
Not Quite Enough Selection (Or Maybe a Bit Too Much)

Alan R. Rogers

April 15, 2023

1 Introduction

This note summarizes basic results from the theory of natural selection. It develops the conventional
algebraic model and uses this to derive a series of qualitative conclusions, which are stated below
as “Results.”

2 Basic model

Consider a locus with two alleles A1 and A2, whose relative frequencies in some generation are p
and q = 1 − p, respectively. Let wij denote the probability that an individual of genotype AiAj

will survive to reproduce. This probability is called the fitness of genotype AiAj . The genotypic
fitnesses and frequencies are shown in table 1. The frequencies before selection are in Hardy-
Weinberg equilibrium. The contribution of each genotype to the gene pool of the next generation
is proportional to the product of its frequency and fitness. Dividing by w̄, the mean fitness, ensures
that the genotypic frequencies after selection sum to unity.

The frequency of allele A1 is p = P11 + 1
2P12, where P11 and P12 are the frequencies of A1A1

and A1A2.

?EXERCISE 1 Show that p = P11 + 1
2P12.

Applying this to the last row of table 1 gives the frequency of A1 after selection.

p′ =
p2w11 + pqw12

w̄
(1)

Here, p is the allele frequency among the parents and p′ is that among the children. Equation 1 tells
us p’s value in one generation as a function of its value in the previous generation. Such equations
are called recurrence equations. They provide recipes for getting from one generation to the next.

Table 1: Genotypic fitnesses and frequencies

Genotype A1A1 A1A2 A2A2

Freq. before selection p2 2pq q2

Fitness w11 w12 w22

Freq. after selection p2w11/w̄ 2pqw12/w̄ q2w22/w̄

Where q = 1 − p
and w̄ = p2w11 + 2pqw12 + q2w22
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3 The rate of change

How much change occurs between successive generations? To find out, we calculate ∆p (pronounced
“delta pee”), which equals p′ − p. ∆p is positive when p is increasing, and negative when p is
decreasing. When there is no tendency to change, the system is said to be at equilibrium, and
∆p = 0. Subtracting p from equation 1 gives (after some algebra)

∆p =
pq

w̄
[p(w11 − w12) + q(w12 − w22)] (2)

This equation provides a great deal of intuition concerning the dynamics of natural selection, which
I summarize in the paragraphs that follow.

?EXERCISE 2 Derive Eqn. 2 from Eqn. 1.

Result 1 Response to selection is slow when either allele is rare.

This is because ∆p is proportional to pq and is therefore low when p is small or when q is small.

Result 2 Selection is especially slow when a recessive allele is rare.

If A1 is recessive, w12 = w22, and Eqn. 2 becomes ∆p = p2q(w11 − w12)/w̄. When A1 is rare, p2 is
very small, so response to selection is very slow.

Result 3 Selection is especially slow when a dominant allele is common.

If A1 is dominant and common, then A2 is recessive and rare, so Result 2 implies that ∆p ≈ 0.

Result 4 A rare allele spreads if its heterozygote is fitter than the common homozygote.

This result is used widely, because all mutations are initially rare, and we would like to know which
ones will spread. It holds because when A1 is rare, p is small, the expression in square brackets is
approximately w12 − w22. Allele A1 will increase in frequency if this quantity is positive.

Result 5 If the heterozygote has intermediate fitness, then one allele will increase to fixation.

To see why, note that if w11 > w12 > w22, then the quantity in square brackets in Eqn. 2 is always
positive, and A1 will increase to fixation. On the other hand, A2 will fix if w11 < w12 < w22.

Result 6 If the heterozygote has the highest fitness, then A1 evolves toward an intermediate equi-
librium.

This is the case of “fitness overdominance” or “heterozygote superiority.” In this case, w11−w12 < 0
and w12 − w22 > 0, so ∆p is positive when p is small but negative when p is large.

Result 7 When the heterozygote has highest fitness, the allele that is most common at the stable
equilibrium is the one whose homozygote has highest fitness.
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Figure 1: Model of heterozygote advantage.
Upper panel: the rate, ∆p, of change in p.
Equilibria occur where ∆p = 0. The equi-
libria at p = 0 and p = 1 are unstable.
That at p ≈ 0.64 is stable. Lower panel:
mean fitness, w̄, as a function of p. The
equilibrium value, p̂, maximizes w̄ and co-
incides the point at which ∆p = 0.
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Figure 2: Time path of allele frequency using
the same model as Fig. 1. The dotted line
indicates the equilibrium value, p̂ ≈ 0.64.
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To derive this result, set to zero the quantity in square brackets in Eqn. 2 and rearrange to obtain

p̂

q̂
=

w12 − w22

w12 − w11

where p̂ and q̂ are the equilibrium values of p and q. On the right side of this equation, the numer-
ator and denominator are both positive, because we are concerned with the case of heterozygote
superiority. If w11 > w22, then the denominator will be smaller than the numerator, and this
implies that p̂ (the frequency of A1) exceeds q̂ (that of A2). For example, suppose that w22 = 0.1,
w11 = 0.2, and w12 = 0.3. Then

p̂

q̂
=

0.3 − 0.1

0.3 − 0.2
= 2

and p̂ is twice as large as q̂.

Result 8 If the heterozygote has lowest fitness, then there are two stable equilibria, one at which
A1 is fixed and another at which it is lost.

In this case, w11 −w12 > 0 and w12 −w22 < 0, so ∆p is negative when p is small but positive when
p is large.

4 The same result in terms of genic fitnesses

We can also write equation 2 as

∆p =
pq(w1 − w2)

w̄
(3)

where w1 and w2 are the genic or marginal fitnesses of A1 and A2. The genic fitness of allele Ai is
simply the average fitness of copies of Ai.

In diploid organisms, genes occur in pairs. Each copy of the A1 allele is paired with some other
gene. What is the probability that this second gene is also a copy of A1? If mating is at random,
then the second gene is (in effect) drawn at random from among all the genes in the population.
Since a fraction p of these are copies of A1, p is also the probability that the second gene is an A1.
In this case, the original copy of A1 resides in an A1A1 homozygote with fitness w11. On the other
hand, the original A1 might (with probability q) be paired with a copy of A2. If so, then the initial
A1 resides in a heterozygote with fitness w12. The mean fitness of allele A1 is therefore

w1 = pw11 + qw12

A similar argument applies if the initial gene is a copy of A2 and leads to

w2 = pw12 + qw22

Since pq/w̄ is always positive, equation 3 implies that

Result 9 Selection favors the allele whose genic fitness is highest.

?EXERCISE 3 Verify that w1 − w2 is equal to p(w11 − w12) + q(w12 − w22).
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Figure 3: Time path of p, the frequency of an advantageous allele, A1, over the range 0.01 ≤ p ≤
0.99. The model assumes that the fitness of the favored homozygote (A1A1) exceeds that of the
unfavored one (A2A2) by s = 0.01 and that there is no dominance. Calculations used Eqn. 1.

5 Wright’s equation

We saw above that Eqn. 2 is rich in insight about the behavior of natural selection. Most of that
insight came from studying the quantity in square brackets. Sewall Wright [4] noticed that this
quantity is equal to 1

2
dw̄
dp , where dw̄/dp is the derivative (or slope) of the curve that describes w̄ as

a function of p. Thus,

∆p =
pq

2w̄
· dw̄
dp

(4)

This equation is equivalent to 2, but provides a different kind of insight. Notice that pq/2w̄ is always
positive when p is neither zero nor unity. This means that p will increase when dw̄/dp > 0 and
will decrease when this derivative is negative. Selection pushes allele frequency in a direction that
increases w̄, the mean fitness. It pushes the population “uphill” on the function w̄(p). Consequently,

Result 10 Stable equilibria occur at peaks in the graph of mean fitness against allele frequency.

The lower panel of Fig. 1 illustrates this principle.

?EXERCISE 4 Verify that equations 2 and 4 are equivalent.

?EXERCISE 5 Define w11 = 1, w12 = 1.1, and w22 = 0.8. Find the equilibria in this system by
graphing ∆p as a function of p.

6 The time required for a selective sweep

How long does it take for an allele to increase from one value to another, under the influence of
natural selection? This question has been addressed by Haldane [3] and several later authors [2,
sec. 5.3; 1, sec. 3.1.iii.a]. The model is simplest if there is no dominance, so that alleles contribute
additively to fitness. Let’s suppose that genotypes A1A1, A1A2, and A2A2 have relative fitnesses
w11 = 1 + s, w12 = 1 + s/2, and w22 = 1. The left panel of Fig. 3 shows the time path of allele
A1 over the range 0.01 ≤ p ≤ 0.99. As the graph shows, this selective sweep takes more than 1500
generations.

The graph on the right shows the time path of the transformed variable,

x = ln
p

1 − p
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This is called the “logit transform” and is often used in statistics. As you can see, the graph of x
is a straight line, or very nearly so. Appendix A shows that the slope of this line is approximately
s/2. Consequently, it is easy to write x as a function of t:

x(t) = x0 + ts/2

where x0 is the initial value of x. Solving for t gives [2, Eqn. 5.3.13; 1, Eqn. 3.3]

t =
2

s
(x(t) − x0)

=
2

s
ln

p(t)q0

q(t)p0
(5)

where p0 and q0 are the initial values of p and q = 1 − p. This result makes it easy to figure out
how long it would take for selection to raise the frequency of an allele from one value to another.
It is an approximation for weak selection, but it works remarkably well for values of s up to about
0.1.

Let us use it to ask about the time required for a selective sweep. Equation 5 is deterministic
and consequently does not inform us about the initial generations, when the advantageous allele is
very rare. Neither does it inform us about the final generations, when the alternate allele is rare.
Those dynamics are stochastic and are not captured by our deterministic model. We therefore
ignore the beginning and end of the selective sweep and ask how long it takes for the advantageous
allele to increase from 1% to 99%. For this case, Eqn. 5 becomes t ≈ 18/s.

Result 11 It takes roughly 18/s generations for an advantageous allele to increase in frequency
from 0.01 to 0.99, if there is no dominance.

For example, in Fig. 3, s = 1/100, so the selective sweep lasts about 1800 generations. If generations
are 25 years in length, this corresponds to about 45 thousand years. If there is dominance, the time
required for a selective sweep is longer [2, p. 193; 1, Box 3.2].

?EXERCISE 6 How many generations are required for selection to increase the frequency of an allele
from 1% to 99%, if the coefficient of selection is s = 0.001, and there is no dominance?

?EXERCISE 7 Repeat exercise 6, but this time figure out the time required for the allele to increase
in frequency from 25% to 75%.

7 Summary

This note introduces the conventional algebraic model of natural selection. Equilibria occur where
∆p = 0. There are always equilibria at p = 0 and p = 1. There may also be an intermediate
equilibrium at which 0 < p < 1. Stable equilibria occur at peaks in the graph of mean fitness
against p.

When the heterozygote has intermediate fitness, selection favors the allele whose homozygote
has the higher fitness. A rare allele will spread if the fitness of its heterozygote is higher than
that of the common homozygote. When the heterozygote’s fitness is higher than that of either
homozygote, the system evolves toward a stable equilibrium at which p is greater than zero but less
than unity. When the heterozygote has lowest fitness, the system evolves away from an unstable
intermediate equilibrium and toward either p = 0 and p = 1.

When gene effects are additive, the selective sweep of an advantageous allele takes roughly 18/s
generations.
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A The slope of the straight line in Fig. 3

In sec. 6, we assumed that genotypes A1A1, A1A2, and A2A2 had relative fitnesses w11 = 1 + s,
w12 = 1 + s/2, and w22 = 1. With these definitions, Eqn. 2 becomes ∆p = pqs/2w̄, which is
approximately pqs/2 if selection is weak. Under weak selection, the change in each generation will
be small, and we can treat p as a continuous function of time, and ∆p as a derivative:

dp/dt = pqs/2

As we saw above in Fig. 3, the time path is much simpler if we transform p into

x = log
p

q
= log p− log q

where q = 1 − p. The derivative of x is

dx/dt =
1

p

dp

dt
+

1

q

dp

dt
=

pqs

2

(
1

p
+

1

q

)
=

pqs

2

(
q

pq
+

p

pq

)
= s/2

Because s is a constant, this result says that the graph of x against t is a straight line with slope
s/2.

B Answers to Exercises

?EXERCISE 1 The population contains NP11 individuals of genotype A1A1 and NP12 of genotype
A1A2. Each of the former carries two copies of A1 and each of the latter carries one copy. The
total number of copies of A1 is thus 2NP11 + NP12. Dividing by 2N (the total number of genes)
gives the relative frequency of A1 within the population: p = P11 + 1

2P12.
?EXERCISE 2

∆p =
p2w11 + pqw12

w̄
− p

=
p2w11 + pqw12 − p3w11 − 2p2qw12 − pq2w22

w̄

=
p2qw11 + pq(q − p)w12 − pq2w22

w̄

=
pq

w̄
[pw11 + (q − p)w12 − qw22]

=
pq

w̄
[p(w11 − w12) + q(w12 − w22)]

?EXERCISE 3 The calculation is very simple:

w1 − w2 = pw11 + qw12 − qw22 − pw12

= p(w11 − w12) + q(w12 − w22)
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?EXERCISE 4 Mean fitness is

w̄ = p2w11 + 2pqw12 + q2w22

= p2w11 + 2(p− p2)w12 + (1 − 2p + p2)w22

Taking the derivative,

dw̄

dp
= 2pw11 + (2 − 4p)w12 + (−2 + 2p)w22

1

2

dw̄

dp
= pw11 + (1 − 2p)w12 − (1 − p)w22

= pw11 + (q − p)w12 − qw22

= p(w11 − w12) + q(w12 − w22)

which equals the quantity in square brackets in Eqn. 2.
?EXERCISE 5 There are unstable equilibria at 0 and 1, and a stable equilibrium at 3/4.
?EXERCISE 6 18,380 generations
?EXERCISE 7 4394 generations
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