Using Genetic Data to Build Intuition about Population History

Alan R. Rogers

April 4, 2024

Notation

 $xy \succ yn$ will mean that xy is more common than yn. $xy \sim yn$ will mean that the two are about equal in frequency.

1/15

Calling ancestral alleles

When one allele is present in the outgroup, but two are present in the ingroup, the outgroup allele is likely to be ancestral.

Observed site pattern frequencies

X is Africa; Y, Europe; N, Neanderthal, D, Denisovan.

"Dots" in circles are 95% confidence intervals.

 $x \succ y$

 $d \succ$ all other singletons.

xy, nd > other doubletons.

 $xy \succ nd$

 $yn \succ$ other rare doubletons; $xyn \succ$ other tripletons

3 / 15

Why are xy, nd > other doubletons?

(X,Y) and (N,D) are pairs of closely related populations. Close relatives share ancestors, and mutations in these ancestors generate xy and nd.

Why is xy > nd?

Either N and D split earlier than X and Y, or ND was larger than XY.

5 / 15

6 / 15

,

4 / 1

Where do counterintuitive site patterns come from?

Pattern xy

X Y N
1 1 0

It's easy to understand where xy comes from.

But why do xn and yn exist?

One answer is incomplete lineage sorting...

Incomplete lineage sorting

7/15

Two puzzles

Incomplete lineage sorting predicts that $yn \sim xn$, and $yd \sim xd$.

It's true that $yd \sim xd$.

However, yn > xn: why?

Also, $x \succ y$: why?

$N \rightarrow Y$ admixture inflates yn and x

9/15

Evidence for Neanderthal admixture into Eurasians

 $yn \succ xn \text{ and } x \succ y$

This suggest admixture from Neanderthals into Eurasians.

Another puzzle

Note that $d \succ$ other singletons and that $xyn \succ$ other tripletons.

Why should this be?

11/15

$S \rightarrow D$ gene flow inflates d and xyn

Observed site pattern frequencies

High frequencies of d and xyn suggest $S \rightarrow D$ admixture.

13/15

Conclusions

We have used no formal model; we have tested no hypotheses. All we've done is to look at the data. Yet this informal analysis has been productive. It suggests

- 1. modern Europeans and Africans are closely related,
- 2. so were Neanderthals and Denisovans,
- 3. the separation between Europeans and Africans was more recent than that between Neanderthals and Denisovans,
- 4. Neanderthals contributed DNA to Europeans, and
- 5. superarchaics contributed DNA to Denisovans.

15 / 15