequency of the learning mechanism with the highest fitness, and I assume this to be the case.
From this assumption several conclusions follow.

The frequency of social learning among snerdwumps will increase under natural selection until
it reaches an equilibrium at the point where the curves for individual and social learning cross,
and I assume this equilibrium to be stable. At this equilibrium the fitness of social learning (and
the mean fitness of the population as a whole) is exactly the same as that of individual learning; a
population (or individual) with social learning has no higher mean fitness than one without. The
evolution of culture among snerdwumps, therefore, does not maximize mean fitness. Selection often
fails to maximize mean fitness when, as here, the fitness of a morph decreases with its frequency.
This result is hardly new [28, 79]. The novelty here is the insight that the evolutionary process
that produced culture is likely to have been characterized by this form of frequency dependence.

Recall that natural selection is expected to produce adaptation only if mean fitness is increased.
Since mean fitness is not increased in the present model, there is no reason to expect that snerdwump
culture will be adaptive. This does not, of course, mean that human culture is not adaptative. It
does show, however, that if human culture is adaptive, it must be so because of some feature not
included in the present model. Adaptation is neither an inevitable consequence of evolution nor of
culture.

Rindos [59] agrees that evolution can produce forms of culture that are not adaptive. He also
claims (p. 316), however, that the evolution of culture is an adaptive process when fitness depends
on the relationship of behavior to the physical, rather than the social environment. The snerdwump
example shows that this is not necessarily so.

These results also contradict the widely held belief that, if the capacity for culture evolved
through natural selection, then culture must, on average, enhance fitness [20, p. 43]. However, it is
a mistake to assume, as does Schwartz [65], that sociobiology must stand or fall on this issue, for
maximization of fitness is not a general feature of evolutionary models. The relevance of acultural
evolutionary models depends on how well they predict human behavior, not on whether culture
maximizes fitness. It is important to ask, then, how well such models can be expected to predict
behavior in species with cultural transmission.
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11.4 How much does biology constrain culture?

To answer a quantitative question, a quantitative model is needed, and the one offered here is a
simple formulation of the assumptions just discussed. Suppose that there are two environmental
states, labeled 0 and 1, two behaviors labeled in the same way, and that individual fitness depends
on behavior and environment as follows:

Environmental State
0 1

0 w + b w − b
Behavior

1 w − b w + b

Note that the fitness effect of each behavior is independent of the frequency with which it is
exhibited. Thus, although the fitness effects of snerdwump learning mechanisms are frequency-
dependent, the effects of the behaviors learned are not. Further suppose that, in each generation,
the environment is perturbed with probability u, and that after perturbations it is equally likely
to be in either state.

In the absence of any information about present or past environmental states, the environment
is equally likely to be in either state. Therefore, the unconditional fitness of either behavior is
w + 1

2b −
1
2b = w. Fitness can be enhanced by obtaining information about the environment.

Suppose that the state of the environment can be determined accurately by individual learning,
but that this effort reduces fitness by bc units due to risk of predation or expenditure of time and
energy. Then the fitness of a snerdwump adopting individual learning is

wI = w + b(1− c). (11.1)

How does this compare to the fitness of a snerdwump who learns socially?

The fitness, wS , of a social learner, depends on the probability that social learning will provide
accurate information, and this probability changes as cultural evolves. Let p denote the frequency
after selection of individuals adopting social learning in the current generation. If cultural evolution
is fast compared with genetic evolution, then p can be treated as a constant for the purpose of
finding what I shall call the cultural equilibrium, w̃S . This is the equilibrium value of wS under the
action of cultural evolution only. Through social learning, an individual acquires behavior that was
originally acquired by individual learning in some previous generation. The probability that this
occurred τ generations ago is pτ−1(1− p), if cultural parents are random members of the previous
generation. The expected benefit obtained by adopting such behavior is zero if the environment has
been perturbed in the past τ generations, and b if no perturbation has occurred. The probability
of no perturbation is (1− u)τ . Putting this together, we can write

w̃S = w + b
∞∑
τ=1

pτ−1(1− p)(1− u)τ

= w + b(1− p)(1− u)
∞∑
τ=1

pτ−1(1− u)τ−1.

By the formula for the sum of a geometric series, this is

w̃S = w +
b(1− p)(1− u)

1− p(1− u)
. (11.2)
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Figure 11.2: The the equilibrium
frequency 1− p̂ of individual learn-
ers, graphed against the cost c of
individual learning and the rate u
of environmental perturbations.

At this point, the 1988 paper suggested that social learning may be costly as well, and introduced
notation to measure this cost. In retrospect, this seems like a bad idea. It introduces the complexity
of an additional parameter without providing any real insight. We are dealing, after all, with a
model in which social learn is advantageous because it avoids the costs of individual learning. Let
us therefore study the extreme case in which social learning has no cost whatever.

It can be shown that w̃S is a stable equilibrium and that convergence toward it is rapid unless
(1− u)p ≈ 1. As in Fig. 11.1, w̃S is a monotonically decreasing function of p that exceeds wI when
p is small, but falls below it as p increases.

Changes in p, the frequency of social learning, are produced by genetic evolution, which is
assumed to be much slower than cultural evolution. In studying the evolution of p, therefore, it
is reasonable to assume that convergence toward (11.2) is effectively instantaneous. Equation 11.2
implies that w̃S = wI when p is equal to

p̂ =
c− u
c(1− u)

.

This is the evolutionary equilibrium of p, i.e. the equilibrium under the combined effects of cultural
and genetic evolution. It is between zero and one provided that u < c.

The fraction 1 − p̂ of individual learners is graphed in Fig. 11.2. When u > c, this fraction
equals unity because there are no social learners. The fraction of individual learners drops off
steeply, however, as c increases or u increases. You would not find many individual learners in a
world where individual learning was costly and the environment changed slowly.

We are interested in measuring the consistency of behavior under this model with the behavior
that would be predicted by a model ignoring cultural transmission. Because the fitness effects of the
two behaviors are frequency independent, an acultural model would predict that natural selection
would maximize fitness. It would, in other words, predict appropriate behavior in each environment.
Thus, the consistency between behavior and the predictions of the acultural model can be measured
by the correlation between behavior and environment. To define such a correlation, we must first
define two random variables. Let B equal zero or unity depending on the behavior exibited by a
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Figure 11.3: The correlation r
between the predictions of cultural
and acultural models as a function
of the cost c of individual learning
and the rate u of environmental
perturbations.

random member of the population, and let S take the same values depending on the state of the
environment. These variables have the same means and variances: E{S} = E{B} = 1/2, and
V ar{S} = V ar{B} = 1/4. The correlation of S and B is

r =
E{SB} − E{S}E{B}√

(V ar{S}V ar{B})
= 4E{SB} − 1, (11.3)

and measures the tendency of individuals to behave appropriately. The acultural model would
predict that r = 1.

The value of r is easy to find if u > c since that condition implies that social learning will not
evolve. Thus, all snerdwumps are individual learners, and r = 1. In the appendix it is shown that

r =
1− c
1− u

, (11.4)

in the more interesting case when u < c. As illustrated in Fig. 11.3, the behavior of r depends on the
relationship between the cost c of individual learning and the rate u of environmental perturbations.
If environmental change is slow, or individual learning is cheap, c ≤ u, and social learning does not
evolve. Under such circumstances, r = 1.

At larger values of c/u, social learning does evolve, and r declines linearly with increasing c.
This decline is especially steep where u is large. If c is appreciably greater than u, r is low and an
acultural model would predict poorly. In such cases, the biological constraints on culture weak. In
other words, a biologist who used genetic models to study snerdwump behavior would get the wrong
answer much of the time. On the other hand, if individual learning is cheap, or the environment
changes rapidly, c will be small relative to u, and r = 1. In such cases, acultural models would
work well.

When social learning does evolve (that is when c > u), Eqn 11.4 can also be written as

r = (1− p̂)c/u > 1− p̂

In other words, r is always greater than the frequency of individual learners. If we knew that 80%
of snerdwumps were individual learners, we could conclude that r > 0.8 even if we knew nothing
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about c and u. The predictive value of an acultural model is at least as large the fraction of
individual learners. This does not, however, prevent r from dropping to low values when c/u is
large. It does so because, in these cases, individual learning is rare indeed.

11.5 Discussion

The study of culture is in a position similar to that of biology before Darwin. Most of us would
agree that human culture is adaptive—culturally acquired behaviors are essential to humans, and
have enabled them to colonize habitats far outside the ecological niche of their primate ancestors.
Yet, we have no satisfactory explanation of this adaptation. It is possible to devise models in which
natural selection produces adaptive forms of culture (Robert Boyd, personal communication, 1987).
As we have seen, however, selection can also produce forms of culture that are not adaptive. This
leaves us with an important unanswered question: What accounts for the adaptiveness of human
culture?

In answering this question, some theoretical work will be necessary. We must identify ways in
which adaptive mechanisms of cultural inheritance can evolve. The model studied here ignores a
variety of factors that may tend to make culture adaptive. For example,

1. There is no cultural selection—individuals with high fitness are no more likely than others to
serve as cultural parents.

2. There are no learning biases favoring transmission of behaviors that enhance fitness.

3. Individual learning does not modify or improve behaviors acquired culturally. Therefore, the
value of culturally transmitted information does not accumulate; it decays.

4. Decisions about which form of learning to adopt are not contingent on the quality of available
environmental information.

Departures from any or all of these assumptions may contribute toward the apparently adaptive
nature of human culture, but their relative importance is unclear. Models of simultaneous genetic
and cultural evolution should help clarify this question, and useful starts in this direction have
already been made by several authors [47, 4, 5].

Many of us believe that acultural evolutionary models (those that ignore cultural evolution)
provide useful insights into the evolution of behavior—even that of species in which cultural trans-
mission is important. One way to justify this position is what Boyd and Richerson [4] have called
the argument from natural origins. In its simplest form, this argument rests on the premise that a
mechanism of cultural inheritance can evolve by natural selection only if it is adaptive. As we have
seen, this premise is false. However, this simple form of the argument from natural origins has few
supporters and is of no great importance. Most modern evolutionists are well aware that natural
selection can be maladaptive, especially where interactions between individuals are involved.

The weak form of the argument from natural origins assumes that mechanisms of cultural
transmission can evolve only if the behaviors produced tend to be consistent with the predictions of
acultural evolutionary models. The consistency between behavior and acultural models is measured
here by r, a coefficient of correlation. Equation 11.4 shows that, at least within our hypothetical
species, the snerdwump, there is some tendency for behavior to accord with acultural models.
However, if c � u, and this tendency will be negligible. There is therefore no basis for the claim
that, if the capacity for culture evolved by natural selection, then culture must be explicable in
terms of ordinary, acultural evolutionary models.
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On the other hand, equation 11.4 also shows that culture will be highly consistent with the
predictions of acultural models if c ≤ u. Thus, there are circumstances under which biological
constraints on culture are important. There is, therefore, no basis for the claim that since humans
have culture, models of genetic evolution are necessarily irrelevant to contemporary variation in
human behavior. Thus, neither extreme position in the sociobiology debate can be justified by
appeal to general properties of evolution or of culture. It is possible for biological constraints on
culture to be negligible; it is also possible for them to be of fundamental importance. If either
extreme position is correct, it must be because of some peculiar feature of human culture that has
yet to be identified.

The advantages of theories of simultaneous genetic/cultural evolution are obvious, but such
theories are difficult to construct and it seems likely that both purely cultural and purely acultural
approaches to social science will continue in importance. These approaches, however, need not
arise from contradictory philosophical positions about the causes of human behavior. The past two
decades of psychological research have undermined the old notion that there are general laws of
learning that apply universally to all behaviors and all species [47, 62]. Learning abilities are species-
specific, and are constrained and biased in many ways. It is likely that each mammalian species
possesses a constellation of learning abilities, each evolved for a specific purpose. Within a single
species, biological constraints may be strong for some behaviors, but negligible for others. Purely
acultural explanations would be needed for the former behaviors, and purely cultural explanations
for the latter. To reconcile the two approaches to social science, what is needed is a way to
distinguish behaviors whose evolutionary dynamics are primarily genetic (r ≈ 1) from those whose
dynamics are primarily cultural (r ≈ 0). This will be possible if appropriate models of simultaneous
genetic/cultural evolution can be developed.

The present model is far too simple to be advanced as a realistic description of human cul-
ture. The conclusions drawn so far, however, do not depend on the model’s realism but only
on its consistency with what is known about the process of natural selection. This cannot be
said of the conclusions I am about to draw, and they should be regarded with some skepticism.
However, experience has shown that simplistic models are often successful in capturing the main
features of phenomena that are too complex to model in detail. For example, the premises of the
Hardy-Weinberg theorem of population genetics almost never hold in nature, yet its predictions are
approximately correct more often than not. Nontheless, this theorem is fundamental both to em-
pirical and theoretical studies in population genetics. Only experience will tell whether the model
advanced here is similarly robust. In the meantime, the model’s broader implications seem worthy
of discussion.

The model assumes that the fitness effects of particular behaviors are independent of their
frequency. This may be true of behaviors, such as techniques of farming or foraging, with which
resources are extracted from the environment, but it is unlikely to be true of social behavior: the
success of particular social behaviors ordinarily does depend on what others are doing. As we have
seen, such frequency dependence can profoundly alter the outcome of evolution. Thus, the model
developed here is probably a poor guide to the evolutionary dynamics of social behavior.

The model’s main result is equation 11.4, which relates the correlation between behavior and
the environment to the cost of individual learning and the rate of environmental change. As
these undoubtedly vary from behavior to behavior, it follows that some behaviors should track the
environment well, others poorly. Consequently, ecology should be more useful in understanding
some behaviors than others, a fact that cultural ecologists have long understood [70, 54]. This
equation also implies that acultural evolutionary models are unlikely to be helpful in understanding
behaviors that are usually learned socially.

Behavioral ecologists have had considerable success in using acultural models to explain aspects
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of human foraging. For example, Hawkes, Hill, and O’Connell [34] showed that the resource species
chosen by Aché foragers were consistent with the predictions of a simple evolutionary model. The
availability of various food items may change so rapidly that tradition would be a poor source
of information about the optimal choice of diet. Thus, we might expect a reliance on individual
learning, leading to a strong correlation between behavior and environment. This conclusion can be
obtained from equation 11.4 by noting that a high rate of environmental change (large u) tends to
increase r. It may explain the predictive success of the acultural model used by Hawkes, Hill, and
O’Connell. Hunting techniques, on the other hand, may be much easier to learn socially than by
trial and error, and should not rapidly become obsolete (u� 1). If so, equation 11.4 indicates that
r � 1, and acultural models should do a poor job of explaining variation in hunting techniques.

11.6 Conclusions

Natural selection can produce mechanisms of cultural transmission that are not adaptive and that
may be only weakly consistent with the predictions of acultural evolutionary models (those that
ignore cultural evolution). This refutes what Boyd and Richerson have called “the argument from
natural origins” as a general principle, and raises the question: Why is culture adaptive? On
the other hand, natural selection can also produce mechanisms of cultural transmission that are
highly consistent with acultural evolutionary models. This refutes the claim that, since humans
have culture, acultural models are necessarily irrelevant to human behavior. It seems likely that
both purely cultural and purely acultural theories of behavior will continue in importance. These
conclusions do not depend on the realism of the model studied here.

To the extent that the model is accurate in spite of its simplicity, several additional conclusions
can be drawn. The correlation between behavior and the predictions of acultural models should be
better for some behaviors than others. It should be greatest where individual learning is easy and
environmental change is rapid or, equivalently, where the frequency of social learning is low.

Appendix

To evaluate r when u < c, note that the term E{SB} in (11.3) is

E{SB} = Pr{S = 1 and B = 1 } = 0.5xT ,

where xT is the probability that a random individual in the population is behaving appropriately
with respect to the current environment. Since all individual learners adopt appropriate behavior,
xT is

xT = 1− p̂(1− xS), (11.5)

where xS is the probability that a social learner behaves appropriately. Now the fitness of a social
learners is w + b with probability xS , and w − b with probability 1− xS . Thus,

ŵS = w + b(2xS − 1).

At equilibrium, we also have
ŵS = wI = w + b(1− c),

since both strategies have equal fitnesses at equilibrium. Equating these expressions leads to 1 −
xS = c/2, and substituting this into equation 11.5 produces

xT = 1− c− u
2(1− u)

.
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Finally, substituting into the expressions for and E{SB} and then into equation 11.3 produces
equation 11.4.



Chapter 12

Selection and Covariance

In the early 1970s George Price introduced a new way to write models of natural selection [56, 57].
In his approach, the rate of change in a character equals the covariance between its value and
relative fitness. This has been extremely useful, largely because of the ease with which covariances
can be decomposed into terms representing different effects. This chapter begins with definitions,
then explains Price’s main result, and uses it in a series of examples.

12.1 Definitions

Imagine a population that can be subdivided in some way. The subdivisions will be called “com-
ponents.” They may be smaller populations, individual organisms, or individual genes. The same
algebra will apply in all cases. Much of the power of Price’s algebra derives from the fact that we
can be as creative as we like in deciding how the population will be subdivided.

Character value We are interested in the evolution of some character, whose mean value within
component i will be written as xi. This character could be the frequency of some allele, or stature, or
selfishness, or nearly anything else. The only restriction is that there be some resemblance between
parent and offspring. This might result from genetic inheritance or from cultural inheritance.
Price’s method will work no matter what the mechnism of inheritance.

Absolute fitness is defined in the usual way. The number of offspring of component i is niWi,
where ni is the size of component i and Wi is its absolute fitness.

Expectation In statistical jargon, an “expectation” is an average, and I will write the expectation
ofX as E[X]. Below, expectation will refer to an average taken over the components of a population,
weighted by component size. For example, the mean absolute fitness of the entire population is

W = E[Wi] =
∑
i

Wifi (12.1)

where
fi = ni

/∑
i

ni

is the relative size of component i. Similarly, the mean character value within the population as a
whole is

x = E[xi] =
∑
i

xifi (12.2)

80
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Below, I will make use of the properties of expectations that are outlined in equations C.3–C.5, on
page 125 of Appendix C.

Relative fitness The relative fitness of the ith component is

wi = Wi/W (12.3)

In other contexts within population genetics, relative fitnesses are obtained by dividing fitness by
some arbitrary constant. But in Price’s model, this constant is not arbitrary. Fitnesses must be
made relative to the mean. Note that the mean relative fitness is

w = Ewi = 1 (12.4)

Covariance The covariance between two variables, X and Y , is a measure of their tendency to
increase (and decrease) together. It can be written in any of the following equivalent forms

Cov(X,Y ) = E[(X − X̄)(Y − Ȳ )] (12.5)

= E[X(Y − Ȳ )] (12.6)

= E[XY ]− X̄Ȳ (12.7)

where X̄ = E[X] and Ȳ = E[Y ] are the expectations of X and Y . For further explanation, see
section C.6 of Appendix C.

12.1.1 Example

To make these definitions clear, let us consider a concrete example. Table 12.1 describes a hypo-
thetical population that is divided into two components.

Table 12.1: Hypothetical Population

Component fi xi Wi

1 1/3 0 2
2 2/3 3 1

A fraction f1 = 1/3 of the population is in component 1, and the remaining 2/3 is in component
2. The mean character value within the population as a whole is defined by Eqn. 12.2. With these
data, it is

x =
1

3
× 0 +

2

3
× 3 = 2

The mean fitness (Eqn. 12.1) is

W =
1

3
× 2 +

2

3
× 1 =

4

3

The relative fitnesses of the two components (Eqn. 12.3) are w1 = 2/(4/3) = 3/2 and w2 =
1/(4/3) = 3/4.
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?EXERCISE 12–1 Verify that the mean relative fitness equals 1, as claimed by Eqn. 12.4.

The covariance between xi and wi is

Cov(xi, wi) = E[xiwi]− E[xi]E[wi]

= 6/4− 2 = −1/2

These quantities are the ingredients of the Price equation, to which we now turn.

The population is divided into N components. The ni members of component i have mean character
value xi; their n′i offspring have mean character value is x′i. These parents have mean fitness

Wi = n′i/ni (12.8)

In the population as a whole, mean character value of offspring is

x′ =

∑
n′ix
′
i∑

n′i
=

∑
niWix

′
i∑

niWi
(by Eqn. 12.8)

Multiplying and dividing by
∑
ni gives

x′ =

∑
niWix

′
i∑

ni

∑
ni∑
niWi

=
E[Wix

′
i]

E[Wi]

Next, divide numerator and denominator by W to convert from absolute to relative fitnesses:

x′ =
E[Wix

′
i]/W

E[Wi]/W
=
E[wix

′
i]

E[wi]
= E[wix

′
i]

The denominator has disappeared because of Eqn. 12.4. The change in mean character value across
one generation is

∆x = x′ − x = E[wix
′
i]− x

To re-express this in terms of covariances, we begin by adding and subtracting xi.

∆x = E[wi(xi + x′i − xi)]− x

Now, make use of the fact that the expectation of a sum is a sum of expectations (see page 125).

∆x = (E[wixi]− x) + E[wi(x
′
i − xi)]

= (E[wixi]− wx) + E[wi(x
′
i − xi)] (Since w = 1)

= Cov(wi, xi) + E[wi(x
′
i − xi)],

which is Price’s equation (Eqn. 12.9).

Box 6: Derivation of Price’s equation

12.2 Price’s Equation

The change in mean character value between generations is, by definition, ∆x = x′ − x. George
Price showed that it equals

∆x = Cov(wi, xi) + E[wi(x
′
i − xi)] (12.9)
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In this equation, x′i is the mean character value among offspring whose parents were in component
i. This formula is derived in Box 6. Here, I concentrate on explaining what it means.

The first term on the right is the covariance between relative fitness and character value. It
measures the effect of natural selection on differences between components. The second term on
the right measures the effect of selection on differences within components.

It is sometimes useful to apply Price’s equation once again to the quantity x′i−xi that appears
on the right-hand side of Eqn. 12.9. This makes it possible to “peel the onion,” decomposing the
effect of natural selection into a sum of covariances, each associated with a different level of the
model. Often, this process ends when x′i = xi and the second term in Eqn. 12.9 disappears.

12.2.1 Evolution of allele frequency in a population of randomly mating diploids

Much of population genetics is about the special case in which the components are diploid indi-
viduals who mate at random, and the character of interest is the frequency of some allele. In this
case, Price’s equation takes a particularly simple form1

∆x = Cov(wi, xi)/2 (12.10)

Here, xi is the allele frequency (0, 1/2, or 1) within the ith individual, and wi is the fitness of that
individual. The second term in Eqn. 12.9 has disappeared, and the first is half as large.

12.3 Examples

12.3.1 Hypothetical population

For the hypothetical population in Table 12.1, there is not much left to do. The covariance between
xi and wi was calculated above, and equals –1/2. If offspring were identical to their parents, the
second term in Price’s equation would equal zero, and Price’s equation would give

∆x = −1/2

In other words, mean character value among offspring should be 1/2 unit smaller that that of their
parents.

12.3.2 Genic selection

Section 4.2 (page 20) derived a famous result for the change in allele frequency under natural
selection. This section will rederive the main result of that section using Price’s equation.

In this model there are two alleles, A0 and A1 (a slight change in notation from section 4.2).
To apply Price’s method, let us say that the population comprises two components, one consisting
of all copies of allele A0 and the other of all copies of A1. The notation associated with this model
is shown in Table 12.2. There, xi is the character value associated with component i. Note that
I have defined it to equal the relative frequency of allele A1 within the component. Thus, x1 = 1,
and x0 = 0. With this definition, the mean character value (E[xi]) equals p, the frequency of allele
A1 within the population as a whole. The genic fitnesses of the two alleles are W0 and W1, and
mean fitness is W = pW1 + qW0.

1Each of i’s offspring gets one gene from i and one from the population at large. If mating is at random, these two
genes are copies of allele A with probabilities xi and x, respectively. Thus, x′i = (xi +x)/2, and x′i−xi = −(xi−x)/2.
The second term in (12.9) becomes −E[wi(xi−x)]/2 = −Cov(wi, xi)/2. (This uses Eqn. C.11, on page 126.) Plugging
this into Eqn. 12.9 yields Eqn. 12.10.
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Table 12.2: Notation for Model of Genic Selection

Allele fi xi Wi wi
A1 p 1 W1 W1/W
A0 q = 1− p 0 W0 W0/W

W = pW1 + qW0

To use Price’s equation, the first step is to calculate Cov(wi, xi). This can be done in several
ways, as shown above in Eqns. 12.5–12.7. I tried several of these and settled on Eqn. 12.7. To use
this approach, we need three ingredients

x = px1 + qx0 = p

w = 1 (see Eqn. 12.4)

E[wixi] = pW1/W + q × 0 = pW1/W

Each of these is an expected value calculated using the values in Table 12.2. Substituting now into
Eqn. 12.7 gives

Cov(wi, xi) = E[wixi]− xw (12.11)

= pW1/W − p

=
pq(W1 −W0)

W

This is the first term in Price’s equation. The second term is the average change in character value
within components. In other words, it is the average difference between the character value of a
component and that of the component’s offspring. Absent mutation, there are no such differences,
so the second term in Price’s equation equals zero. Thus, the average change in character value is

∆x =
pq(W1 −W0)

W

Apart from differences in notation, this is identical to Eqn. 4.3 (page 20). Thus, the Price equation
give us the same answer in this familiar context.

12.3.3 Genic selection with mutation

Suppose now that each generation, mutation converts each A1 to A0 with probability u, and each
A0 to A1 with probability v. What is the average frequency x′1 of allele A1 among “offspring” of
allele A1? The answer is x′1 = 1 − u, since this is the fraction that did not mutate into copies of
A0.

?EXERCISE 12–2 What is the average frequency x′0 of allele A1 among “offspring” of allele A0?

?EXERCISE 12–3 Calculate the second term in Price’s equation (Eqn. 12.9) under this model.
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12.3.4 Cultural evolution of charisma

This example deals with a characteristic that I will call charisma. The idea is that people who have
charisma are imitated by others, who therefore may become more charismatic themselves. How-
ever, charisma is not easy to imitate, so imitators do not always succeed in becoming charismatic
themselves.

Let

xi =

{
1 if individual i is charismatic
0 otherwise

Suppose that each charismatic person is imitated by b others. The fitness of an individual of type
i (in this cultural context) is the number of people who imitate him:

Wi = bxi

Note that, for non-charismatic people, x0 and W0 are both zero. Mean fitness is

W = bx

where x is the fraction of the population that is charismatic. The relative fitness of individual i is

wi = Wi/W = xi/x

Imitation is imperfect, so of the bxi imitators of i only a fraction r become charismatic themselves.
Thus, the frequency of charisma among the imitators of i is

x′i = rxi.

To use Price’s formula, we must first calculate the covariance between xi and relative fitness.
Using Eqn. 12.7,

Cov(wixi) = E[wixi]− wx
= [xw1x1 + (1− x)w0x0]− wx
= 1− x

The second line above uses the fact that x and 1 − x are the fractions of charismatics and non-
charismatics within the population. The other term in Price’s formula measures the difference in
charisma between the “parent” and the imitators:

E[wi(x
′
i − xi)] = xw1(x

′
1 − x1) + (1− x)w0(x

′
0 − x0)

= r − 1

Now applying Price’s formula (12.9),

∆x = (1− x) + (r − 1)

= r − x

Notice that

∆x

{
> 0 when x is small
< 0 when x is large

The system reaches equilibrium when ∆x = 0, i.e. when

x = r

At equilibrium, the frequency of charisma within the population is equal to the ease with which
charisma can be imitated.
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?EXERCISE 12–4 Make a table that summarizes the assumptions of the charisma model. The table
should have the following headings: Component, fi, xi, Wi, and wi.

?EXERCISE 12–5 Use Price’s equation to find ∆x from the table below, assuming that x′i = xi:

Component fi xi Wi

1 0.25 1 1
2 0.50 3 2
3 0.25 2 3



Chapter 13

Kin Selection

The chapters on clutch size, foraging, and game theory had little to say about genetics. They made
use of the “phenotypic gambit,” a method of finding evolutionary equilibria that ignores genetics
altogether (see section 6.2, p. 32). The present chapter deals with cooperation between relatives.
In this context, evolutionary change depends on genetic relatedness and, for the first time, the
genetics of our model will need to be explicit.

Many forms of behavior affect the fitness of more than one individual. For example, if Jack
steals food from his brother Joe, this may increase Jack’s probability of survival while reducing
Joe’s. If theft among brothers is encouraged by some allele, the increase in Jack’s survival will
increase the fitness of this allele. However, since Joe is Jack’s brother, he is also likely to carry the
allele. The reduction in Joe’s survival will therefore reduce the allele’s fitness. There is a tradeoff,
then, between the fitnesses of these different individuals. The theory that deals with such tradeoffs
is called the theory of “kin selection,” and was originally developed by W.D. Hamilton [29, 30].

Although I introduced the subject with an example about theft, it is more conventional to
discuss examples of “altruism.” Altruism will refer here to a behavior that reduces the actor’s
own fitness by an amount C while increasing by B the fitness of some other individual (called the
recipient). The central question is, what forms of altruism are favored by selection? The answer
will tell us not only when altruism will evolve, but when selfish behavior such as theft will evolve.
Selfishness is simply the special case in which C and B are both negative.

13.1 Hamilton’s Rule

If the recipient is a relative of the donor, then the recipient may have a good chance of carrying the
genes that encouraged the donor’s altruism. If this happens often enough, alleles favoring altruism
may be favored because they enjoy the benefits of altruism as well as suffering the costs. The theory
of kin selection asserts that this will happen when

rB − C > 0 (13.1)

where r measures the relatedness between donor and recipient in a sense that will be made precise
below. This inequality is known as “Hamilton’s rule,” and is the central result of the theory of kin
selection.

87
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13.2 Derivation of Hamilton’s Rule

A genetic model is needed to derive this result, because the tradeoff in question is caused by the
genetic relationship between donor and recipient. It will be convenient first to ask how altruism
affects an arbitrary allele A. I postpone until later the question of how this allele affects behavior.
This will enable us to consider various assumptions about the mode of gene action.

Let pi denote the frequency of A in the ith individual, and let

p̄ = E[pi] =
1

N

N∑
i=1

pi

denote the frequency of A in the population. Here, N is the size of the population. Throughout
this section, I will use the expectation notation, “E[·], ” to denote a simple average across the
members of the population. To avoid clutter, I will often use a superposed bar, as in p̄, to indicate
the average or expected value.

In the absence of altruism, each individual has fitness w∗. Each act of altruism adds B to the
recipient’s fitness and subtracts C from the donor’s. The same individual may participate in several
of these interactions, may be donor in some and recipient in others. Let bi represent the sum of
the benefits that individual i receives from altruism and ci the sum of his costs. Thus, individual i
has fitness

Wi = w∗ + bi − ci (13.2)

Individual i’s relative fitness is wi = Wi/W̄ , where W̄ is mean fitness.
Let us use the Price model (chapter 12) to find out how p̄ changes in response to natural selection

during a single generation. As discussed in chapter 12, the Price model imagines a population that
is divided into components. For present purposes, we can take the components to be individual
diploid organisms. If these mate at random, then the change in allele frequency over a single
generation is (see Eqn. 12.10)

∆p̄ = Cov(wi, pi)/2 = Cov(Wi, pi)/2W̄

= Cov(w∗ + bi − ci, pi)/2W̄

Covariances can be decomposed like variances, so

∆p̄ = Cov(w∗, pi)/2W̄ + Cov(bi, pi)/2W̄ − Cov(ci, pi)/2W̄

The first covariance is zero because w∗ is a constant. After dropping it, we have

∆p̄ = Cov(bi, pi)/2W̄ − Cov(ci, pi)/2W̄ (13.3)

Box 7 re-expresses these covariances and allows us to write

∆p̄ = (u− p̄)(rb̄− c̄)/2W̄

where u is the mean frequency of allele A among donors and r is the regression of the allele frequency
in recipients on that in donors.

This is almost (but not quite) the answer we need. The trouble is that c̄ and b̄ are the mean
effects of altruism per individual, not the effects (C and B) per act of altruism. Fortunately, it is
easy to translate. If m is the mean number of altruistic interactions per person, then c̄ = mC and
b̄ = mB. Thus,

∆p̄ = K(u− p̄)(rB − C), (13.4)
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The two covariances in Eqn. 13.3 are

Cov(bi, pi) = E[bipi]− b̄p̄, and Cov(ci, pi) = E[cipi]− c̄p̄

where b̄ = E[bi] and c̄ = E[ci] are the mean benefit and cost of altruism per individual. Let us
rewrite the covariances in terms of two new variables,

u =
∑

cipi
/∑

ci, and v =
∑

bipi
/∑

bi.

The first equation says that u is an average of pi weighted by ci. Since ci is proportional to
the number of times i has served as donor, u is the average frequency of allele A among donors.
Similarly, v is the average frequency among recipients. Rearranging,

∑
cipi/N = u

∑
ci/N and∑

bipi/N = v
∑
bi/N , or E[cipi] = uc̄ and E[bipi] = vb̄. The two covariances become

Cov(bi, pi) = (v − p̄)b̄ and Cov(ci, pi) = (u− p̄)c̄,

Now set v − p̄ = r(u − p̄). This defines r as the regression coefficient of the allele frequency of
recipients on that in donors. The first covariance becomes

Cov(bi, pi) = r(u− p̄)b̄

Box 7: Re-expressing the covariances in Eqn. 13.3

where K = m/2W̄ is a positive constant.
Allele A will increase in frequency when ∆p̄ > 0. When is this so? The answer does not depend

on K, for that is always positive. It may, however, depend on u − p̄. This quantity is positive
if carriers of A perform more altruism than random members of the population. Formally, it is
proportional to the covariance between the frequency pi of the allele within individuals and the
rate at which they perform altruism, as shown in Box 7. It seems reasonable to define an altruist
allele as one for which u− p̄ is positive. Given this definition, Eqn. 13.4 tells us that altruist alleles
increase in frequency if rB − C > 0. This is Hamilton’s Rule.

We turn now to a series of examples that will make this discussion a little less abstract. In the
process, it will turn out that our definition of “altruist allele” has a surprising implication.

13.2.1 Example 1

Suppose that the three genotypes perform altruism at the following rates.

Genotype AA Aa aa
Frequency p2 2pq q2

Rate of altruism 3 2 1
pi 1 1/2 0

What do these data imply about the frequency u of allele A in a random donor? The ratio of
AA to Aa to aa in the population at large is p2 : 2pq : q2. To get the corresponding ratio among
donors, weight by rates of altruism to get 3p2 : 4pq : q2. Finally, use these as weights to calculate
the weighted average of pi:

u =
3p2 × 1 + 4pq × 0.5 + q2 × 0

3p2 + 4pq + q2
=
p(p+ 2)

2p+ 1
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To state this recipe differently: (1) multiply the three numbers in each column of the table and sum
the resulting products, (2) repeat this process, using only the values in rows 1 and 2, and (3) divide
the result of step 1 by that of step 2. The result is u, the frequency of allele A among donors.

?EXERCISE 13–1 Enter this formula into Maple, and graph u− p̄ as a function of p̄. Is u− p̄ always
positive, always negative, or sometimes positive and sometimes negative? Is there any point where
u− p̄ = 0? Use Eqn. 13.4 to interpret your results.

13.2.2 Example 2

Suppose that the three genotypes perform altruism at the following rates.

Genotype AA Aa aa
Frequency p2 2pq q2

Rate of altruism 2 3 1
pi 1 1/2 0

Then, if the population is close to Hardy-Weinberg equilibrium (an assumption that requires selec-
tion to be weak), the frequency u of A among donors will be approximately

u =
2p2 + 3pq

2p2 + 6pq + q2

?EXERCISE 13–2 Enter this formula into Maple, and graph u−p as a function of p. Is u−p always
positive, always negative, or sometimes positive and sometimes negative? Is there any point where
u− p = 0?

You should discover that u − p is positive when p is small, but negative when p is large. This
happens because the heterozygote performs altruism at a higher rate than any other genotype. For
such alleles, Hamilton’s rule gives the condition for the allele to increase when rare and to decrease
when common.

This may seem to reduce the generality of Hamilton’s rule. However, when p is common, most
individuals are either of genotypes AA or Aa, and the latter genotype provides more altruism than
the first. In other words, A is an altruist allele only when it is rare. When A is common, a is the
altruist allele. Hamilton’s rule gives the condition under which selection will tend to increase the
provision of altruism, regardless of the underlying genetic system. In this example, the result is a
balanced polymorphism at which both alleles remain in the population.

13.3 Inclusive Fitness

Hamilton’s rule refers to the case in which an individual’s actions affect just two individuals,
himself and a relative. What if his behavior affects several individuals? An allele that predisposes
an individual toward such an action is favored by selection when a quantity called “inclusive fitness”
is positive. Inclusive fitness, I, is defined as

I = δW0 +
∑
i

riδWi (13.5)

where δW0 is the effect of the behavior on the individual who performs the behavior (let us call this
individual Ego), δWi the behavior’s effect on Ego’s ith relative, and ri the coefficient of relationship
between this relative and Ego.
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In the case of altruism directed toward a single recipient, the effect on Ego is δW0 = −C. The
effect on the single recipient is δW1 = B. Thus, I = −C + rB, and Hamilton’s rule gives the
condition under which I > 0. But inclusive fitness is more general than this. The effect on Ego
can be negative as well as positive, and there can be multiple recipients.

If I could travel back in time to 1963, I would advise Hamilton to choose some name other
than “inclusive fitness.” People are used to thinking that selection maximizes ordinary Darwinian
fitness. This gets them into trouble, for selection does not maximize inclusive fitness. The altruist
allele continues to spread so long as I > 0. It does not stop spreading when I reaches some maximal
value.

To compound the confusion, some people apply the term “inclusive fitness” to a different quan-
tity,

Y (x) = W0(x) +
∑
i

riWi(x),

where x is the rate at which the donor (individual 0) exhibits altruism. Y is the sum of the
donor’s Darwinian fitness plus that of other individuals weighted by their relatedness (ri) to the
donor. If some mutation causes a small increases the donor’s rate of altruism, the corresponding
change in Y is equal to I. Thus, Hamilton’s inclusive fitness is not Y ; it is more like dY/dx. Had
Hamilton defined Y as inclusive fitness, it would have avoided a lot of confusion. We could talk
sensibly about selection maximizing inclusive fitness, and we could search for optima by setting the
derivative equal to zero. Instead, we must all deal with a literature in which different authors use
the term differently. For further discussion, see Dawkins [17, pp. 185–186].

This section will use the term Hamilton’s way: inclusive fitness will refer to I rather than Y .
I will use it to study yet another variant of the Smith-Fretwell model of clutch size and parental
investment.

13.4 Conflict between Mother and Fetus

How much resource should a mother allocate to each fetus? The answer depends on your point of
view. Trivers [72] pointed out that genes that are expressed in the mother may favor a different
allocation than genes expressed by the offspring. The resulting conflict of interest has apparently
led to an evolutionary arms race between mothers and fetuses. Fetuses evolve strategies that extract
more resources from mothers, while mothers evolve strategies that limit what fetuses are able to
extract [27]. To explore this subject, I will consider three models. The first assumes that the mother
is in charge; the others deal with two forms of control by offspring, assuming either that (a) the
offspring’s behavior increases its own fitness only, or that (b) the offspring’s behavior increases the
fitness of his entire litter.

13.4.1 Maternal control

Recall from chapter 6 that Smith and Fretwell [66] wrote the parent’s fitness as

W = bs(x) = Ts(x)/x

where b = T/x is the initial number of offspring, s(x) the probability that an offspring receiving
x units of resource will survive to maturity, and T the total quantity of resource that is available
to the parent. Smith and Fretwell made the reasonable assumption that the investment, x, per
offspring is determined by the parent. They showed that, under this assumption, evolutionary
equilibrium requires that

s′(x)/s(x) = 1/x (13.6)
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Figure 13.1: Optimal allocation to offspring from various points of view
The solid line shows the fitness s of an offspring who receives x units of parental resource. The filled circle
shows the optimal allocation from the mother’s point of view, as given by the model of Smith and Fretwell.
The other symbols show optima according to various models in which allocation is controlled by offspring.
Open circles refer to cases in which all offspring are full siblings, stars to cases in which they are half siblings.
The points labeled “self” refer to optima for manipulations that benefit only the bearer of the gene. The
remaining points refer to manipulations that benefit an entire litter of size m.

This equilibrium is shown as a filled circle in figure 13.1.

13.4.2 Fetal manipulations on behalf of the individual fetus

Consider now a mutant allele, expressed by the fetus, which extracts more maternal nutrients
for itself. To model such phenomena, let us suppose that a fetal mutation changes the resource
allocated to its bearer from x to y, but does not affect the allocation to littermates, who still receive
x. Under what circumstances will this allele invade?

I assume that most individuals in the population are A1A1 homozygotes, but that there are a
few A1A2 heterozygotes. These heterozygotes are reproduced via two types of matings:

mother︷ ︸︸ ︷
A1A2 ×

father︷ ︸︸ ︷
A1A1 and

mother︷ ︸︸ ︷
A1A1 ×

father︷ ︸︸ ︷
A1A2 .

(We can ignore matings involving more than one A2 if that allele is sufficiently rare.) Denote by
r the fraction of the mother’s offspring that are A1A2. If the heterozygous parent is the mother,
then r = 1/2. If the heterozygous parent is the father, then r = 1/2 if the female mates with just
one male, and r < 1/2 if she mates with more than one. Each heterozygous fetus extracts y units
of resource from the mother, whereas each A1A1 homozygote extracts x units.

Fitness, W , is the number of A1A2 offspring produced by the mother, regardless of whether she
is the homozygous or the heterozygous parent.1 W will be the product of the number b of offspring

1Why, you may ask, should we count the mother’s offspring even when it is the father who is the heterozygote?
The reproductive success of a copy of the A2 allele in a male is the product of the number of females with whom
he mates times the number of heterozygous offspring produced by each mated female. I am assuming that the A2

allele has no effect on male mating success; it affects only the number of offspring produced per mating. Thus, it is
appropriate to count the heterozygous offspring of the female even when the A2 gene resides in the father.
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produced, the fraction r of these that are A1A2, and the fraction s(y) of these births that survive
to adulthood. Thus,

W = rbs(y)

where b satisfies the constraint equation

T = b((1− r)x+ ry).

Here, T is the total resource available to the mother, and (1− r)x+ ry is the amount of resource
used by an average offspring. Solving the constraint equation for b and substituting the result into
the expression for W gives

W =
rTs(y)

(1− r)x+ ry
, and

lnW = const. + ln s(y)− ln((1− r)x+ ry)

To find the evolutionary equilibrium, I use the method described in section 9.3.2. The first step
is to find the value of y that maximizes the mutant’s fitness. The second is to set x = y, since x is
a stable equilibrium if it is the best reply to itself.

The derivative of lnW with respect to y is

∂ lnW

∂y
=
s′(y)

s(y)
− r

(1− r)x+ ry

Setting this equal to zero and then setting y = x gives the condition for equilibrium:

s′(x)/s(x) = r/x (13.7)

The right-hand side of this equation is smaller than the corresponding part of Eqn. 13.6. If s(x)
increases at a decreasing rate, then smaller values of s′(x)/s(x) imply a greater allocation to each
offspring. This is illustrated in Figure 13.1, where the points labeled “self” refer to equilibria
defined by Eqn. 13.7. Offspring control leads to smaller litters of better nourished offspring. The
difference between the optima for mothers and for offspring implies a conflict of interest. The
intensity of conflict depends only on r, the mean coefficient of relationship between siblings. As the
figure shows, conflict is most pronounced where r is small because each female mates with multiple
males. This might lead, for example, to the evolution of placentas that invade maternal tissue
deeply in an effort to extract nutrients. The level of conflict should be independent of litter size.

?EXERCISE 13–3 Suppose that
s(x) = 1− e−(x−1)

(Ignore the negative values that this formula gives when x is small. They will not affect the
answer.) What is the equilibrium under parental control (the standard Smith-Fretwell model),
under monogamy (where r = 1/2), and under offspring control with promiscuous mating (where
r = 1/4)?

13.4.3 Fetal manipulations on behalf of the entire litter

Other forms of fetal manipulation require a different model. For example, fetuses also manipulate
maternal allocations by secreting hormones into the mother’s bloodstream. The effects are enjoyed
by the entire litter. To model such manipulations, I assume that a mutant fetal gene changes the



94 CHAPTER 13. KIN SELECTION

allocation to itself and all its litter mates from x to y. A random fetus uses x units of resource
if neither it nor any of its littermates is a heterozygote; it uses y units of resource otherwise.
The first of these possibilities has probability (1 − r)m, where r is the probability that a random
fetus is a heterozygote and m is the number of fetuses in a litter. Thus, a random fetus uses
(1− r)mx+ (1− (1− r)m)y units of resource. The constraint equation is

T = b((1− r)mx+ (1− (1− r)m)y)

and the mutant’s fitness and log fitness are

W =
rTs(y)

(1− r)mx+ (1− (1− r)m)y

lnW = const. + ln s(y)− ln((1− r)mx+ (1− (1− r)m)y)

To find the evolutionary equilibrium, the first step is to differentiate:

∂ lnW

∂y
=
s′(y)

s(y)
− 1− (1− r)m

(1− r)mx+ (1− (1− r)m)y

Next, set the derivative equal to zero and set y = x to obtain the condition for equilibrium:

s′(x)

s(x)
=

1− (1− r)m

x
(13.8)

This result produced the equilibria labeled m = 2 and m = 5 in figure 13.1. Conflict decreases both
with relatedness (r) and with litter size (m). When m > 1 the right side of Eqn. 13.8 is greater
than that of Eqn. 13.7. Thus, the equilibrium value of s′(x) is larger for manipulations benefitting
the litter than for those benefitting the individual fetus. Because of the shape of the function s,
large values of s′(x) imply small values of x. Consequently, if fetal manipulations benefit the entire
litter, then each fetus will be less selfish than if manipulations benefit only a single fetus.

This effect is especially pronounced when litters are large. In the limit, as litter size becomes
infinite, (1 − r)m goes to zero and Eqn. 13.8 becomes identical to Eqn. 13.6—the equation for
maternal control. When litters are large, there is little conflict between mother and fetus because
the optima for the two parties are roughly the same. When litters are small, the opposite is true
and conflict should be pronounced. Thus, we should expect to see most evidence of conflict in
species with small litters.

There is some supportive evidence. Mammalian pregnancies are maintained by progesterone,
which is secreted by the corpus luteum (a maternal tissue). One can terminate a pregnancy by
removing the corpus luteum in such mammals as hamsters, goats, pigs, rabbits [27, p. 507], and
dogs [15]. In humans however, this is true only until the eighth week of gestation. After that time,
the placenta (a fetal tissue) produces enough progesterone to maintain the pregnancy. David Haig
interprets this as an adaptation by the fetus to maintain pregnancies that the mother would like to
abort. Since such abortions affect all litter mates equally, a fetus that prevents them is increasing
the allocation of resources not only to itself but also to its litter mates. Thus, Eqn. 13.8 is most
nearly appropriate and conflict is most likely where litter-sizes are small. This agrees with the
observation that human placentas produce enough progesterone to maintain pregnancy whereas
the placentals of hampsters, pigs, and rabbits do not. The model does not explain why goats,
whose litters are also small, have not evolved similar counter-measures.
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?EXERCISE 13–4 Suppose once again that

s(x) = 1− e−(x−1)

and also assume that sibs are full sibs. If manipulations affect an entire litter of size m, what is
the equilibrium if m = 1, if m = 5, if m = 15, and if m = 100.

Acknowledgements I am grateful to David Queller and David Iltis for showing me ways to
simplify the argument leading to Eqn. 13.4. My derivation of Hamilton’s Rule owes a lot to that
of McElreath and Boyd [52].



Chapter 14

Growth of Populations with Age
Structure

Many questions in evolutionary ecology involve trade-offs across time. For example, which
strategy would selection favor: one that has many children late in life, or one that has fewer but
does so early? The winner need not be the one with the most children. For such problems, we need
a different currency. The relevant currency is related to the rate of population growth, so let us
begin there.

The models below ignore sex. There is no distinction between the vital rates of males and
females. In fact, there are no males at all. In demography, this is generally justified by appeal to
the principle of female demographic dominance, which maintains that males don’t matter much—
fertility is determined by the number of females. The idea is that it doesn’t take many males to
fertilize a large number of females. Whatever the merit of this argument, it is a useful place to
start if only because it makes things simple.

There are several ways to formulate the problem of population growth in an age structured
population. Of these, the renewal equation and the Leslie matrix are used far more often than any
other. We begin with the renewal equation.

96
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14.1 The Renewal Equation

The renewal equation provides a method for calculating a population’s rate r of growth from its
vital rates. The equation that makes this possible is called the characteristic equation of the renewal
process [22]:

1 =
∑
x

e−rxlxmx, (14.1)

and is derived in Box 8. In this equation, lx is the probability that a female will survive from
birth to age x, and mx is the age-specific fertility: the mean number of girl babies born per woman
between the ages of x and x+ 1.

Let nx(t) represent the number of females of age
x alive at time t. The number of births, n0(t),
is the sum of the fertilities of individuals of all
ages:

n0(t) =
∑
x

nx(t)mx (14.2)

But the number of x-year-old individuals at time
t is just the number of births at time t−x times
the fraction of those births that survive to age
x. In other words, nx(t) = n0(t− x)lx, and

n0(t) =
∑
x

n0(t− x)lxmx. (14.3)

This is called the renewal equation [22]. If the
population has reached a stable age distribution
(explained in the text), then the number in each
age class is increasing (or decreasing) exponen-
tially. In other words,

nx(t) = ernx(t− 1) (14.4)

where r is the rate of exponential growth. Sub-
stituting this into Eqn. 14.3 gives

n0(0)ert = n0(0)ert
∑
x

e−rxlxmx

Dividing through by n0(0)ert gives Eqn. 14.1.

Box 8: Derivation of the characteristic equation of the renewal process

Eqn 14.1 relies on the central result of “stable population theory,” which holds that if the age-
specific birth and death rates are unchanging, then population will converge to a state in which
although the number of individuals in each age class may change, their relative frequencies do not.
This array of unchanging relative frequencies is called the stable age distribution.1

It may be hard to imagine that the numbers could change without affecting the relative frequen-
cies, so consider an example. Suppose that in one generation some population has 100 individuals
of age 1 and 200 of age 2. The relative frequencies within these two age classes are thus 1/3 and
2/3. A few generations later, we revisit the population and discover that the number in each age
class has doubled. There are now 200 of age 1 and 400 of age 2. The population has grown, but
the relative frequencies (1/3 and 2/3) have not changed.

Once the population has reached a stable age distribution, the number in each class grows (or
shrinks) by a factor of er in each time period, and so does the number in the population as a whole.
After t time periods, the population is ert times as large as it was to begin with. r is called the
rate of exponential growth and appears as a parameter in Eqn. 14.1.

?EXERCISE 14–1 If a population is growing at rate r, how long does it take for it to double in size?

1Actually, there is a little more to it than this. Some schedules of age-specific fertility and mortality lead not to
exponential growth, but to various kinds of oscillations. However, if there is positive fertility in two adjacent age
classes, then the population always converges to a stable age distribution.
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Table 14.1: Vi-
tal statistics for
female grey squir-
rels. Source: Ta-
ble 1.3 of [8].

x lx mx

0 1.000 0.00
1 0.253 1.28
2 0.116 2.28
3 0.089 2.28
4 0.058 2.28
5 0.039 2.28
6 0.025 2.28
7 0.022 2.28

Eqn 14.1 is important because it provides information about r. If we know the numerical values
of lx and mx for all ages, then r is the only unknown in the equation. We can find r simply by
experimenting with different values until we find one that satisfies the equation. This would be
tedious to do by hand, but it is easy with a computer.

On the other hand, the numerical approach only works when we have numerical values for lx
and mx. Theoreticians often prefer to work with symbols because this makes their answers general.
There is no way to rearrange Eqn. 14.1 so that r is on one side and everything else is on the other.
We cannot, in other words, solve for r. Nonetheless, the equation does define r as an implicit
function of lx and mx. This makes it possible (as explained in Appendix E) to derive formulas
for such quantities as ∂r/∂mx and ∂r/∂lx. I will make use of both approaches—numerical and
symbolic—in what follows.

14.1.1 Numerical Example

Table 14.1 shows the demographic parameters of a population of gray squirrels. To calculate r from
these data using Maple, I begin by using the data in table 14.1 to define arrays for lx and mx:

l := <1, 0.253, 0.116, 0.089, 0.058,

0.039, 0.025, 0.022>;

m := <0, 1.28, 2.28, 2.28, 2.28, 2.28,

2.28, 2.28>;

There is a source of potential confusion here. In the math, the first age is age 0, so our initial
survivorship and fertility are l0 and m0. But the first index of a Maple array is 1, not 0, so l0
corresponds to Maple’s l[1], and m0 to Maple’s m[1].

Since the data exhibit positive fertility in several adjacent age classes, we are justified in using
Eqn. 14.1 (see footnote 1). I therefore define a variable that is equal to the right hand side of
Eqn. 14.1.

rh := sum(’exp(-r*x)* l[x+1]*m[x+1]’, x=0..7);

Here rh stands for “right-hand side.”
Since rh is a function of a single variable, it can be plotted in Maple by typing plot(rh,

r=-0.2..0.2). This produces a graph similar to figure 14.1. The solution to Eqn. 14.1 is the value
of r that makes rh equal to unity. In figure 14.1, this is the point where the solid line crosses the
horizontal dotted line drawn at rh = 1. The figure shows that the solution is somewhere between
0 and 0.05.

To find the solution more exactly, I used Maple’s fsolve function. Since, the solution appears
to be near zero, I instructed fsolve to search the interval 0..0.05.
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Figure 14.1: Right-hand side of
characteristic equation for data
in table 14.1

> rhat := fsolve(rh=1, r, 0..0.05);

rhat := .04130450880

Thus, the intrinsic rate of increase is about r = 0.04. To check that this solution is correct,
substitute it back into rh.

> evalf(subs(r=rhat, rh));

.9999999999

The answer is equal to 1 to within the limits of Maple’s precision. Thus, rhat is the value that
makes rh = 1, just as required by Eqn. 14.1.

Figure 14.1 suggests that rh is a function that always decreases. If so, then there can be no
other values of r that satisfy 14.1. Thus, the figure suggests that r = 0.04 is the unique solution:
the demographic parameters are consistent with only this single rate of exponential growth. This
conclusion must be qualified in two ways. First, the demographic parameters of some populations—
for example those with fertility in only a single age class—imply that the population will never grow
at a constant exponential rate, as we have assumed. Second, the intrinsic growth rate only tells
us the rate of growth after a stable age distribution has been reached. It tells us neither how
rapidly the population will approach its stable age distribution nor how it will fluctuate along the
way. Both questions are more easily addressed using another formulation of the mathematics of
population growth—the Leslie matrix.

14.2 The Leslie Matrix

The growth of an age-structured population can also be described using what is called the Leslie
matrix [45, 46, 55]. Whereas the renewal equation keeps track of births only, the Leslie matrix
keeps track of the number of individuals in each age class. Let us begin by asking what determines
the number of 3-year olds at time t+ 1.

The number of 3-year-olds this year equals the number of 2-year-olds in the population last year
times the fraction of those 2-year-olds that survived. Thus, if Px is the probability that a female
of age x will survive to age x+ 1, then

nx+1(t+ 1) = Pxnx(t). (14.5)
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Given the age distribution at time t, this equation predicts the number of individuals at time t+ 1
in age categories 1, 2, . . . ,K where K is the maximum age attainable. But it does not predict the
number in the youngest age class.

The youngest age class in the data will depend on when during the year the population is
censused and on how the population distributes births across the year. In discussing the renewal
equation, I assumed without saying so that births were seasonal and that the population was
censused just after the season in which births occur. This allowed me to equate the number of
births with the number of observed births. In practice, some births will not be observed because
the newborns will die before they are counted. The Leslie matrix makes the opposite assumption:
that the population is censused just before births occur, so that the youngest age class is nearly
one year old.2 The new assumption demands a new notation. Let

fx ≡ mxP0

denote what is called the net fecundity of females of age x: the mean number of 1-year-old young
in year t+ 1 produced per x-year-old mother in year t. The number of newborns at time t+ 1 is

n1(t+ 1) =
K∑
x=1

nx(t)fx (14.6)

Compare this with Eqn. 14.2 above.
If the maximum age is (for example) K = 3, equations 14.5 and 14.6 can be written as

n1(t+ 1) = n1(t)× f1 + n2(t)× f2 + n3(t)× f3
n2(t+ 1) = n1(t)× P1 + n2(t)× 0 + n3(t)× 0
n3(t+ 1) = n1(t)× 0 + n2(t)× P2 + n3(t)× 0

 (14.7)

Before proceding, make sure that you see that equations 14.7 are simply another way of writing
equations 14.5 and 14.6.

In matrix notation, these same equations are written asn1(t+ 1)
n2(t+ 1)
n3(t+ 1)

 =

 f1 f2 f3
P1 0 0
0 P2 0

n1(t)n2(t)
n3(t)

 (14.8)

Here, the vertical columns containing nx(t) and nx(t+ 1) are called vectors, and the square array is
called a matrix. Eqn. 14.8 says that the vector on the left is the product of the matrix and vector
on the right. For a synopsis of matrix multiplication, see Box 9.

Let us now give names to the three quantities in Eqn. 14.8. Let n(t + 1) denote the vector on
the left, n(t) the vector on the right, and let L (for Leslie) denote the matrix. Eqn. 14.8 becomes

n(t+ 1) = Ln(t) (14.10)

This equation makes it easy to project a population forward in time. Given any initial vector n(0)
of numbers of individuals in each age category, one can calculate n(1) = Ln(0), n(2) = Ln(1) =
L2n(0), n(3) = Ln(2) = L3n(0), and so forth. In general,

n(t) = Ltn(0)

2With human data, neither assumption is appropriate. Consequently, demographers have to modify their formulas
to avoid introducing bias into estimates. I will ignore these issues in this chapter, but you should not ignore them if
you are analyzing human data.
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What does it mean to multiply a matrix by a
vector, as is done in Eqn. 14.8? The simplest
answer is that it is defined to mean the same
thing as equations 14.7. Here is a 2×2 example:(

am+ bn
cm+ dn

)
=

(
a b
c d

)(
m
n

)
(14.9)

The vector on the left is the product of the ma-
trix and vector on the right. The first entry of
the left-hand vector is obtained by multiplying
the elements of the first row of the matrix times
the right-hand vector, and adding the results.
The second entry of the left-hand vector is cal-
culated in the same way using the matrix’s sec-
ond row. When this is clear to you, re-examine
equations 14.7 and 14.8. They illustrate matrix

multiplication on a larger scale.
•EXAMPLE 14–1

Calculate the following matrix product.(
1 0
2 3

)(
1
1

)
◦ANSWER (

1
5

)
=

(
1 0
2 3

)(
1
1

)
•EXAMPLE 14–2

Multiply the matrix in Eqn. 14.9 by the vector on the
left side of the equals sign there.
◦ANSWER(
a2m+ abn+ bcm+ bdn
cam+ cbn+ dcm+ d2n

)
=

(
a b
c d

)(
am+ bn
cm+ dn

)
Box 9: Matrix multiplication

14.2.1 Numerical example

In this example, I use the squirrel data in table 14.1 to calculate a Leslie matrix, use this matrix
to project the population forward in time, and to calculate the intrinsic rate of increase. This will
show that analysis of the Leslie matrix yields exactly the same answer as analysis of the renewal
equation.

The table provides the probability lx of surviving to age x, but not the probability Px of
surviving from x to x+ 1. These latter probabilities are easily calculated from the former, since

lxPx = lx+1, or

Px = lx+1/lx

I did this calculation in Maple as shown to the right. The first statement allocates an array, P, to
hold the answers. Note that Maple represents P as a column of zeroes: a “column-vector.” To save
space, I will often re-write vectors as rows.
>P := Vector(7, 0)

[0]

[ ]

[0]

[ ]

[0]

[ ]

P := [0]

[ ]

[0]

[ ]

[0]

[ ]

[0]
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Next, the for statement calculates P[i] for values of i ranging from 1 through 7.

>for i from 1 to 7 do

> P[i] := l[i+1]/l[i];

> end do;

P[1] := .253

P[2] := .4584980237

P[3] := .7672413793

P[4] := .6516853933

P[5] := .6724137931

P[6] := .6410256410

P[7] := .8800000000

To keep the answers consistent with the calculations of section 14.1, we have to assume that the
youngest age category in the squirrel data refers to individuals just after birth. This means that
P[1] really refers to P0, P[2] to P1, and so forth. Until Maple implements vectors whose indices
begin at zero, we will have to live with such inconsistencies.3

leslie := proc(P,m)

local Lmat, i, j, len;

len := Dimension(m) - 1;

# len X len matrix of zeroes

Lmat := Matrix(len,len,0);

for j from 1 to len do

Lmat[1,j] := P[1]*m[j+1]

end do;

for i from 1 to (len-1) do

Lmat[i+1,i] := P[i+1];

end do;

Lmat;

end;

Box 10: Maple procedure for making a Leslie matrix.

Before using matrix routines, tell Maple to read the LinearAlgebra package

with(LinearAlgebra):

Box 10 shows a Maple procedure that automates the task of constructing a Leslie matrix from P

and m. With the two vectors just defined, this procedure gives

> L := leslie(P,m);

L := [.32384, .57684, .57684, .57684,

.57684, .57684, .57684]

[.4584980237, 0, 0, 0, 0, 0, 0]

[0, .7672413793, 0, 0, 0, 0, 0]

[0, 0, .6516853933, 0, 0, 0, 0]

[0, 0, 0, .6724137931, 0, 0, 0]

[0, 0, 0, 0, .6410256410, 0, 0]

[0, 0, 0, 0, 0, .8800000000, 0]

3Maple 10 does have such vectors, but many of my students still use Maple 7.
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This is the Leslie matrix for the squirrel population. The structure is easier to see when it is
rewritten as:

L =



0.324 0.577 0.577 0.577 0.577 0.577 0.577
0.457 0 0 0 0 0 0

0 0.767 0 0 0 0 0
0 0 0.652 0 0 0 0
0 0 0 0.672 0 0 0
0 0 0 0 0.641 0 0
0 0 0 0 0 0.880 0


Note that this matrix is identical in form to that in Eqn. 14.8. The net fecundities are listed across
the first row, the age-specific survival probabilities are listed on the first subdiagonal. Matrices of
this form are called Leslie matrices.

To show how Leslie matrices can be used, I begin by using Eqn. 14.10 to project the squirrel
population forward in time. First, I define an arbitrary initial vector in which there are 10 females
at each age:

n0 := <10,10,10,10,10,10,10>;

Next, the following line calculates the population at time 1:

> nn := L . n0;

nn := [ 37.84880, 4.584980237, 7.672413793,

6.516853933, 6.724137931, 6.410256410,

8.800000000 ]

Here, the “.” operator stands for matrix multiplication. Thus, the command nn := L . n0 has
the same meaning as Eqn. 14.10. It says to perform the matrix multiplication Ln(0) and assign the
result to nn. Thus, nn is now equal to n(1). Notice that there are 37.8 1-year-olds in year 1, about
4 times the number in year 0. On the other hand, all of the other age categories have decreased in
size. Thus, the age distribution is changing rapidly.

We now have n(0) and n(1). To calculate n(2), n(3), . . . , n(15), use Maple’s for command:

#calc age dist for t=2...20:

for i from 2 by 1 to 20 do

nn := L . nn;

end do;

At each pass through the loop, the value of nn is replaced by the product of L with the old nn.
Maple prints out each of these products, and the last three lines of output look like this:

nn := [ 63.00238786, 27.71749776, 20.40644546,

12.76274474, 8.232158038, 5.062908857,

4.274427622 ]

nn := [ 65.65935759, 28.88647032, 21.26601121,

13.29858244, 8.581845601, 5.277024383,

4.455359794 ]

nn := [ 68.42861842, 30.10468569, 22.16289533,

13.85874888, 8.942150261, 5.501183077,

4.643781457 ]
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Figure 14.2: Projection of gray squirrel population

Shown here are n(18), n(19), and n(20). I captured all this output, and edited it to produce
figure 14.2.

To keep the figure readable, I show only a few age classes. Notice that after a few generations of
wild oscillations, the time path of the age classes become parallel straight lines. Since the vertical
axis is on log scale, straight lines mean that the age classes are increasing exponentially. The fact
that the lines become parallel is also important: it means that the relative frequencies of the age
classes have stopped changing. In other words, the population has reached a stable age distribution.
The speed of this process is remarkable; it appears that the stable age distribution is reached in
less than ten years.

Let us now use these data to calculate the rate of increase. Eqn. 14.4 asserts that, once the
stable age distribution has been reached, the number in each age class increases by a constant ratio
er. For convenience, I rewrite this equation as

nx(t+ 1) = λnx(t) (14.11)

where λ ≡ er is called the ratio of increase, and is constant at the stable age distribution. Using
the data generated above, I calculate that

n1(14)/n1(13) = 1.04229

n1(15)/n1(14) = 1.04248

n7(15)/n7(14) = 1.04189

At the stable age distribution, these numbers should be identical. They are nearly so, and this
indicates that after 15 years the squirrel population has almost, but not quite, reached its stable
age distribution.

Are these numbers consistent with the value of r = 0.04130450880 that we calculated from the
renewal equation? With this value, λ = er = 1.042169407, which is certainly close to the estimates
above. To get a more accurate estimate of λ from the Leslie matrix, I calculate its eigenvalues.
Without attempting to explain what eigenvalues are, I will simply assert that λ is equal to the
eigenvalue of largest magnitude. To calculate them in Maple, type:

> evals := Eigenvalues(L);
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Table 14.2: Female demographic data for 1906 human population of Taiwan

x lx mx

(years)

0 1.0000 0.00000
5 0.6498 0.00000
10 0.5945 0.00000
15 0.5680 0.25600
20 0.5353 0.80235
25 0.4948 0.82955
30 0.4514 0.75690
35 0.4061 0.64001
40 0.3615 0.27713
45 0.3193 0.02500
50 0.2753 0.00000
Note: Ages after 50 contribute no
births, and are therefore omitted.

evals :=

1.042169410,

.3409946041 + .5071133337 I,

.3409946041 - .5071133337 I,

- .5388684430 + .2549467576 I,

- .5388684430 - .2549467576 I,

- .1612908651 + .5802170652 I,

- .1612908651 - .5802170652 I

The dominant eigenvalue here is λ = 1.042169410, which is essentially identical to the answer
provided by the renewal equation.

This exercise has shown that the renewal equation and the Leslie matrix are different ways to
arrive at the same answer. The Leslie matrix tells us what is happening in greater detail, but is
somewhat more cumbersome.

14.3 Exercises with human demographic data

Table 14.2 shows the female demographic data for the 1906 population of Taiwan.

?EXERCISE 14–2 Use the renewal equation to calculate r from the Taiwan data.

?EXERCISE 14–3 Calculate the Leslie matrix for the data in table 14.2.

?EXERCISE 14–4 What value of λ is implied by the Taiwan Leslie matrix? How does this answer
compare to the result from the renewal equation?

?EXERCISE 14–5 These exercises tell us about the rate of population growth per time period, where
each time period is 5 years long. What is the annual growth rate (i.e. the rate of growth per year).



Chapter 15

Life History Evolution

15.1 When can a rare allele invade?

The previous chapter developed models for the growth of age-structured populations. This one
applies these models to a different issue: that of selection between alternate alleles within a single
population. A comprehensive theory of selection with age-structure is hard, and we deal here with
a small piece of the problem—we ask whether an allele can increase in frequency when rare.

To simplify the exposition, I will assume that the population has a monoecious sexual system
of reproduction. This means that there is sex but not sexes: There is no distinction between male
and female, and everyone can mate with everyone else. Adding sexes to the model is not hard, but
the argument is simpler without them.

Consider the dynamics of a rare allele B in a population dominated by a common allele A.
Since B is rare, we need consider only two genotypes (AA and AB), and two types of mating
(AA×AA and AA×AB). The other genotypes and mating types are negligibly rare. Prior to the
introduction of B, all individuals were of genotype AA, and the population increased by the Leslie
matrix equation,

nAA(t+ 1) =
1

2
LAAnAA(t)

where nAA(t) is a vector whose xth entry is the number of individuals of age x and genotype AA at
time t, and where LAA is the Leslie matrix describing the pattern of reproduction and survival of
individuals in AA× AA matings. The factor 1/2 appears because each AA× AA mating requires
two AA individuals, so there are only 1/2 as many matings as there are individuals. I will assume
that this Leslie matrix has a stable age distribution (see footnote 1 on page 97). Once the AA
component of the population has reached its stable age distribution, the pattern of increase is even
simpler:

nAA(t+ 1) =
1

2
λAAnAA(t)

where λAA is a number rather than a matrix. This number is referred to as the “dominant eigen-
value” of the matrix LAA. This equation says that each age category is multiplied by λAA/2 each
time period. λAA/2 is often called the “ratio of increase,” since it is the ratio of the number of
individuals of age x to the number in the preceding time period. Once the stable age distribution
has been reached, each age category has the same ratio of increase. Furthermore this same ratio of
increase also holds for the population of AA individuals taken as a whole.

Since the B allele is rare, the AB component of the population reproduces via matings of type
AA × AB, whose offspring are evenly divided between genotypes AA and AB. Thus, individuals
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of genotype AB follow the Leslie matrix equation

nAB(t+ 1) =
1

2
LABnAB(t)

where the vector nAB(t) and the matrix LAB are analogous to nAA(t) and LAA. The factor 1/2
appears because only half the offspring of a AB × AA mating are of type AB.1 I assume once
again that this Leslie matrix has a stable age distribution. Once this age distribution is reached,
the number of AB individuals in each age category will increase according to

nAB(t+ 1) =
1

2
λABnAB(t)

where λAB is the dominant eigenvalue of matrix LAB.
At this point, the number of each genotype is increasing (or decreasing) exponentially. Genotype

AA is increasing with ratio λAA/2 and genotype AB is increasing with ratio λAB/2. If

λAB > λAA

then the number of AB individuals will grow faster than the number of AA individuals. Conse-
quently, the relative frequency of AB will increase and that of AA will decrease. This also implies
that the relative frequency of allele B will increase. However, the entire argument here is based
on the premise that B is rare, so the inequality above does not guarantee that B will increase to
fixation. It only implies that B will spread when rare.

If allele A represents an ESS, then no alternative allele can increase, even when rare. Thus, A
can be an ESS only if

λAB ≤ λAA

for every alternative allele B. This condition is bound to hold if AA has the largest possible ratio
of increase. For this reason, we search for strategies that maximize λ.

It also works to search for strategies that maximize the rate, r, of exponential growth (see
page 97). Since r is equal to lnλ, it is an increasing function of λ. Consequently, any strategy that
maximizes λ will also maximize r.

15.2 Selection on age-specific modifiers of fertility and mortality

The optimal life history is the one whose vital rates (lx and mx) maximize r. To find an optimum,
we need to know how r responds to changes in vital rates. Let us attack this problem using the
renewal equation, which was introduced in section 14.1. As in that section,

lx = Pr[surviving to age x].

mx = fertility of individuals of age x.

Suppose that a mutation has just one effect: it increases fertility at age x. This mutation will be
favored by selection, since fertility is beneficial. But how strong is this effect? To find out, we must
calculate ∂r/∂mx. But there is no obvious way to calculate this derivative since we have no explicit
formula for r. Instead, r is defined implicitly by the characteristic equation

1 =
∑
x

e−rxlxmx,

1The remaining 1/2 contribute to the reproduction of type AA, but the AB × AA mating type is so much rarer
than AA×AA that these AA offspring can be ignored in calculating the rate of reproduction of AA.
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Figure 15.1: The Problem. Left : Age-specific fertility declines far faster than the decline in the
force of selection on fertility. Right : Survival from age x to x+ 5 declines far slower than the force
of selection on survival. Data are from 1906 Taiwan [31]. The strength of selection is calculated
assuming a stationary population and using Eqns. 15.2 and 15.3.

which was introduced on p. 97. To calculate the derivative of r, we can use the rule for implicit
functions (Appendix E). If g is the right-hand side of the equation above, then

∂r

∂mz
= −∂g/∂mz

∂g/∂r
(15.1)

To evaluate this expression, we need two partial derivatives:

∂g/∂mz = e−rzlz

∂g/∂r = −
∞∑
x=0

xe−rxlxmx ≡ −T

where T can be interpreted as the average age of mothers at reproduction. Substituting into
Eqn. 15.1 gives

∂r/∂mz = e−rzlz/T (15.2)

In stable populations, e−rzlz is proportional to the fraction of the population at age z. Thus, the
force of selection on the fertility of x-year-olds is proportional to the number of such individuals
in the population. If twice as many have age 20 as age 40, then selection for fertility is twice as
strong at 20 as at 40.

The same method can also be used for the force of selection on age-specific mortality. It turns
out that

∂r

∂Pz
=

∑∞
x=z+1 e

−rxlxmx

PzT
(15.3)

where Pz is the probability of survival from age z to age z+ 1. Both results were originally derived
by Hamilton [31], using exactly the argument that I have presented here. Charlesworth [8] extends
the argument in various ways.

These results were used to draw the graphs in figure 15.1. The left panel shows that the fertility
of human females declines faster with age than it ought to, according to Eqn. 15.2. The right panel
shows that survival declines more slowly than it ought to. Why should this be? Is the discrepancy
mere noise or has something been left out of the model?
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15.3 Evolution of aging

These results are at the heart of the evolutionary theory of aging [31, 8]. They contribute to two
less-mathematical theories, which I summarize below. Both theories are based on the fact that
the force of selection is strong early in life but declines with increasing age. This is implied both
by Eqn. 15.2 and by Eqn. 15.3, and is apparent in both panels of Fig. 15.1. Thus, it is true of
mutations that affect fertility and also of those that affect mortality.

Both theories assume the existence of many genetic loci that act at specific ages. No one really
thinks that any locus turns on precisely at (say) age 34, only to turn off again at 35. But there are
age differences in the rates at which loci are expressed. (One obvious example is fetal hemoglobin,
which is expressed prenatally but disappears within a few weeks after birth.) Once we understand
how selection affects fictional loci that act at single ages, it will be easy to infer how it affects loci
with more realistic trajectories of expression.

15.3.1 The theory of mutation-selection balance

Suppose that a deleterious mutation affects individuals of particular age. If it acts late in life, the
opposing force of selection will be weak. Consequently, the mutant may increase in frequency until
its damaging effects are common.

15.3.2 Antagonistic pleiotropy

Suppose now that a single mutation has effects at two different ages, one early in life and the other
late. For example, a mutation that reduces the amount of DNA repair that occurs at age 20 will
increase survival and fertility at age 20 because it frees the resources that are needed to repair DNA.
But this mutant also has an adverse effect at later ages because, when the DNA is not repaired
cancer is likely to occur later on. The same mutation thus has a beneficial effect at age 20 and an
adverse effect later on.

What will selection do with such a mutant? Because the force of selection declines with age,
selection is more sensitive to the early benefit than to the cost that arives late in life. Consequently,
mutations that do damage late in life may be favored by selection.

The distinction between these models is important for several reasons. If aging occurs primarily
by mutation-selection balance, then the forces affecting aging are weak: selection on these genes is
no stronger than mutation, and mutation is a very weak force. Because these directional forces are
weak, genetic drift is likely to be important. We should expect great and unpredictable variation
in rates of senescence among characters and among populations.

On the other hand, if aging is due mainly to antagonistic pleiotropy then the force that produces
it is strong. It results from changes in allele frequencies that are driven by selection on effects early
in life, when selection is a strong force. Consequently, mutation and genetic drift are likely to be
less important. Characters may age at different rates because of different trade-offs across ages, but
where these trade-offs are similar, characters should senesce at similar rates. Differences between
populations should reflect different selective environments and should therefore be predictable.

15.4 Evolution of menopause

In human females, fertility declines to low levels during the decade between ages 40 and 50; it
stops altogether a few years later. Does this make evolutionary sense? If the human fertility
schedule represents a fitness optimum, then any mutation that changes it must reduce fitness. To
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find out whether this is so, we investigate the effect of a rare allele that causes a small increase
in the fertility of its bearer between ages 45 and 50. If this increased fertility were its only effect,
it would necessarily increase fitness. If menopause is an adaptation, there must also be some
indirect disadvantage. Two possibilities are investigated in the sections below. The first discusses
a simplified version of a model that I introduced a few years ago [61]. The second discusses the
“Grandmother hypothesis” of Kristen Hawkes and her colleagues [37, 35].

15.4.1 The childbirth mortality model

Long ago, George Williams [76] suggested that the negative effect of continued fertility reflects the
risk of death in childbirth. This risk rises with age both because an older woman is more likely to
have children who need her and also because the probability of child-birth mortality increases with
age.

Suppose that some mutation increases the probability that a mother (Ego) will give birth in the
interval between ages 45 and 50. If she dies giving birth to this additional child, then she cannot
care for the children produced before age 45. For simplicity, I assume that Ego’s death would have
no effect on the children produced before she was 40, but that all the children produced between
ages 40 and 45 would die. In effect, this reduces Ego’s birth rate in the interval between ages 40
and 45.

To measure these effects, I introduce two parameters: q is the risk of death during child-birth,
and δ is the expected number of extra daughters that Ego produces between ages 40 and 50. (She
also produces an extra δ sons, but this will not be important until later.) The mutation changes
Ego’s birth rate (for female births) between ages 45 and 50 to

m45 = m∗45 + δ(1− q).

where m∗45 is the fertility of normal mothers. This model is not intended to imply that normal
women suffer no childbirth mortality. Those deaths do not appear explicitly because they are
already worked into the m∗x values. We only need to account for the excess mortality that is
suffered by the mutants.

I assume that children over five years of age are unaffected by their mother’s death but that
the effect on children under five is profound—I assume that all such children die when their mother
dies. This assumption is certainly too extreme and exaggerates the cost of increased fertility in
45-year-old women. The implications of this extreme assumption are discussed below. For the
moment, bear with me.

When the mother dies between ages 45 and 50, she loses all the children that were born between
ages 40 and 45. We can model this by pretending that these children were never born, i.e. by
modifying m40. With probability 2δq the mother has an additional birth and dies. (Here, the
factor of 2 reflects the fact that Ego can die when giving birth either to a son or a daughter.) If
Ego does die, then m40 = 0. With probability 1− 2δq, either no additional birth occurs or else the
mother gives birth successfully; in this event m40 = m∗40, where m∗40 is the fertility of non-mutant
mothers. Thus,

m40 = 0× 2δq +m∗40(1− 2δq) = m∗40(1− 2δq).

A death between ages 45 and 50 also deprives the mother of any children she might have
produced after the age of 50. But this effect does not need to be considered here because, in the
Taiwan data, fertility is zero after the age of 50.

To determine whether this mutant is favored or opposed by natural selection, we use Eqn. 15.2
to calculate the derivative of r with respect to δ. If this model describes the mechanism by which
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natural selection maintains menopause, then dr/dδ must be negative. (Otherwise, a mutation
increasing the fertility of older women would be favored.) The derivative of r with respect to δ is
the sum of effects in the two age intervals:

dr

dδ
=

∂r

∂m40

∂m40

∂δ
+

∂r

∂m45

∂m45

∂δ
(15.4)

Here, the derivatives of r with respect to mx are given by Eqn. 15.2. The other two derivatives are

∂m40/∂δ = −2qm40

∂m45/∂δ = 1− q

Substituting all this into Eqn. 15.4 gives

dr/dδ = −2qm40e
−r40l40/T + (1− q)e−r45l45/T (15.5)

Menopause is maintained by natural selection only if this quantity is negative. This requires that

q

1− q
>

e−5rl45
2m40l40

. (15.6)

Here, r is the growth rate per year, which was approximately 0.02 in the Taiwan data (see exer-
cise 14–5, page 105). From table 14.2, m40 = 0.2771, l45 = 0.3193 and l40 = 0.3615. Thus, the
condition becomes

q

1− q
>

exp[−5× 0.02]× 0.3193

2× 0.2771× 0.3615
= 1.44

or
q > 1.44/(1 + 1.44) = 0.59 (15.7)

Menopause is maintained under this model only if mothers die in child-birth more than 59% of
the time. This is wildly unrealistic—in human data, q ≈ 1/200. This is especially impressive in
view of the fact, discussed above, that our model exaggerates the cost of increased fertility by 45-
year-old women. Had we assumed (more realistically) that only some fraction of a women’s young
children die when she dies, the cost of increasing fertility would have been less, and the right side of
inequality 15.7 would have been even larger. Before abandoning the model altogether, however, we
should try making it a little more realistic. The section that follows does just this, by incorporating
density-dependent population growth.

Density-dependent population growth

The model above requires estimates of several demographic parameters. We used estimates taken
from a particular human population, but it would have been better to use estimates that reflect
some kind of average of the last several hundred thousand years of the human species. We don’t
know much about this ancient population, but we can be sure of one thing—it did not grow at 2%
per year throughout human history. A population growing at that rate doubles every 35 years, and
would increase by 868 orders of magnitude in 100,000 years. Over the long span of human history,
the average rate of growth must have been very nearly zero. Thus, it makes more sense to assume
that r = 0 than that r = 0.02. We can do this by making either Px or mx depend on the size of
the population.

Here, I take the latter approach: mx will decrease population size N , but lx does not respond.
If m̃x is the equilibrium value of mx, then mx = m̃x when N equals its equilibrium value Ñ . More
generally, mx = m̃xA(N), where A(N) is a decreasing function of N , and A(Ñ) = 1.
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?EXERCISE 15–1 Describe the meaning of this assumption in words. Is it reasonable? What alter-
native assumptions might be worth considering? Suppose you wanted to figure out how sensitive
the model is to this choice. What would you do?

With these assumptions, the characteristic equation of the renewal process (Eqn. 14.1) becomes

1 = A(N)
∑
x

e−rxlxm̃x

At equilibrium, A(N̂) = 1, and this becomes

1 =
∑
x

lxm̃x (15.8)

In demography, the quantity R0 =
∑
lxmx is called the “net reproductive rate.” When N is at

equilibrium, R0 = 1. In our data, however, R0 > 1 because the population is growing. The observed
value of R0 estimates of the current value of A(N):

R0 =
∑
x

lxmx

= A(N)
∑
x

lxm̃x

= A(N).

Once we know R0, we can convert mx into m̃x:

mx/R0 = A(N)m̃x/A(N) = m̃x (15.9)

Thus, we have a recipe for calculating the equilibrium fertility, m̃x:

First calculate the right-hand side of the characteristic
equation with r set to zero. In this code, vectors l and
m have length k and contain the Taiwan data.

> R0 := sum(l[x+1]*m[x+1],

x=0..(k-1));

R0 := 1.695105011

Age-category 40 corresponds to the 9th entry of our mx

vector. We are interested in m40/R0

> m[9];

.27713

> m[9]/R0;

.1634883964

Thus, our model of density dependence implies that in a stationary population, the fertility between
ages 40 and 45 would be 0.1634. Inequality 15.6 becomes

q

1− q
>

0.3193

2× 0.1634× 0.3615
= 2.701

or
q > 0.72 (15.10)

Density dependence seems not to have made a large difference, for this condition is not very
different from the one we started with. Either way, this model requires an exorbitant level of
childbirth mortality.



15.4. EVOLUTION OF MENOPAUSE 113

15.4.2 The Grandmother Hypothesis

The Grandmother Hypothesis [37, 35] holds that women can increase the fertility of their daughters
by feeding their grandchildren. The daughters can get pregnant again sooner because they do not
have to work so hard to feed their weaned children.

In modeling this effect, we need to account for the fact that the grandmother is less closely
related to her grandchildren than to her own children. The straightforward approach would involve
incorporating the ideas of kin-selection into the life-history theory introduced above [9, 61]. But
there is an easier way.

The sections below introduce two variants of this easier approach. The first variant considers a
mutant allele that increases the fertility of a woman at about the age of menopause. If menopause
is evolutionarily stable, then such alleles must be selected against. The second variant (which is
more consistent with the idea of Hawkes and her colleagues [36]) considers a mutant allele that
increases mortality among post-menopausal women. If menopause is evolutionarily stable, then
these alleles must also be selected against.

Mutant alleles that modify fertility

Suppose that Ego carries a rare allele that inflates her fertility between ages 45 and 50. Since the
allele is rare, Ego is probably a heterozygote and is equally likely to have inherited the allele from
her father or mother. In the latter case, when Ego was young she would have received less help
from her own mother, who would have been busy caring for her own extra children. To incorporate
these effects, we need expressions for Ego’s fertility between ages 20 and 25 and between 45 and
50. Consider

m45 = m∗45 + δ

m20 = m∗20 −
1

2
· l45
l20
· 2δ · γ

= m∗20 −
l45
l20
δγ

Here, m20 and m45 are Ego’s fertility between ages 20 and 25 and between 45 and 50. On the
right-hand sides of the two equations, m∗20 and m∗45 represent the fertility that Ego would enjoy if
she did not carry the rare allele. Her fertility (counting daughters only) between 45 and 50 has been
augmented by the quantity δ. Her fertility between 20 and 25 has been decreased by the product
of 1/2 (the probability that she inherited the rare allele from her mother), l45/l20 (the probability
that her mother survived from Ego’s birth until age 45), 2δ (the increase in Ego’s mother’s both-sex
fertility at age 45), and γ (the resulting decrease in Ego’s fertility).

The next step is to calculate the derivative of r with respect to δ.

dr

dδ
=

∂r

∂m20

∂m20

∂δ
+

∂r

∂m45

∂m45

∂δ
(15.11)

Here, ∂r/∂m20 and ∂r/∂m45 are as given by Eqn. 15.2 and

∂m20/∂δ = −γl45/l20
∂m45/∂δ = 1
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Thus,

dr

dδ
= −γl45

l20
· e
−20rl20
T

+
e−45rl45

T

=

(
e−20rl45

T

)
(−γ + e−25r) (15.12)

The allele increasing fertility late in life is selected against if this quantity is negative. This requires
that

γ > e−25r (15.13)

As before, it makes sense to set r = 0. In the model of density-dependence developed above, growth
rate is maintained at zero by changes in fertility. Thus, changing r to zero required a compensatory
change in fertility. But fertility does not enter into the inequality above. If we stick to the same
model of density dependence, we can simply set r = 0 without further adjustments. The inequality
becomes

γ > 1 (15.14)

This means that menopause is maintained by natural selection if a new birth when Ego is 45
deprives her 20-year-old daughter of at least 1 birth. We would need to estimate γ in order to find
out whether this condition holds in humans.

This model glosses over an important point—it assumes that Ego was 20–25 years old when
her mother was 45–50. A more realistic model would treat the age difference between mother and
daughter as a random variable.

Mutant alleles that modify mortality

The previous section considered what is required for the human female reproductive pattern to be
stable against mutations that modify fertility. But this is only half the problem. Human females are
unusual in that their fertility ends early relative to their lifespan. This pattern could be destroyed
by mutations of two types: (1) by mutations that increase the fertility of older females, or (2) by
mutations that increased the mortality of these females. Mutations of the first type were considered
in the section above; mutations of the second type will be considered here.

Consider a rare allele that decreases the probability that its (heterozygous) female bearer will
live from age 45 to age 46. Specifically, suppose that Ego (a carrier of this allele) survives this
interval with probability

P45 = P ∗45 − δ

where P ∗45 is the probability that a normal female will survive this interval. Females who carry this
allele are more likely to die at age 45, and when they do they are unable to help their daughters
raise children. Consequently, the daughters of a carrier have, on average, lower fertility in their
youth. Let us say that the daughter’s fertility at age 20 is diminished by δβ. If Ego is a carrier,
she is almost certainly a heterozygote (because the allele is rare) and received the allele from her
mother with probability 1/2. Thus Ego’s fertility at age 20 was

m20 = m∗20 − δβ/2

So far, the mutant gene in this model has only negative effects, so it would certainly be selected
against. If this model is correct, then it is easy to understand the maintenance of human female
longevity. Once the fertility problem is solved, longevity takes care of itself.
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But there may be trade-offs that are not captured by the model. In order to achieve low
mortality at age 45, the mother may have to sacrifice something earlier in life. Let us suppose,
therefore, that the mutant gene increases Ego’s own fertility at age 20. The increased fertility early
in life is paid for by decreased survivorship at age 45 via some physiological trade-off. If this were
true, then Ego’s fertility at age 20 would become

m20 = m∗20 − δβ/2 + δφ

where φ measures Ego’s increased fertility at age 20 relative to her decreased survival at age 45.
Now the mutant allele has positive effects as well as negative ones. To find out whether the allele
will increase in frequency under natural selection, calculate

dr

dδ
=

∂r

∂m20

∂m20

∂δ
+

∂r

∂P45

∂P45

∂δ

where

∂m20/∂δ = φ− β/2
∂P45/∂δ = −1

These results, together with Eqns. 15.2 and 15.3, give

dr

dδ
=
e−20rl20

T
(φ− β/2)−

∑∞
x=46 e

−rxlxmx

P45T

The final term on the right-hand side contains a sum that adds up Ego’s expected future fertility
after age 45. But this sum will be approximately zero, since human female fertility is very low
after this age. (If it is not zero at age 45, then we can repeat the analysis at age 50, or 55.) To
maintain the human female pattern of survivorship, the mutant allele must be selected against,
which requires that dr/dδ < 0. This in turn requires that

β > 2φ (15.15)

The current mortality schedule resists invasion only if the benefit that older women provide to a
daughter is twice as large as the benefit that they could provide for themselves (via the physiological
trade-off) by emphasizing early fertility at the expense of late survival. This is simply Hamilton’s
rule. It is more easily satisfied if the physiological trade-off is weak than if it is strong. In order to
decide whether this model is realistic, we need to estimate the tradeoff between late survival and
early fertility.

15.5 Exercises

With chimpanzee data, the question is not why menopause occurs, but why it does not [51]. To
attempt an answer to this question, consider the chimpanzee data shown in table 15.1. Assume
that the direct effect of some gene is to reduce fertility at age 45. This model can be studied using
the same machinery as above. The only difference is that δ is now a negative rather than a positive
quantity. (Hint: changing the sign of δ changes the direction of inequalities 15.7 and 15.14.)

?EXERCISE 15–2 Use the chimpanzee data to repeat the calculation in section 15.4.1, using the
model of childbirth mortality without density-dependent population regulation.
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Table 15.1: Chimpanzee life-history table

a la ma

(years)

0 1.0000 0.0000
5 0.8280 0.0000
10 0.7922 0.1568
15 0.7654 0.2368
20 0.7331 0.2273
25 0.6760 0.3793
30 0.5128 0.2903
35 0.3805 0.2500
40 0.2114 0.5000
45 0.1510 0.2500
50 0.0000 0.0000

Source: [41]

?EXERCISE 15–3 Use the chimpanzee data to repeat the calculation in section 15.4.1, using the
model of childbirth mortality with density-dependent population regulation.

?EXERCISE 15–4 Use the chimpanzee data to repeat the calculation in section 15.4.2, using the
Grandmother hypothesis with a mutation affecting fertility.

?EXERCISE 15–5 Use the chimpanzee data to repeat the calculation in section 15.4.2, using the
Grandmother hypothesis with a mutation affecting mortality.



Appendix A

The Command Line Interpreter
(Windows version)

A.1 The current directory

The command line interpreter (CLI) always looks for files in a single place, called the current
directory. When it writes a new file, it puts it into the current directory. This makes it easy
for you when you write programs: your programs will know where to find data and where to put
output.

A.2 Commands

In the commands listed below, expressions like <old> represent file names. Do not type the < and
>, just the name of the file. For example, if I had a file called foo and wanted to copy it, I would
type copy foo bar. This would create a file named bar with the same contents as foo.

cd mydir make “mydir” the current
directory

cd display current directory
copy <a> <b> make copy of file “a”
del <mydir> delete all files in directory
del <file> delete file

dir list current directory
mkdir <mydir> make new directory
ren <a> <b> rename file
rmdir <mydir> remove empty directory
type <file> display file on screen
move <a> <b> move file a to directory b

Examples

1. copy old new : copy a file named “old” into a new file named “new.”

2. del homework : delete a directory called “homework”, which must be empty.

3. ren homework.txt hw.txt : change the name of file “homework.txt.” The new name is
“hw.txt”.

4. type hw.txt : display file “hw.txt” on the screen. It should be a text file.
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A.3 History

The interpreter keeps track of the commands you execute, and you can scroll through this history
using the up and down arrows. Once you have found a command that you want to execute a second
time, you can edit it or just hit <Enter> to execute it again.

A.4 Redirecting input and output

The > symbol redirects output. For example,

dir > foo

would list the contents of the current directory and put the results into file foo. No output would
appear on the screen.

Some programs are interactive: they ask for input from the user. You can tell such programs
to read from a file instead using the < symbol. For example

myprogram < myfile

would run a program called “myprogram.” When that program needs user input, it will read it
from file “myfile.”

A.5 Standard output and error output

The interpreter sends two separate output streams to your screen. One (the “standard output”)
consists of the program’s normal output. The other (the “error output”) contains any error mes-
sages. When you redirect the output into a file, it is only the standard output that goes into the
file. The error output still goes to the screen.

For example, suppose that you run the program “Maple” like this:

cmaple > myfile

The standard output goes into “myfile,” but any error messages will still go to the screen. This is
usually what you want. But what if you want to send a copy of the output to me, including the
error messages?

You need to combine the standard and error output into a single stream. Here’s how

cmaple > myfile 2>&1

Now myfile will contain all the output, errors and all.

A.6 Pipes

It is also possible to link programs together in chains, using the | symbol. For example,

dir | myprogram

would run the dir command. The output of dir would become the input of myprogram. This is
called a “pipe.”
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A.7 Path names

Every directory and file on the computer has a unique name—one that distinguishes it from all
others. To find the full name of the current directory, type cd at the command prompt, and hit
return. When I did this a moment ago, my computer responded by printing Z:\home\rogers on
the screen. This is the “path name” of my current directory. Let us unpack it.

The path name Z:\home\rogers says that rogers is a subdirectory of home, which is itself
a subdirectory of \, which is the root of the file system on drive Z. On any given drive, all the
files and directories are organized in a tree, and Z:\ is the root of the tree on drive Z. You can
examine the contents of any of these directories by typing (for example) “dir Z:\home.” Each
drive corresponds to a device such as a diskette drive, a CDROM, or a partition of your computer’s
hard disk.

There is seldom a need to type out the full path name of a file. The command mkdir txt will
make a new directory within my current directory. The full path name of this new directory will
be Z:\home\rogers\txt, but I don’t have to care. I can simply refer to it as “txt.” The command
interpreter assumes that all files and directories are found within the current directory unless I
specify otherwise.

Suppose I type cd txt to move into this new directory, but then I want to go back. I could
type cd Z:\home\rogers, but that is a lot of typing. The easy way is “cd ..”. Here, “..” refers
to the parental directory—the one that contains the current directory.

A.8 Text editors

Once you have got the command line going, you need to get familiar with a text editor. The best
text editor to use depends on your operating system. If you want something simple, try “Notepad”
or “Wordpad” under Windows, “Joe” under Linux, or “SimpleText” under Mac. More powerful
alternatives are “emacs,” “vi,” and “jed.” Whatever editor you use, make sure the output is plain
text, with line breaks. There is a full discussion at http://en.wikipedia.org/wiki/Text_editor.
Avoid word processors such as Microsoft Word and Open Office—they make things harder.

?EXERCISE A–1 Open a CLI window. Make a new directory, and make it your current directory.
Use a text editor to create a file within this directory called hello.txt, which contains the following
line:

"Hello world!"

Back in the CLI, enter the command dir. The computer will type a listing of your current directory,
which should include the file you just created and nothing else. Now type type hello.txt. The
words “Hello world!” should appear on your screen.
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The Command Line Interpreter (Mac
and Linux version)

B.1 The current working directory

The command line interpreter (CLI) always looks for files in a single place, called the working
directory. When it writes a new file, it puts it into the working directory. This makes it easy
for you when you write programs: your programs will know where to find data and where to put
output.

B.2 Commands

In the commands listed below, expressions like <old> represent file names. Do not type the < and
>, just the name of the file. For example, if I had a file called foo and wanted to copy it, I would
type cp foo bar. This would create a file named bar with the same contents as foo.

cd mydir make “mydir” the current
directory

pwd print working directory
cp <a> <b> make copy of file “a”
rm * delete all files in current

directory
rm <file> delete file

ls list current directory
mkdir <mydir> make new directory
mv <a> <b> rename file
rmdir <mydir> remove empty directory
cat <file> display file on screen
mv <a> <b> move file a to directory b

Examples

1. cp old new : copy a file named “old” into a new file named “new.”

2. rmdir homework : delete a directory called “homework”, which must be empty.

3. mv homework.txt hw.txt : change the name of file “homework.txt.” The new name is
“hw.txt”.

4. cat hw.txt : display file “hw.txt” on the screen. It should be a text file.
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B.3 History

The interpreter keeps track of the commands you execute, and you can scroll through this history
using the up and down arrows. Once you have found a command that you want to execute a second
time, you can edit it or just hit <Enter> to execute it again.

B.4 Redirecting input and output

The > symbol redirects output. For example,

ls > foo

would list the contents of the current directory and put the results into file foo. No output would
appear on the screen.

Some programs are interactive: they ask for input from the user. You can tell such programs
to read from a file instead using the < symbol. For example

myprog.py < myfile

would run a program called “myprog.py.” When that program needs user input, it will read it from
file “myfile.”

B.5 Standard output and error output

The interpreter sends two separate output streams to your screen. One (the “standard output”)
consists of the program’s normal output. The other (the “error output”) contains any error mes-
sages. When you redirect the output into a file, it is only the standard output that goes into the
file. The error output still goes to the screen.

For example, suppose that you run the program “Maple” like this: it like this:

maple > myfile

The standard output goes into “myfile,” but any error messages will still go to the screen. This is
usually what you want. But what if you want to send a copy of the output to me, including the
error messages?

You need to combine the standard and error output into a single stream. Here’s how

maple > myfile 2>&1

Now myfile will contain all the output, errors and all.

B.6 Pipes

It is also possible to link programs together in chains, using the | symbol. For example,

ls | myprogram

would run the ls command. The output of ls would become the input of myprogram. This is called
a “pipe.”
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B.7 Path names

Every directory and file on the computer has a unique name—one that distinguishes it from all
others. To find the full name of the current directory, type pwd at the command prompt, and hit
return. When I did this a moment ago, my computer responded by printing /home/rogers on the
screen. This is the “path name” of my current directory. Let us unpack it.

The path name /home/rogers says that rogers is a subdirectory of home, which is itself a
subdirectory of /, which is the root of the file system. All path names begin with /, because the
files and directories are organized in a tree, and / is the root. You can examine the contents of any
of these directories by typing (for example) “ls /home.”

There is seldom a need to type out the full path name of a file. The command mkdir txt will
make a new directory within my current directory. The full path name of this new directory will
be /home/rogers/txt, but I don’t have to care. I can simply refer to it as “txt.” The command
interpreter assumes that all files and directories are found within the current directory unless I
specify otherwise.

Suppose I type cd txt to move into this new directory, but then I want to go back. I could
type cd /home/rogers, but that is a lot of typing. The easy way is “cd ..”. Here, “..” refers to
the parental directory—the one that contains the current directory.

B.8 Text editors

Once you have got the command line going, you need to get familiar with a text editor. The best
text editor to use depends on your operating system. If you want something simple, try “Joe” under
Linux, or “SimpleText” or “TextEdit” under Mac. More powerful alternatives are “emacs,” “vi,”
and “jed.” Whatever editor you use, make sure the output is plain text, with line breaks. There is
a full discussion at http://en.wikipedia.org/wiki/Text_editor. Avoid word processors such
as Microsoft Word and Open Office—they make things harder.

?EXERCISE B–1 Open a CLI window. Make a new directory, and make it your current directory.
Use a text editor to create a file within this directory called hello.txt, which contains the following
line:

"Hello world!"

Back in the CLI, enter the command ls. The computer will type a listing of your current directory,
which should include the file you just created and nothing else. Now type cat hello.txt. The
words “Hello world!” should appear on your screen.



Appendix C

Mean, Expectation, Variance and
Covariance

C.1 Sums and sigma notation

If you already understand sigma notation, please skip this section.

As we learned in grade school, the sum of 10, 12, 10, and 8 is

10 + 12 + 10 + 8 = 40

To generalize this calculation, suppose we have 4 arbitrary numbers, x1, x2, x3, and x4. Their sum
is

x1 + x2 + x3 + x4

This sum can also be written using “sigma notation,” as

4∑
i=1

xi

The “
∑

” symbol is a Greek sigma and indicates summation. The subscript “i = 1” indicates that
the sum begins with x1, and the superscript “4” indicates that the sum ends with x4.

More generally, if the number of numbers is an unknown value, N , then their sum is

N∑
i=1

xi = x1 + x2 + · · ·+ xN

Sometimes sums are written without limits, as in∑
i

xi.

This means the sum over all terms, however many there may be.

When sums are written within the text of a paragraph, the limits look like subscripts and
superscripts, as in

∑N
i=1 xi.
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C.2 Means

The mean of N numbers, x1, x2, . . . , xN , is

x̄ =
1

N

N∑
i=1

xi

It is often more convenient to express the mean in terms of the counts of elements with particular
values. For example, suppose as that we are dealing with data consisting of three numbers 2, 1,
and 1. With these data, N = 3 and x̄ = (2 + 1 + 1)/3 = 4/3.

To re-express this calculation, let nx represent the number of times the value x appears in the
data. There is one 2 in these data, so n2 = 1. There are two 1s, so n1 = 2. With this notation, the
size of the data set is

N =
∑
x

nx = 3

and

x̄ =
1

N

∑
x

xnx = 4/3 (C.1)

?EXERCISE C–1 Using our three-value data set and equation C.1, verify that x̄ = 4/3 by substi-
tuting values for N , x, and nx.

C.3 Relative frequencies

Equation C.1 can be written more compactly as

x̄ =
∑
x

xpx (C.2)

where px = nx/N is the relative frequency within the data of elements with value x.

?EXERCISE C–2 Given the data consisting of three numbers 2, 1, and 1, what are p0, p1, and p2?

?EXERCISE C–3 Suppose that the p0 = 1/10, p1 = 2/10, p3 = 1/10, p4 = 4/10, and all other pi
are zero. What is the mean?

C.4 Expectations

The same formula also turns up in probability theory. Suppose that some variable, X, takes values
that cannot be predicted exactly, but which occur with specified probabilities, p1, p2, . . . . Then X
is called a “random variable” and its expectation, E[x], is defined as

E[X] =
∑
x

xpx

This is identical to equation C.2, except that px is a probability rather than a relative frequencies.
(This is not a coincidence, for a probability is a relative frequency.) An expectation is an average
in which the weights are probabilities instead of relative frequencies.
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Finally, suppose that X is a continuous variable, such as stature, that takes values over the
range from a to b. Then you cannot enumerate the possible values of X. Its expectation is written
as

E[X] =

∫ b

a
xf(x)dx

where f(x)dx can be thought of as the probability that X takes a value within the (very small)
interval from x to x+ dx, and is thus analagous to px in the discrete formulation. The “

∫
” symbol

stands for “integration,” and is usually covered in the second course on calculus. If you have not
had that course, just think of integration as summation.

C.4.1 Properties of expectations

If a and b are constants, and X and Y are random variables, then

E[a] = a (C.3)

E[aX] = aE[X] (C.4)

E[X + Y ] = E[X] + E[Y ] (C.5)

Rather than proving these properties, I will illustrate them using averages. They hold for averages
too, since expectations are just a special kind of average.

The average of a constant The average of 4, 4, and 4 is 4. This is why E[a] = a when a is a
constant.

The average aX Start with the numbers 1, 3, and 5. The sum of these numbers is 9, and their
average is 3. Now multiply each number by a constant a. The resulting numbers sum to

a+ 3a+ 5a = a× (1 + 3 + 5) = 9a

The average is 9a/3 = 3a, which is a times the original average. This is why E[aX] = aE[X] when
a is a constant.

The average of X + Y Consider the following table

X Y X + Y

0 2 2
2 3 5
7 7 14

Sum 9 12 21

The average of X is 3, that of Y is 4, and that of X + Y is 7. This illustrates the fact that
E[X + Y ] = E[X] + E[Y ].

?EXERCISE C–4 What is E[3]?

?EXERCISE C–5 If E[X] = 5, then what is E[2X]?

?EXERCISE C–6 If E[X] = 5 and E[Y ] = 6, then what is E[2X + 3Y ]?

?EXERCISE C–7 If the values of a, E[X], and E[Y 2] are unknown, then what is E[aX + bY 2]?
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C.5 Variance

There are many ways to measure variation, of which the variance is the most common. The variance
is the average squared difference from the mean. For example, suppose we are dealing with data
consisting of the numbers 10, 12, 10, and 8. The mean is 10, so the variance is

V = ((10− 10)2 + (12− 10)2 + (10− 10)2 + (8− 10)2)/4 = 2

There is a variety of ways to represent the variance, including

V = N−1
∑
i

(xi − x̄)2

=
∑
x

(x− x̄)2px

=
∑
x

x2px − x̄2 (C.6)

?EXERCISE C–8 Verify that the formulas Equation C.6 are equivalent.

?EXERCISE C–9 What are the mean and variance of the numbers 3, 9, 15, and 8?

If X is a random variable (rather than data), its variance is

V [X] = E
[
(X − E[X])2

]
(C.7)

Note the similarity between this expression and Equation C.6. The variance can also be written in
either of the following ways:

V [X] = E[X2]− E[X]2 (C.8)

= E[X(X − E[X])] (C.9)

These expressions hold irrespective of whether the random variable is continuous or discrete.

?EXERCISE C–10 Prove that if a is a constant and X a random variable, then V [aX] = a2V [X].

C.6 Covariances

The covariance of two sets of numbers, x1, . . . , xN , and y1, . . . , yN , is

Cov(x, y) =
1

N

N∑
i=1

(xi − x̄)(yi − ȳ)

where x̄ and ȳ are the means of the two sets of numbers. Alternate expressions for the covariance
include

Cov(x, y) =
∑
xy

(x− x̄)(y − ȳ)px,y (C.10)

=
∑
xy

x(y − ȳ)px,y (C.11)

=
∑
xy

xypx,y − x̄ȳ (C.12)
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Here px,y is the relative frequency of pairs of numbers with values (x, y) and the sum is taken over
all possible of pairs of numbers. The notation

∑
xy means the same thing as

∑
x

∑
y.

If X and Y are random variables (rather than data), their covariance is

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] (C.13)

Note the similarity between this expression and Equation C.12. The covariance can also be written
in either of the following ways:

Cov(X,Y ) = E[X(Y − E[Y ])] (C.14)

= E[XY ]− E[X]E[Y ] (C.15)

?EXERCISE C–11 Calculate the covariance of x and y using the following data:

x y

2 3
1 2
1 1
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Using straight lines to approximate
curves

It is often helpful to use a straight line to approximate a curve. Figure D.1 illustrates this approach
along with its major limitation. Suppose we are interested in the curved line f(x) in Panel A. The
straight line f̃(x) is tangent to f(x) at x = 1, and the two lines are very close in the vicinity of this
point. Thus, the straight line approximates the curve. Panel B shows a broader view of the same
functions. (Note the difference in scales.) In this broader view, the two functions are generally far
apart, and no one would think of using one to approximate the other. Near the point of tangency,
however, the straight line is a useful approximation.

To find a formula for the straight line, we begin with two arbitrary values, x0 and x, on the
horizontal axis. The corresponding function values, f(x0) and f(x), lie on the vertical axis. The
straight line connecting these points has slope

∆f

∆x
=
f(x)− f(x0)

x− x0
This can be rearranged into f(x) = f(x0) + (x− x0)∆f/∆x. If x is close to x0, the slope ∆f/∆x
is nearly equal to the derivative, f ′(x0). Thus,

f̃(x) = f(x0) + (x− x0)f ′(x0) (D.1)

approximates f(x) in the neighborhood of x = x0.

Example Suppose that w(x) is the fitness of individuals with character value x, and that most
individuals in the population have x = x0. A rare mutant arises whose character value is increased

Figure D.1: The straight line f̃(x) ap-
proximates the curved line f(x) well near
their point of tangency (see Panel A), but
poorly over a broader range of values (see
Panel B.)
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by a small quantity dx. (In other words, the mutant’s character value is x0 + dx.) What is the
resulting change in the mutant’s fitness?

Because dx is small, we can use the linear approximation. The mutant’s fitness is approximately

w(x0 + dx) ≈ w(x0) + dxw′(x0)

The change in fitness, dw = w(x0 + dx)− w(x0), is approximately

dw ≈ dxw′(x0)
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Implicit Functions

Fig. E.1 shows a contour plot of w(x, y), a hypothetical function expressing fitness as a function
of two variables, x, and y. Along each contour line, w(x, y) is constant. Presumably, we have
a function expressing fitness (w) as a function of x and y, but it may be impossible to write y
explicitly as a function of x. All we know is that, along a given contour line, w(x, y) is equal to
some constant, k. Nonetheless, along this line y does vary in a predictable way in response to
changes in x. In other words, the equation w(x, y) = k defines y as an implicit function of x.

In evolutionary ecology, we are often interested in the derivatives of implicit functions. But
how can one calculate dy/dx without an explicit formula for y(x)? Questions of this sort can all
be answered using the implicit function theorem of calculus.

Suppose that both variables change in value, the one from x to x+ dx and the other from y to
y+dy. If these changes are small, the resulting change in w will be approximately (see Appendix D)

dw =
∂w

∂x
dx+

∂w

∂y
dy

If these changes move us along a contour line, then the change in y is not arbitrary. It is a
compensatory change of size dy = dy

dxdx. Thus, dw can be re-written as

dw =
∂w

∂x
dx+

∂w

∂y

dy

dx
dx

Figure E.1: Contour plot of a
fitness function, w(x, y). Dotted
lines connect points of equal fit-
ness.
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Now along any contour line, w is a constant so dw = 0. This implies that

dy

dx
= −∂w/∂x

∂w/∂y
(E.1)

Example Suppose that
w(x, y) = x1/3y2/3

We can use Eqn. E.1 to find dy/dx along any contour line. We need two partial derivatives:
∂w/∂x = (1/3)x−2/3y2/3, and ∂w/∂y = (2/3)x1/3y−1/3. Substituting these into Eqn. E.1 gives

dy

dx
= −(1/3)x−2/3y2/3

(2/3)x1/3y−1/3

= −y/(2x)

Here is the same analysis in Maple:

> w := x^(1/3) * y^(2/3);

(1/3) (2/3)

w := x y

> -diff(w, x)/diff(w,y);

y

- ---

2 x
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Answers to Exercises

?EXERCISE 2–1 2701
?EXERCISE 2–2 –36
?EXERCISE 2–3 37/39
?EXERCISE 2–4 0.94871794871795
?EXERCISE 2–5 2889
?EXERCISE 2–6 π, 4π, 9π, 16π, and 25π.
?EXERCISE 2–7

> expand((x-2)*(x+4)*(x-5));

3 2

x - 3 x - 18 x + 40

?EXERCISE 2–8

> factor(24 + x^4 - 10*x^3 + 35*x^2 - 50*x);

(x - 1) (x - 2) (x - 3) (x - 4)

?EXERCISE 2–10 The Maple command is plot(x^(1/3), x=0..1). I’ll leave the description of
this function to you.
?EXERCISE 2–11 The Maple command is plot(1 - exp(-x), x=0..1).
?EXERCISE 2–12

> solve(1-exp(-x) = 1/2, x);

ln(2)

?EXERCISE 2–13 There are several ways to write the procedure, one of which is

g := proc(x)

1 - exp(-x);

end proc;

?EXERCISE 3–1

> simplify(diff(k*x^n, x));

(n - 1)

k x n
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> simplify(diff(log(x), x));

1/x

> simplify(diff(exp(k*x), x));

k exp(k x)

> simplify(diff(f(x) + g(x), x));

/d \ /d \

|-- f(x)| + |-- g(x)|

\dx / \dx /

> simplify(diff(f(x) * g(x), x));

/d \ /d \

|-- f(x)| g(x) + f(x) |-- g(x)|

\dx / \dx /

> simplify(diff(f(x) / g(x), x));

/d \ /d \

|-- f(x)| g(x) - f(x) |-- g(x)|

\dx / \dx /

-------------------------------

2

g(x)

> simplify(diff(f(g(x)), x));

D(f)(g(x)) D(g)(x)

?EXERCISE 3–2 df/dx = 0
?EXERCISE 3–3 df/dx = a
?EXERCISE 3–4 df/dx = 2ax
?EXERCISE 3–5 df/dx = 3ax2

?EXERCISE 3–6 df/dx = 0 + b+ 2cx+ 3dx2

?EXERCISE 3–7 0
?EXERCISE 3–8 3
?EXERCISE 3–9 3− 6x
?EXERCISE 3–10 3− 6x (Can you see why this derivative is the same as the last one?)
?EXERCISE 3–11 9e3x

?EXERCISE 3–12 1/x
?EXERCISE 3–13

> simplify(diff( (3 + 4*x - 5*x^2)/(x^2 + exp(x)), x));

2 2

-4 x + exp(x) - 14 x exp(x) - 6 x + 5 x exp(x)

------------------------------------------------

2 2

(x + exp(x))

?EXERCISE 4–1 The population contains NP11 individuals of genotype A1A1 and NP12 of genotype
A1A2. Each of the former carries two copies of A1 and each of the latter carries one copy. The
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total number of copies of A1 is thus 2NP11 + NP12. Dividing by 2N (the total number of genes)
gives the relative frequency of A1 within the population: p = P11 + 1

2P12.
?EXERCISE 4–2 When w11 = w12 = 1 and w22 = 0.8, so that A1 is dominant, ∆p(0.1) =
.01933174224 whereas ∆p(0.9) = .001803607214. Thus, the rate of change is faster when the
dominant allele is rare, or (equivalently) when the recessive allele is common.
?EXERCISE 4–3 After using equation 4.1 to define p2, and equation 4.2 to define dp, I typed
simplify(p2 - p - dp); and Maple responded by typing 0.
?EXERCISE 4–4 The calculation is very simple:

w1 − w2 = pw11 + qw12 − qw22 − pw12

= p(w11 − w12) + q(w12 − w22)

?EXERCISE 4–5 First enter the formulas for w1 and w2, along with the three genotypic fitnesses.
Then calculate

> subs(p=0.1, w1 - w2);

.85

Since the answer is positive, allele 1 is favored.
?EXERCISE 4–6

> subs(p=0.1, w1 - w2);

-.35

Now the difference is negative, so allele 2 is favored.
?EXERCISE 4–7

> solve(w1=w2, p);

.6666666667

?EXERCISE 4–9 After defining wbar as above,

> f := ((w11 - w12)*p + (w12 - w22)*q);

f := (w11 - w12) p + (w12 - w22) (1 - p)

> simplify(f - diff(wbar,p)/2);

0

?EXERCISE 4–10 There are unstable equilibria at 0 and 1, and a stable equilibrium at 3/4.
?EXERCISE 4–13 This yields only the equilibrium at 3/4.
?EXERCISE 5–1

> f := x - 2*x*x;

2

f := x - 2 x

# One-liner sets derivative equal to 0 and solves

> solve(diff(f, x)=0, x);

1/4

# Substitute solution into 2nd derivative

> subs(x=1/4, diff(f, x, x));

-4
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The second derivative is negative, so x = 1/4 is a local maximum.
?EXERCISE 5–2

> f := x*exp(-x);

f := x exp(-x)

> solve(diff(f,x)=0, x);

1

> subs(x=1, diff(f,x,x));

-exp(-1)

The second derivative is negative, so x = 1 is a local maximum.
?EXERCISE 5–3 0.1281250000, 0.1624310220, 0.2033491664, 0.6119042892, and 0.9999999989
?EXERCISE 5–4 0.1657303371, 0.2489153132, 0.3371758950, 0.6574744675, and 0.7499999312
?EXERCISE 5–5 Here are two ways to sum 1/i2:

> p := 1;

p := 1

> for i from 1 to 10 do p := p*1/(i*i) end do:

> p;

1/13168189440000

> # At this point, Maple thinks i=11. You must unassign it

> # before using it in the product statement below.

> i := ’i’;

i := i

> product(1/(i*i), i=1..10);

1/13168189440000

?EXERCISE 5–6

1 interface(echo=4);

2 # Using a for loop to calculate means, mean squares, and

3 # the mean cross product.

4

5 # Data

6 x := [3,2,12,12];

7 y := [6,8,4,8];

8

9 # Initialization

10 mx := 0;

11 my := 0;

12 mxx := 0;

13 myy := 0;

14 mxy := 0;

15
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16 # n is the number of observations.

17 n := nops(x);

18

19 # Loop over data accumulating sums

20 for i from 1 to n do

21 mx := mx + x[i];

22 my := my + y[i];

23 mxx := mxx + x[i]*x[i];

24 myy := myy + y[i]*y[i];

25 mxy := mxy + x[i]*y[i];

26 end do:

27

28 # Turn sums into means

29 mx := mx/n;

30 my := my/n;

31 mxx := mxx/n;

32 myy := myy/n;

33 mxy := mxy/n;

34

35 print(mx,my,mxx,myy,mxy);

?EXERCISE 6–1 The stable equilibrium is at x = 2.
Incidentally, there is also an unstable equilibrium at x = 0, which you will find only if you attack

the problem by solving dw/dx = 0 (using Eqn. 6.1). It is probably easier to solve ds(x)/dx = s(x)/x,
or d logw/dx = 0. I don’t care which approach you use.

To show that the equilibrium at x = 2 is stable, you will need to calculate the second derivative
of w (or logw), and evaluate it at x = 2. This derivative is negative, so the equilibrium is stable.
In Maple, you calculate d2w/dx2 as diff(w,x,x).
?EXERCISE 6–2 The only positive equilibrium is stable and lies at x = 2.1462.

No matter how you attack this problem, Maple will probably give you an answer that involves
something called “LambertW.” Don’t worry. Just use the evalf function to convert the answers
into floating point numbers. You may get several answers, but only one should be positive. Ignore
the negative answers.
?EXERCISE 6–3 Here is a Maple program that does the exercise:

interface(echo=4);

# Definitions

w := b*s(x);

s := proc(x) (x-1)^(1/2) end proc;

T := 20;

# xsf is solution for standard Smith-Fretwell model

xsf := solve(diff(s(x), x) = s(x)/x, x);

# Definitions for sib rivalry model

constr := c*b^2 + (x-c)*b - T = 0;

c := 1;
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# Solve constraint for b using positive root of quadratic formula

b := (-(x-c) + sqrt((x-c)^2 + 4*c*T))/(2*c);

# Solve for fitness maximum in sib rivalry model

xsr := solve(diff(log(w), x)=0, x);

# Print the two solutions side by side

evalf(xsf), evalf(xsr);

If you run it, you will find that x̂ = 2 under Smith-Fretwell, but equals 6.16 under the sibling
rivalry model.
?EXERCISE 7–1 The first-order condition gives x̂ = −1 +

√
2 ≈ 0.414. At this point, the second-

order condition gives

d2 lnw

dx2

∣∣∣∣∣
x=x̂

= 1.707

Since this is positive, x̂ does not maximize fitness. In fact, it minimizes fitness.
?EXERCISE 8–1 We are interested in the left edge of both graphs, since this is where pB = 1 and
pA = 0. In panel 1, wB > wA at this edge, so result 8.1 implies that strategy B resists invasion
by A. In panel 2, wA = wB at this edge, and wB > wA at points near the edge. Thus, result 8.2
implies that B resists invasion by A. Since A and B are the only feasible strategies, each graph
implies that B resists invasion by all alternate strategies and is therefore an ESS.
?EXERCISE 8–3 To the left of the point (p̂H) where the lines cross, wH > wD. (This follows because
V > V/2.) To the right of p̂H , wH < wD because (with these parameter values) (V − C)/2 < 0.
?EXERCISE 8–4 The equilibrium occurs where the two fitnesses are equal. At this point, 1/pm =
2/(1− pm), which implies that pm = 1/3. In your graph, the lines should cross at this value. The
upshot is that if sons are expensive, mothers should produce fewer of them.
?EXERCISE 9–1 The difference in fitnesses is

Π(H, I)−Π(D, I) = p(V − C)/2 + (1− p)V − (1− p)V/2
= V (p/2 + (1− p)− (1− p)/2)− Cp/2
= V/2− Cp/2

which equals 0 when V = Cp or p = V/C.
?EXERCISE 9–2 Suppose that some mixed strategy J that plays Hawk with probability u and Dove
with probability 1− u. It’s payoff is

Π(J, I) = uΠ(H, I) + (1− u)Π(D, I)

But since H and D have the same payoff against I, we can substitute Π(H, I) for Π(D, I), producing

Π(J, I) = uΠ(H, I) + (1− u)Π(H, I) = Π(H, I)

Thus, J, H, and D all have the same payoff against I.
?EXERCISE 9–3 To calculate the optimal response function of the prey, we begin by writing the
fitnesses of the two pure strategies as functions of x:

wWL = −(1− x)b and wWR = −xb
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The mean fitness of the prey is thus

w2 = ywWL + (1− y)wWR

= −y(1− x)b− (1− y)xb

= −y(1− 2x)b− xb

If x < 1/2, then w2 decreases with y so the optimal value of y is zero; if x > 1/2, then the optimal
value of y is one.
?EXERCISE 12–1 w = (1/3)× (3/2) + (2/3)× (3/4) = 1
?EXERCISE 12–2 x′0 = v
?EXERCISE 12–3 The average difference in character values between parent and offspring is x′1 −
x1 = −u for allele A1 and is x′0 − x0 = v for allele A0. Thus,

E[wi(x
′
i − xi)] = −puW1/W + qvW0/W

According to Price’s equation, the mean change in character value equals this plus the covariance
from the previous model (Eqn. 12.12). Thus,

∆x =
pq(W1 −W0)

W
+
qvW0 − puW1

W

?EXERCISE 12–4 For the charisma model, the table looks like this:

Component fi xi Wi wi
charismatic x 1 b x−1

non-charismatic 1− x 0 0 0

?EXERCISE 12–5 With the data in the table, x = 2.25, W = 2, E[xiwi] = 2.375, and Cov(xi, wi) =
0.125. Since x′i = xi, the second term in the Price equation is zero, and ∆x = 0.125.
?EXERCISE 13–1 u− p̄ = 0 when p̄ = 0 or p̄ = 1. u− p̄ > 0 when 0 < p̄ < 1. Consequently, in this
model Hamilton’s rule gives the condition for p̄ to increase whenever 0 < p̄ < 1.
?EXERCISE 13–2 In this model, u simplifies to p(p− 3)/(3p2− 4p− 1). u− p = 0 when p equals 0,
2/3, or 1. It is positive when 0 < p < 2/3 and negative when 2/3 < p < 1. When Hamilton’s rule
holds, p will move toward an equilibrium at p = 2/3.
?EXERCISE 13–3

Survival as a function of parental investment: > s := proc(x) 1 - exp(-(x-1)) end;

s := proc(x) 1-exp(-x+1) end

Solve for Smith-Fretwell equilibrium—the case ofmater-
nal control). (We are interested in the positive answer
only.)

> evalf(solve(diff(s(x), x) = s(x)/x, x));

-.8414056605, 2.146193221

Now the case of offspring control, where offspring’s ma-
nipulation benefits itself only.

> evalf(solve(diff(s(x), x)

> = 0.5*s(x)/x, x));

-.3733745453, 2.923938750

Note that 2.9 > 2.1, so each offspring gets more.
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Now assume that the sibs are half-sibs. Each offspring
gets more still

> evalf(solve(diff(s(x), x)

> = 0.25*s(x)/x, x));

-.1726105583, 3.780080782

?EXERCISE 13–4 The following continues from the answer to exercise 13–3.

Now the case in which offspring manipulations affect a
litter of size m. Here is the equation that we need to
solve.

> eq := diff(s(x),x) = s(x)*(1 - 0.5^m)/x;

eq := exp(-x + 1)

m

(1 - exp(-x + 1)) (1 - .5 )

= ---------------------------

x

Solve it with m = 1 (i.e. for litters of size 1). > evalf(solve(subs(m=1,eq), x));

-.3733745453, 2.923938750

We are assuming here that r = 1/2, so case with m = 1 is identical to full sib case above.

Next the case with m = 5. > evalf(solve(subs(m=5,eq), x));

-.8102496257, 2.178174244

Next the case with m = 15: > evalf(solve(subs(m=15,eq), x));

-.8413751429, 2.146223739

The more sibs are affected, the closer the optimum gets to the maternal optimum at 2.146.

With m = 100, the answer is nearly identical to the case
of maternal control.

> evalf(solve(subs(m=100,eq), x));

-.8414056604, 2.146193221

In summary, small litters lead to discrepancies between the fetal optimum and the maternal
optimum. But when litters are large this discrepancy disappears. We should therefore expect to
see more conflict in species with small litters than in species with large ones.
?EXERCISE 14–1 The question can be rephrased by asking what value of t makes ert = 2. To solve
this equation, take the natural log of both sides and then divide by r. The result

td = (ln 2)/r ≈ 0.69/r

is called the doubling time.
?EXERCISE 14–2 The first step is to define a variable that equals the right-hand side of the renewal
equation:
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>#Set up renewal eqn:

> rh := sum(’exp(-r*x)* l[x+1]*m[x+1]’, x=0..10):

After some experimentation, I found:

> evalf(subs(r=0.1,rh));

1.009415775

> evalf(subs(r=0.2,rh));

.6123337140

Since these answers bracket unity, r must lie between 0.1 and 0.2. I then used fsolve to find the
answer more accurately:

> rrenew := fsolve(rh=1,r, 0.1..0.2);

rrenew := .1018420077

This is the rate of growth as determined by the renewal equation. It tells us that the population
increases by roughly 10% in every unit of time. Since these demographic data were tabulated in
5-year intervals, the time unit here is five years.
?EXERCISE 14–3 The leslie procedure that I defined above can be used once again here. It yields
a Leslie matrix that, after rounding to two decimal places, looks like

L =



0 0 0.17 0.52 0.54 0.49 0.42 0.18 0.02 0
0.91 0 0 0 0 0 0 0 0 0

0 0.96 0 0 0 0 0 0 0 0
0 0 0.94 0 0 0 0 0 0 0
0 0 0 0.92 0 0 0 0 0 0
0 0 0 0 0.91 0 0 0 0 0
0 0 0 0 0 0.90 0 0 0 0
0 0 0 0 0 0 0.89 0 0 0
0 0 0 0 0 0 0 0.88 0 0
0 0 0 0 0 0 0 0 0.86 0


?EXERCISE 14–4 I used the Eigenvalues procedure to find λ and r:

> evals := Eigenvalues(L);

evals := 0, 0, 0, 0, 0, 0, 0, 0, 0,

1.107208535,

.3622041335 + .7317423441 I,

.3622041335 - .7317423441 I,

- .08682185875 + .7249856868 I,

- .08682185875 - .7249856868 I,

- .4966823304 + .3155985247 I,

- .4966823304 - .3155985247 I,

-.5600076923, -.1046007229, 0

> lambda := %[10];

lambda := 1.107208535

> rleslie := log(lambda);
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rleslie := .1018420145

This answer is practically identical to the result obtained from the renewal equation.
?EXERCISE 14–5 The preceding exercises show that the population is growing at an exponential
rate of 0.1 per 5-year age interval. The annual rate of growth is 1/5 as large, or about 0.02. The
population is growing at a rate of 2 percent per year.
?EXERCISE 15–1 The assumption implies that an increase in N causes the same proportional
reduction in the fertilities of all women, regardless of their age. Many other assumptions are
possible. For example, as N increases the resulting decrease in fertility might fall primarily on
older women. I know of no data on this issue, so it is hard to decide what assumption is most
reasonable. We could however experiment with different assumptions. If all assumptions led to
essentially the same answer, then it would not matter much which one we chose. This is called a
sensitivity analysis.
?EXERCISE 15–2 Changing the sign of δ changes the sign of the inequality. Thus, inequality 15.6
becomes

q

1− q
<

e−5rl45
2m40l40

(F.1)

With the chimpanzee data, r ≈ 0.0045 so this inequality is

q

1− q
<

exp[−5× 0.0045]× 0.1510

2× 0.5× 0.2114
= 0.698

or
q < 0.41

This condition says that the chimpanzee fertility pattern is stable against a mutation reducing
fertility in old age provided that the rate of child-birth mortality among older females is less than
41%. This condition is almost certainly satisfied.
?EXERCISE 15–3 The model of density dependence requires an adjustment in m40, which becomes
0.5/R0, where R0 = 1.1159 (see Eqn. 15.9). Inequality F.1 becomes

q/(1− q) < 0.1510× 1.1159

2× 0.5× 0.2114
= 0.797

or
q < 0.44

This says that the chimpanzee fertility pattern is stable against a mutation reducing fertility in
old age provided that the rate of child-birth mortality among older females is less than 44%. Once
again, it is easy to believe that this inequality is satisfied.
?EXERCISE 15–4 As before, changing the sign of δ changes the sign of the inequality. Setting r = 0
in inequality 15.13, and reversing the direction of the inequality gives

γ < 1

If this condition is satisfied, then selection opposes mutations that reduce the fertility of 45-year-
old females. Thus, the chimpanzee pattern is stable if the marginal effect on fertility of young
females is smaller than that on fertility of older females. Recall that the human pattern was stable
if the marginal effect on younger females is larger. A change from the chimpanzee pattern (of no
menopause) to the human one would result from anything that increased the value of γ—from
anything that increased the ability of old females to enhance the fertility of their daughters.
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?EXERCISE 15–5 The chimpanzee pattern (no menopause) is stable if

β < 2φ

It is stable, in other words, if the effect of grandmothers on the fertility of their daughters is less
than twice as large as the benefit that they could provide for themselves (via the physiological
trade-off) by emphasizing early fertility at the expense of late survival.
?EXERCISE C–1

x̄ =
1

3
(0× 0 + 1× 2 + 2× 1) = 4/3

?EXERCISE C–2 In our data set (2, 1, and 1), there are two elements with value 1, and three
elements in all, so p1 = 2/3. Similarly p2 = 1/3. There are no elements with value 0, so p0 = 0.
?EXERCISE C–3

x̄ = 0× 1/10 + 1× 2/10 + 3× 1/10 + 4× 4/10

= 2/10 + 3/10 + 16/10

= 21/10 = 2.1

?EXERCISE C–4 E[3] = 3
?EXERCISE C–5 E[2X] = 10
?EXERCISE C–6 E[2X + 3Y ] = 10 + 18 = 28
?EXERCISE C–7 E[aX + bY 2] = aE[X] + bE[Y 2]
?EXERCISE C–9 The mean and variance are 8.75 and 18.1875.
?EXERCISE C–10 First, E[aX] = aE[X] by equation C.4. Next,

V [aX] = E[(aX)2]− E[aX]2

= E[a2X2]− a2E[X]2

= a2
(
E[X2]− E[X]2

)
= a2V [X]

?EXERCISE C–11 x̄ = 4/3, ȳ = 6/3 = 2,

Cov(x, y) = [(2− 4/3)(3− 2) + (1− 4/3)(2− 2) + (1− 4/3)(1− 2)]/3

= [2/3 + 0 + 1/3]/3

= 1/3
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