Controlling the flow of program execution
One of Python's innovations is to use
indentation:
to mark program blocks.
Other languages use curly braces

{

bunch of code ...

}

or keywords
BEGIN
.. bunch of code ..
END

Guido van Rossum
and DON'T CARE about indentation. '@nched Pythonin1589.

Biol 5221, 6 February 2024

This fussy dependence on hierarchical
formatting is almost unique to computer
programming languages.

It makes them "brittle”. (Code is easily
"broken” by teeny-weenie flaws.)

Natural human languages have nothing like
this, whether spoken, or in writing. We get
away with "Well, you know what I mean!”

So it's a trap for beginners. (Don't worryl)

Example #1: the for-loop

In Python, it steps through a list - any list!

nums = [1, 2, 3, 4, 5, 6]

factorial =1
for x in nums:
factorial = factorial * x
print ("3%d! = %d" % (x,factorial))

= RESTART: C:/Users/Jon/Desktop

1! =1
2! = 2
3! =6
4! = 24
5! = 120
6! = 720

>>>

A more "Pythonic” translation ...

nums = range(1l,7)
factorial =1
for x in nums:
factorial *= x
print ("%d! = %d" % (x,factorial))

= RESTART: C:/Users/Jon/Desktop
1' =1

2! = 2
3! =6
4! = 24
5! = 120
6! = 720

>>>

Example #2: functions

def var(x_vector):
sum x = float(sum(x vector))
mean x = sum x/float(len(x vector))

sum dev _sq = 0.0
for x in x vector:

sum dev_sq += (X - mean Xx)**2
variance = sum_dev_sq/float(len(x_vector))

return variance

nums = [1,2,3,4,5,6]

print("variance of nums[] = %.1f" % (var(nums)))

= RESTART: C:/Users/Jon/Desktop
variance of nums|[] = 2.9

Or better, use the simpler way to calculate var()

def wvar2 (xvec) :
m =msq = 0.0
for x in xvec:
m += X
msq += x*x

n = len(xvec)
m /= n

msq /= n

return msq - m*m # E(x**2) - [E(x)]**2

print (“easier variance of nums/|[] $.1f" % (var2 (nums)))

= RESTART: C:/Users/Jon/Desktop
easier variance of nums|[] = 2.9

from random import random

line number

define a function to return the wvariance of values in xvec

def var (xvec) :

m =msq = 0.0

for x in xvec: Example #3: LOOPS Wi’rhiﬂ IOOPS!

m += x
msq += x*x
n = float(len(xvec))

m /=n # mean

msq /= n # mean square

return (msq - m*m) # variance
w = [3246, 3449, 2897, 2841, 3635, 3932] # counts from white die
r = [3407, 3631, 3176, 2916, 3448, 3422] # counts from red die

Vw = var (w)
Vr = var(r)

print ("Var (white):", Vw)
print ("Var (red) :", Vr)
nreps = 10

for rep in xrange (nreps):
count = [0,0,0,0,0,0]

for roll in range(20000):
spots = int(6.0*random())

count[spots] +=1

v = var (count)

3H = = H

adjust this to do more replicates
outer loop: replicates of expt.
count[i] accumulates the numbers of

rolls that showed i+l spots
inner loop: rolls of the die
uniform on [0,1,2,3,4,5] £n(fn())
accumulate spot numbers

and here's our function call

print ("Replicate # %d: var=%f" % (rep, Vv)) # REMOVE ME later

M 3= 3 g I o3 3 N

FH 3 = HH R H 3= H H X

H=

©OoNdooug b Ww

10
11
12

14
15

17
18
19
20

22
23
24
25
26
27
28

30

32

A different way to

S 1 —
— —
S °l——
o £
O '~ .
s 3
X
X
>
* ¥
XX ¥
XXXXXX
XXRRRNRNN
XXREXRRREXRX
XXXRRRRNNNRRRNR

XXRRRRRRERRRRERRNN

XERRRRRERRRRRRRRRNRRRRX
I Y
EREXERRRRRRRRRERRRRRRRRRRRRRRRRRNR
REXERRRERRERRERRERRRRR RN RN ERRRRRRRNR
XEERERRRERRRRRRRRRRRRRNRRRRRRRRRRNRRRRRNRRRX
B Ty Y Y
B L Ly I I I IR
L Ty L L L s
XERRRREERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXRN
EXERRRRERERNERERNERERNNRRRRNRRRRNRRRRNY
XXERRRRERRRRRERRRRRERRNRRRRRRRRRNN
XERXXRRRRRRRRRRRRRRRRNRRRRNN
XERRRRRRRRRRRERRRNRERRRNEN
XERRRRRERRRREERRRRRRX

X FRRRRRRRRRRRRRRRY
o FERRERRRRERY
lo.m 7, ml |m XORR R RRRF
co dm a Q a\). XRXXF
.—m:wb 3 |a|a XXX
.mw.mu £ 0O = € ¥ ¥
a4+ 30 E¢T .
0 = — S A
£ O += ‘D
+ S c > :
237 .= .
£*S§ 139
)
= 4= 0 o
Eocown ©Y°

0009
S - OTSE
O 4 - 00S€
- 8 - 067¢€
- OT - 087%¢€
- 6 - 0OLvE
. - 097¢
S - 0S7vE
- 09 - 0OvvE
- 8 - 0EVE
- 60T - 0¢2v¢t
- 8ET - OTPE
- GLT - oovE
- LTZ - O06¢EE
- €8¢ - o08teg
« BEE + QOLEE
= TLE =+ Q09EE
¢ 9tV : 0Stt
- 0vP - OvEE
- 6y - Otte
* 6V - OCEE
- TEr ¢ OTEE
- I8 - oOo0¢t€
- TPE - 062¢
- 8LZ - 08¢t
- T6Z2 - oLZE
- LOC - 09¢¢t
- 99T - 069¢¢t
- 80T - O¥ce
- €6 - 0€ce
S 4" - 0¢ce
¢ LE - 0TcE
- §¢ - 00¢c¢e
« €T - 06T¢
“ 9 - 08T€E
s & - OLTE
& F - 09T¢
¢ - 0STE

Wolf counts distribution.py

from random import random

NO NEED FOR VARIANCE CALCULAION

w = [3246, 3449, 2897, 2841, 3635, 393
r = [3407, 3631, 3176, 2916, 3448, 342
nreps = 1000

counts = [0 for i in range(5000)

for rep in xrange (nreps) :
count = [0,0,0,0,0,0]

for roll in range(20000) :
spots int(6.0*random())
count[spots] += 1

3H H = H H H

for x in range(6):
counts|[count[x]] += 1

AT THE END, PRINT EACH OBSERVED COUNT NUMBER, AND THE NUMBER OF TIMES IT WAS SEEN

for j in range(2000,4000):
if counts[j] > O:
print ("%4d

(Later turn this into a histogram)

2]
2]

counts from white die
counts from red die

outer loop: replicates of expt.
count[i] accumulates the numbers of

rolls that showed i+l spots
inner loop: rolls of the die
uniform on [0,1,2,3,4,5] £fn(fn())
accumulate spot numbers

%$4d" % (j,counts[j]))

OR, keep track of the largest variances seen for your
white and red dice (over all reps).

How?

Initialize a "max_var" memory variable for each.
max_V_w =max_V_r =0
Then (in the right place in your program):

if Vw>max_V_w:
max_V_w=Vw

..and so on. Then report them at the very end.

MORAL: There are usually many ways to solve a problem!

