

	Kerrich's urn experiment: model versus data
First Second ball ball Event Prob 1/3 black BB 1/6 black 2/3 white BW 1/3 1/2 2/3 black WB 1/3 white 1/3 white WW 1/6 Tree diagram for urn model	$\begin{array}{c c} & & Observed \\ \hline Theoretical & relative \\ \hline Event & probability & frequency \\ \hline BB & 0.167 & 0.151 \\ BW & 0.333 & 0.338 \\ WB & 0.333 & 0.338 \\ WW & 0.167 & 0.173 \\ \hline \end{array}$ Theory and observation are not identical, but they are close.
Why do we multiply along branches?	 Conditional probability What is the conditional probability that the 2nd ball is white given that the first was black? 2/3. Called a <i>conditional probability</i> and written Pr[2nd ball white 1st one black]. " " is pronounced "given."
Conditional relative frequencies	
First Second ball	The results of 20,000 throws with two dice (Wolf 1850, cited in Bulmer 1967)

First	Secor		
ball	Black	sum	
Black	756	1689	2445
White	1688	867	2555
sum	2444	2556	5000

- On trials where the 1st ball was black, how often was the 2nd white?
- \blacktriangleright A fraction 1689/2445 of the time, or $\approx 0.69.$

This is a conditional relative frequency. If the number of trials is large, this approximates a conditional probability.

			Wł	nite				
Black	1	2	3	4	5	6	\sum	f
1	547	587	500	462	621	690	3407	.170
2	609	655	497	535	651	684	3631	.182
3	514	540	468	438	587	629	3176	.159
4	462	507	414	413	509	611	2916	.146
5	551	562	499	506	658	672	3448	.172
6	563	598	519	487	609	646	3422	.171
\sum :	3246	3449	2897	2841	3635	3932	20000	1.000
f:	.162	.172	.145	.142	.182	.197	1.000	

- ▶ What is the conditional frequency of *W*6 given *B*2?
- ▶ 684/3631 ≈ 0.188

Product rule for relative frequencies	Product rule
How often did Kerrich get B1 and W2? First Second ball ball Black White sum Black 756 1689 2445 White 1688 867 2555 sum 2444 2556 5000 A fraction 1689/5000 of the time. $\frac{1689}{5000} = \frac{1689}{2445} \times \frac{2445}{5000}$ $\frac{f(B1 \& W2)}{1689} = \frac{f(W2 B1)}{2545} \times \frac{f(B1)}{5000}$ As N increases, relative frequencies (f) become probabilities.	The probability of A and B is Pr[A & B] = Pr[B A] Pr[A] This is why we multiply along the branches of a tree diagram.
Statistical independence: sampling w/ replacement	Sampling with replacement: model versus data
FirstSecondballballEventProb1/2blackBB1/41/21/2whiteBW1/41/21/2blackWB1/41/21/2whiteWW1/41/2white1/2white1/41/21/2blackWB1/4Pr[W_2 B_1] = Pr[W_2 W_1] = Pr[W_2] = 1/21/21/2	$\begin{array}{c c} & & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$
Sum rule: Pr[black 4 or white 5 (or both)]	Sum rule for probabilities
$\frac{\text{Black}}{1} \frac{1}{2} \frac{2}{3} \frac{4}{4} \frac{5}{5} \frac{6}{6} \frac{5}{5}}{1}$ $\frac{1}{547} \frac{587}{587} \frac{500}{500} \frac{462}{462} \frac{621}{690} \frac{690}{3407}$ $\frac{2}{2} \frac{609}{6055} \frac{655}{497} \frac{497}{535} \frac{551}{651} \frac{684}{684} \frac{3631}{3631}$ $\frac{3}{3} \frac{514}{540} \frac{468}{488} \frac{438}{587} \frac{509}{611} \frac{611}{2916}$ $\frac{4}{5} \frac{462}{551} \frac{562}{5499} \frac{499}{506} \frac{558}{658} \frac{672}{672} \frac{3448}{648}$ $\frac{6}{563} \frac{598}{598} \frac{519}{519} \frac{487}{609} \frac{609}{666} \frac{642}{3422}$ $\frac{5}{2} \frac{3246}{3449} \frac{3449}{2897} \frac{2841}{2841} \frac{3635}{3635} \frac{3932}{20000}$ Relative frequency is the sum of the bold-face values divided by 20,000. $f[b4 \text{ or } w5] = \frac{f[b4]}{2916} + \frac{f[w5]}{20000} - \frac{f[b4 \& w5]}{20000}$	$\Pr[A \text{ or } B] = \Pr[A] + \Pr[B] - \Pr[A \& B]$

Sum rule again: Pr[white 3 or white 5]

For mutually exclusive events, there is nothing to subtract.

			Wł	nite			
Black	1	2	3	4	5	6	Σ
1	547	587	500	462	621	690	3407
2	609	655	497	535	651	684	3631
3	514	540	468	438	587	629	3176
4	462	507	414	413	509	611	2916
5	551	562	499	506	658	672	3448
6	563	598	519	487	609	646	3422
\sum :	3246	3449	2897	2841	3635	3932	20000

What is rel. frq. of white 3 or white 5?

$$f[w4 \text{ or } w5] = \underbrace{\frac{f[w4]}{2897}}_{20000} + \underbrace{\frac{f[w5]}{3635}}_{20000}$$

Bayes's rule in terms of counts

What fraction of those who test positive are really sick?

$$\frac{99}{99+999} \approx 0.09$$
 Fewer than 1 in 10!

Back to example

$$\Pr[A|B] = \frac{\Pr[A]\Pr[B|A]}{\Pr[B]}$$
 (Bayes's rule)

A: patient is sick. Pr[A] = 1/1000.

B: patient tested positive. $\Pr[B] = (999 + 99) / 100000 = 1098 / 100000.$

 $\Pr[\text{testing positive if sick}] \text{ is } \Pr[B|A] = 99/100.$

Using Bayes's rule,

$$\Pr[A|B] = \frac{1/1000 \times 99/100}{1098/100000} = \frac{99}{1098} \approx 0.09$$

This is the same answer we got using counts.

Bayes's rule

Problem: Our emphasis has been on the probability of an outcome given a hypothesis. But we often want to know the probability of the hypothesis, given the outcome.

Example: The probability the patient is sick given a positive result on some test.

Suppose that 0.1% of people have some disease. When tested for the disease 99% of sick people test positive, but so do 1% of well people. What fraction of those with positive results are really sick?

Bayes's rule in terms of probabilities

Recall the multiplication law:

$$\Pr[A\&B] = \Pr[B]\Pr[A|B] = \Pr[A]\Pr[B|A]$$

Divide through by Pr[*B*]:

$$\Pr[A|B] = rac{\Pr[A]\Pr[B|A]}{\Pr[B]}$$
 (Bayes's rule)

Allows us to calculate $\Pr[A|B]$ from $\Pr[B|A]$.

Summary

Sum rule

$$\Pr[A \text{ or } B] = \Pr[A] + \Pr[B] - \Pr[A \& B]$$

Product rule

$$\Pr[A \& B] = \Pr[A] \Pr[B|A]$$

$$\Pr[A|B] = \frac{\Pr[A]\Pr[B|A]}{\Pr[B]}$$

Measures of variation

Calculating the variance (v)

- range of data
- interquartile range: range of middle half of data
- variance: average of $(x m)^2$, where *m* is the mean
- square root of variance: the standard deviation

In population genetics, the variance is most useful.

$$v = \sum_{x} (x - m)^2 f_x$$

where m is the mean, x is a sample value, and $f_{\! X}$ is the relative frequency of that value.

What are the mean and variance of this data set: [3, 2, 2]?

Calculations

Frequency distribution: Relative $\frac{Value frequency}{2} \frac{2/3}{2/3}$ Mean: $m = 2 \times \frac{2}{3} + 3 \times \frac{1}{3}$ $= 7/3 \approx 2.33$ Variance: $V = (2 - 2.33)^2 \times \frac{2}{3}$ $= 0.22$	 These ideas work not only for relative frequencies but also for probabilities. Frequency distributions become probability distributions. Means become expected values. Nothing else changes.
 Probability distribution Assigns a probability to every event. When events have numeric values, the probability distribution translates one number (the event) into another (the probability). A set of events with associated probabilities is a <i>random variable</i> (r.v.). Distributions of numerical r.v.s are often described using mathematical functions. 	A random variable is a variable whose values occur with particular probabilities. (We would need to modify this slightly for variables that vary along a continuum, such as height or weight. But I'm going to ignore that distinction here.)

Example 1: a fair coin	Problem
Suppose that X (a random variable) is the number of heads in one toss of a fair coin. The probability distribution of X is $ \frac{X (\rho_X)}{0 1/2} $ Probabilities $ Iie between 0 and 1, $ sum to 1.	In the previous slide, X was the number (either 0 or 1) of heads in one toss of a fair coin. What is the probability distribution of $Y = X^2$?
Example 2: a loaded die	The mean (or expectation) of a random variable
Let X be the number obtained on a roll of the die. This die is "loaded," so that 1s and 2s are twice as probable as other values. $ \frac{X (p_X)}{1 0.250} $ 2 0.250 3 0.125 4 0.125 5 0.125 <u>6 0.125</u> <u>1.0000</u>	The mean of X is written $E(X)$ and equals $E(X) = \sum_{i} p_{i}x_{i}$ where x_{i} is the <i>i</i> th value that X can take, and p_{i} is its probability. If X is the number obtained on a roll of our loaded die, then $E[X] = 1 \times 0.25 + 2 \times 0.25 + 3 \times 0.125$ $+ 4 \times 0.125 + 5 \times 0.125 + 6 \times 0.125$ $= 3$ The same as an average, except that p_{i} is a probability rather than a relative frequency.
Allele frequency as expectation $\begin{array}{ccc} Cond. \\ G'type allele \\ \hline \frac{G'type freq freq}{A_1A_1 P_{11} 1} \\ A_1A_2 P_{12} 0.5 \\ A_2A_2 P_{22} 0\end{array}$ Allele frequency $p_1 = 1 \times P_{11} \\ + 0.5 \times P_{12} \\ + 0 \times P_{22}\end{array}$	The variance If μ is the mean of X, then its variance is $V[X] = E[(X - \mu)^2] \qquad (1)$ For our loaded die, the mean was $\mu = 3$. The variance is $V[X] = (1 - 3)^2 \times 0.25 + (2 - 3)^2 \times 0.25 + (3 - 3)^2 \times 0.125 + (4 - 3)^2 \times 0.125 + (4 - 3)^2 \times 0.125 + (5 - 3)^2 \times 0.125 + (6 - 3)^2 \times 0.125 = 3$
	$+(6-3)^2 \times 0.125$

A single toss of an unfair coin	Properties of expectations
The probability of "heads" is an unknown value p . Your winnings: $X = 1$ for heads and $X = 0$ for tails. What's the probability distribution of X ? The mean? The variance?	If X and Y are random variables and a is a constant, $E[a] = a \qquad (2)$ $E[aX] = aE[X] \qquad (3)$ $E[X + Y] = E[X] + E[Y] \qquad (4)$ See JEPr for details.
Using rules of expectations to re-express the variance	Variance of our loaded die
Let $\mu = E[X]$. The variance of X is $V = E[(X - \mu)^{2}] \qquad (by \text{ Eqn. 1})$ $= E[X^{2} - 2\mu X + \mu^{2}]$ $= E[X^{2}] - E[2\mu X] + E[\mu^{2}] \qquad (by \text{ Eqn. 4})$ $= E[X^{2}] - E[2\mu X] + \mu^{2} \qquad (by \text{ Eqn. 2})$ $= E[X^{2}] - 2\mu E[X] + \mu^{2} \qquad (by \text{ Eqn. 3})$ $= E[X^{2}] - 2\mu^{2} + \mu^{2} \qquad (by \text{ definition of } \mu)$ $= E[X^{2}] - \mu^{2} \qquad (5)$	A moment ago, we found for our loaded die that E[X] = V[X] = 3. Let us recalculate this using Eqn. 5. We need $E[X^2] = 1^2 \times 0.25 + 2^2 \times 0.25$ $+ 3^2 \times 0.125 + 4^2 \times 0.125$ $+ 5^2 \times 0.125 + 6^2 \times 0.125$ = 12 $V = E[X^2] - \mu^2 = 12 - 3^2 = 3$
Association between variables	Covariance: a measure of association
Weak positive relationship Y X X X X X X Positive and negative relationships between variables.	$C(X, Y) = \sum_{x,y} (x - E[X])(y - E[Y])P_{x,y}$ $= E\left[(X - E[X])(Y - E[Y])\right]$ $= E[XY] - E[X]E[Y]$ When X and Y are independent, $C(X, Y) = 0$.

A bivariate probability distributionNumerical value of covariance in previous slide $\frac{X \to \frac{Y}{PA_{X}} \cdot (X - E[X]](Y - E[Y])}{0 + 1 + 0.25}$ $\frac{1}{1 + 0.4} + 0.25$ Note: the F_{XY} column isst the probabilities of the $(X, Y) = 0.4 \times 0.25$ $- 0.1 \times 0.25$ $+ 0.4 \times 0.25$ $= 0.15$ $C(X, Y) = 0.4 \times 0.25$ $- 0.1 \times 0.25$ $+ 0.4 \times 0.25$ $= 0.15$ ProblemIn Kerich's um asperiment, suppose you get \$1 for each ned ball and \$0 for each green one, and KT X and Y represent the dollar provinceive on the no draw submit angle final of the optimizer. $\frac{V = V}{RG} = \frac{1}{13}$ This is exactly like Fig. 2 of JEPr, which presents the following probability distributions: $\frac{V = V(X, Y)}{RG} = \frac{1}{13}$ Problem $\frac{V = V(X, Y)}{V}$ $\frac{V = V(X, Y)}{V}$ $\frac{V = V(X, Y)}{V}$ Probability Distributions $\frac{V = V(X, Y)}{V}$ $\frac{V = V(X, Y)}{V}$ Probability Distributions $\frac{X - Y = V(X, Y)}{V}$ $\frac{V = V(X, Y)}{V}$ Aton R. Regers January 16, 2024Aprobability distribution is a function. Input event V when event are numbers, distributions can be expressed as antibinatical functions.		
In Kerrich's urn experiment, suppose you get \$1 for each red ball and \$0 for each green one, and let X and Y represent the dollars you receive on the two draws within a single trial of the experiment. Write down the probability distribution of X and Y in tabular form. Your table should have columns for X, for Y, and for the joint probability of X and Y, i.e. $\Pr[X, Y]$. $\mathbb{E} \frac{\operatorname{Vent}}{\operatorname{RG}} \frac{\operatorname{Probability}}{\operatorname{RG}} \frac{1/3}{\operatorname{GG}}$ where "R" and "G" stand for "red" and "green". Now, "R" becomes "1," "G" becomes "0," and the probability distribution becomes "1," "G" becomes "0," and the probability distribution genese the dollar of the experiment of the expe	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{aligned} C(X,Y) &= 0.4 imes 0.25 \ &- 0.1 imes 0.25 \ &- 0.1 imes 0.25 \ &+ 0.4 imes 0.25 \end{aligned}$
Probability DistributionsA probability distribution is a function.Alan R. RogersInput eventOutput probability of eventSo far we have described probability distributions using tables.When events are numbers, distributions can be expressed as	In Kerrich's urn experiment, suppose you get \$1 for each red ball and \$0 for each green one, and let X and Y represent the dollars you receive on the two draws within a single trial of the experiment. Write down the probability distribution of X and Y in tabular form. Your table should have columns for X , for Y , and for the	probability distribution: $ \frac{Event Prob}{RR 1/6} $ RG $1/3$ GR $1/3$ GG $1/6$ where "R" and "G" stand for "red" and "green". Now, "R" becomes "1," "G" becomes "0," and the probability distribution becomes $ \frac{X Y Pr(X, Y)}{1 1 1/6} $ 1 0 $1/3$ 0 1 $1/3$
	Alan R. Rogers	 A probability distribution is a function. Input event Output probability of event So far we have described probability distributions using tables. When events are numbers, distributions can be expressed as

The Urn Metaphor	Binomial random variable
 Imagine two urns: metaphors for a population in two successive generations. Urn 1 has 50 balls, some red, some white, representing parental gene copies. Urn 2 is empty until urn 1 has "reproduced" as follows: 1. Examine a random ball from urn 1. 2. Put a ball of the same color into urn 2. 3. Replace the ball from urn 1. 4. Repeat until there are 50 balls in urn 2. The number of red balls in urn 2 is likely to differ from that in urn 1, because of random sampling. This metaphor is used as a model of genetic drift. 	 In probability theory, the number of red balls in urn 2 is a <i>binomial random variable</i>. 1. Balls drawn from the urn are statistically independent. 2. Each ball is red with probability <i>p</i>, the fraction of red balls in urn 1. This distribution has two parameters: <i>N</i>, the number of balls put into urn 2, and <i>p</i>, the probability of "red" each time a ball is drawn.
Probability of HT	Probability of HHT
Consider tosses of an unfair coin, for which the probability of "heads" is p and that of "tails" is $q = 1 - p$. Assume that the tosses are statistically independent.	
Experiment Toss a coin 2 times. Result HT Probability <i>pq</i>	Experiment Toss a coin 3 times. Result HHT Probability p ² q
This is an event of form $Pr[A\&B]$, where A is the event that the first toss is H and B is the event that the 2nd is T. By assumption, $Pr[A] = p$ and $Pr[B] = q$. The tosses are statistically independent, so $Pr[A\&B] = pq$	
by the multiplication law of probability.	
Probability of 2 heads in 3 tosses	Binomial distribution
There are 3 ways to get 2 heads in 3 tosses:	The probability of x heads in K tosses is $P_X = \binom{K}{x} p^x q^{K-x}$
$P_2 = 3p^2q$ $= \binom{3}{2}p^2q$	E[X] = pK mean V[X] = Kpq variance
where $\binom{3}{2}$ is pronounced "3 choose 2" and means the number of ways to choose 2 items out of a collection of 3.	

Poisson distribution

Consider the lineage that connects me to an ancestor who lived t generations ago. The expected number of mutations along that lineage is $\lambda = ut$, where u is the mutation rate per generation. The number of mutations is a random variable (r.v.). If the mutation rate is constant, then the distribution of this r.v. is *Poisson*.

Poisson distribution function

If X is a Poisson-distributed r.v. with mean λ , then X takes value x with probability

$$P_x = \frac{\lambda^x e^{-\lambda}}{x!}$$

where e is the base of natural logarithms and x! is "x factorial," or $x \cdot (x-1) \cdot (x-2) \cdots 1$.

Mean equals variance.

$$E[X] = V[X] = \lambda$$

What is P_0 ? (Hint: 0! = 1 and $\lambda^0 = 1$.)

 $P_0 = e^{-\lambda}$

Poisson distribution

Mutation rates at autosomal nucleotide sites are roughly 10^{-9} per year. Consider a nucleotide in you. If you could trace its ancestry back across the last 10^9 years, what is the probability that you would find no mutations?

The expected number of mutations is $\lambda = ut$, where $u = 10^{-9}$ and $t = 10^{9}$. Thus, $\lambda = 1$. The probability of no mutations is

 $e^{-1} \approx 0.37$

Raisin data

```
Date: Sept 6, 2013

N=32, Mean=20.375000, Var=15.080645, Max=34

1- 3: *

4- 6: *

7- 9: *

10-12: *

13-15: --*

16-18: ------ *

19-21: ------ *

22-24: ----- *

25-27: --*-

28-30: *

31-33: *

Key: ---- Poisson distribution w/ mean 20.375000

* Data
```

Raisin data

```
Date: Aug 28, 2009

N=41, Mean=21.756098, Var=26.239024, Max=33

1- 3: *

4- 6: *

7- 9: *

10-12: -*

13-15: --*

16-18: -----*

19-21: ------ *

22-24: ------ *

25-27: ----- *

28-30: --- *

31-33: *

Key: ---- Poisson distribution w/ mean 21.756098

* Data
```

Raisin data	Homework problem 1.41
Date: Sept 6, 2017 N=36, Mean=14.111111, Var=13.473016, Max=21 1- 3: * 4- 6: * 7- 9: * 10-12:* 13-15:* 16-18: * 19-21: * Key: Poisson distribution w/ mean 14.111111 * Data	Imagine an urn with N balls, of which 1 is red and the rest are black. You draw 2 balls from the urn at random <i>without</i> replacement. Let $X = 1$ if the first ball is red and $X = 0$ otherwise. Define Y similarly for the second ball. What is the covariance of X and Y ?
Probability tree & distribution of (X, Y)	<i>E</i> [<i>X</i>]
First Second ball ball XY Prob 0 R 11 0 1/N T G 10 $1/N(N-1)/N$ $1/(N-1)$ R 01 $1/N(N-2)/(N-1)$ G $00(N-2)/NGoal: calculate C(X, Y) = E[XY] - E[X]E[Y]$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$E[Y]$ $\frac{X Y Pr}{1 1 0} E[Y] = 1 \times 0$ $+ 0 \times 1/N$ $+ 1 \times 1/N$ $+ 0 \times (N-2)/N$ $= 1/N$	$E[XY]$ $\frac{X Y XY Pr}{1 1 1 1 0} E[XY] = 1 \times 0$ $1 0 0 1/N + 0 \times (\text{the rest})$ $0 1 0 1/N = 0$ Covariance of X and Y: $E[XY] - E[X]E[Y] = -1/N^2$