
Controlling the flow of program execution
One of Python’s innovations is to use

indentation:

to mark program blocks.

Other languages use curly braces

{

… bunch of code …

}

or keywords

BEGIN

… bunch of code …

END

and DON’T CARE about indentation.

Guido van Rossum
launched Python in 1989.

Biol 5221, 6 February 2024

This fussy dependence on hierarchical
formatting is almost unique to computer
programming languages.

It makes them “brittle”. (Code is easily
“broken” by teeny-weenie flaws.)

Natural human languages have nothing like
this, whether spoken, or in writing. We get
away with “Well, you know what I mean!”

So it’s a trap for beginners. (Don’t worry!)

Example #1: the for-loop

In Python, it steps through a list – any list!

nums = [1, 2, 3, 4, 5, 6]

factorial = 1

for x in nums:

factorial = factorial * x

print("%d! = %d" % (x,factorial))

= RESTART: C:/Users/Jon/Desktop

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

>>>

A more “Pythonic” translation …

nums = range(1,7)

factorial = 1

for x in nums:

factorial *= x

print("%d! = %d" % (x,factorial))

= RESTART: C:/Users/Jon/Desktop

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

>>>

Example #2: functions

def var(x_vector):

sum_x = float(sum(x_vector))

mean_x = sum_x/float(len(x_vector))

sum_dev_sq = 0.0

for x in x_vector:

sum_dev_sq += (x - mean_x)**2

variance = sum_dev_sq/float(len(x_vector))

return variance

nums = [1,2,3,4,5,6]

Or, nums = range(1,7)

print("variance of nums[] = %.1f" % (var(nums)))

= RESTART: C:/Users/Jon/Desktop

variance of nums[] = 2.9

Or better, use the simpler way to calculate var()

def var2(xvec):

m = msq = 0.0

for x in xvec:

m += x

msq += x*x

n = len(xvec)

m /= n

msq /= n

return msq - m*m # E(x**2) – [E(x)]**2

print(“easier variance of nums[] = %.1f" % (var2(nums)))

= RESTART: C:/Users/Jon/Desktop

easier variance of nums[] = 2.9

from random import random # line number 1

define a function to return the variance of values in xvec # 3

def var(xvec): # 4

m = msq = 0.0 # 5

for x in xvec: # 6

m += x # 7

msq += x*x # 8

n = float(len(xvec)) # 9

m /= n # mean # 10

msq /= n # mean square # 11

return (msq - m*m) # variance # 12

w = [3246, 3449, 2897, 2841, 3635, 3932] # counts from white die # 14

r = [3407, 3631, 3176, 2916, 3448, 3422] # counts from red die # 15

Vw = var(w) # 17

Vr = var(r) # 18

print("Var(white):", Vw) # 19

print("Var(red) :", Vr) # 20

nreps = 10 # adjust this to do more replicates # 22

for rep in xrange(nreps): # outer loop: replicates of expt. # 23

count = [0,0,0,0,0,0] # count[i] accumulates the numbers of # 24

rolls that showed i+1 spots # 25

for roll in range(20000): # inner loop: rolls of the die # 26

spots = int(6.0*random()) # uniform on [0,1,2,3,4,5] fn(fn()) # 27

count[spots] += 1 # accumulate spot numbers # 28

v = var(count) # and here's our function call # 30

print("Replicate # %d: var=%f" % (rep, v)) # REMOVE ME later # 32

Example #3: Loops within loops!

Distribution of

A different way to
make the point: look
at the distribution
of count numbers
seen in 1000 reps

(It’s ~binomial and
roughly normal.)

So 6000
counts
in all

Wolf_counts_distribution.py

from random import random

NO NEED FOR VARIANCE CALCULAION

w = [3246, 3449, 2897, 2841, 3635, 3932] # counts from white die

r = [3407, 3631, 3176, 2916, 3448, 3422] # counts from red die

nreps = 1000

counts = [0 for i in range(5000)

for rep in xrange(nreps): # outer loop: replicates of expt.

count = [0,0,0,0,0,0] # count[i] accumulates the numbers of

rolls that showed i+1 spots

for roll in range(20000): # inner loop: rolls of the die

spots = int(6.0*random()) # uniform on [0,1,2,3,4,5] fn(fn())

count[spots] += 1 # accumulate spot numbers

for x in range(6):

counts[count[x]] += 1

AT THE END, PRINT EACH OBSERVED COUNT NUMBER, AND THE NUMBER OF TIMES IT WAS SEEN

for j in range(2000,4000):

if counts[j] > 0:

print("%4d : %4d" % (j,counts[j]))

(Later turn this into a histogram)

OR, keep track of the largest variances seen for your
white and red dice (over all reps).

How?

Initialize a “max_var” memory variable for each.

max_V_w = max_V_r = 0

Then (in the right place in your program):

if Vw > max_V_w:
max_V_w = Vw

… and so on. Then report them at the very end.

MORAL: There are usually many ways to solve a problem!

