The Neutral Theory of Molecular Evolution

How genes evolve under the influence of mutation and drift ...
... even where there's no selection.

1. Observation: DNA and amino-acid sequences evolve at roughly constant rates.
2. Model: The "neutral theory" explains why this might be expected.
3. Application: "Molecular clocks" estimate mutation rates and times of splitting.

The human mitochondrial genome

ATPase subunit 6

Structurally identical in almost all mammals.

Tiny remnant of a formerly freeliving bacterium that became an endosymbiont ... then an organelle!

The human reference genome is 16,569 base pairs long.

Same genes as in all animals:
13 protein-coding genes 22 tRNA genes
2 ribosomal RNA genes
Most are encoded on the "heavy" (H) strand (clockwise).

ND6 and some tRNAs are encoded on the "light" (L) strand (counter-clockwise).

No introns, transposons, or "junk".
Highly A/T biased.
Mutation rate $\sim 10 x$ higher than that of the nuclear chromosomes.

Our mt genome can easily be aligned with those of other primates.

 At most nucleotide positions ("sites"), everyone has the same nucleotide state. But some sites are variable.At these variable sites, some patterns are more common than others. Here are the first 180 bp of the $\sim 16.5 \mathrm{~kb}$ alignment for some famous hominoids.
modern GTTTATGTAGCTTACCTCCTCAAAGCAATACACTGAAAATGTTTAGACGGGCTCACATCA Neander. GTTTATGTAGCTTACCTCCTCAAAGCAATACACTGAAAATGTTTAGACGGGCTCACATCA chimp GTTTATGTAGCTTACCCCCTCAAAGCAATACACTGAAAATGTTTCGACGGGTTTACATCA gorilla GTTTATGTAGCTTACCTCCCCAAAGCAATACACTGAAAATGTTTCGACGGGCTCACATCA

modern CCCCATAAACAAATAGGTTTGGTCCTAGCCTTTCTATTAGCTCTTAGTAAGATTACACAT Neander. chimp gorilla ССССАТАААСАААТАGGTTTGGTCCTAGCCTTTCTATTAGCTCTTAGTAAGATTACACAT ССССАТАААСААА ССССАТАААСАААТАGGTTTGGTCCTAGCCTTTCTATTAACTCTTAGTAGGATTACACAT

modern GCAAGCATCCCCGTTCCAGTGAGTTCACCCTCTAAATCACCACGATCAAAAGGAACAAGC
Neander. GCAAGCATCCCCATTCCAGTGAGTTCACCCTCTAAATC CCACGATCAAAAGGGACAAGC
chimp GCAAGCATCCCCGCCCC-GTGAGT-CACCCTCTAAATCGCCATGATCAAAAGGACAAGT
gorilla GCAAGCATCCCCGCCCCAGTGAGT-CACCCTCTAAATCACCACGATCAAAAGGACAAGC

Of those 180 positions, only 16 vary among the species.

modern	T	T	A	C	C	T	G	A	G	T	T	A	T	A	A	C
Neanderthal	T	T	A	C	C	T	G	A	A	T	T	A	T	A	G	C
chimp	C	T	C	T	T	C	G	A	G	C	C	-	-	G	A	T
gorilla	T	C	C	C	C	T	A	G	G	C	C	A	-	A	A	C

164/180 (91\%) do not vary, implying they have not evolved since the last common ancestor of all four hominoids.

Pairwise Differences	m	N	c	g
modern	-	2	11	7
Neanderthal	2	-	13	9
chimp	11	13	-	10
gorilla	7	9	10	-

How did these differences accumulate?

The evolutionary relationships of the four species can be inferred securely from the matrix of pairwise differences for all 16.5 kb .

Then given the tree, we can easily "reconstruct" the mutations at the variable sites (e.g., the first 16 of them).

node 1

node 2

But 180 bp with 16 variable sites is NOT enough sequence to correctly infer the tree!

Differences within species are like those between species, but less so Many modern human and chimpanzee mitochondrial genome sequences have been determined and aligned.
Also a few Neanderthal individuals and other pre-moderns (from fossils).
Here's the distribution of the pairwise differences (out of $\sim 16.5 \mathrm{~kb}$ in all) for 53 modern humans, one Neanderthal and one chimpanzee.

Green histogram: distances among 53 modern humans

Red: distances from one Neanderthal to all 53 modern humans
Blue: distances from a typical chimp to modern and Neanderthal humans

QUESTION \#1: How can the variation among modern humans be greater than the variation between those same humans and Neanderthal or chimp?

Should leande thals: conside find ?

They wae Europe: R ristrantist long before modern Humans ar vec.

 Goinasting Ne thals with the H.

Even the very sophisticated 23andMe!

Hey Jon!

You have more Neanderthal DNA than $\mathbf{8 4 \%}$ of other customers. Neanderthals were prehistoric humans who interbred with modern humans before disappearing around 40,000 years ago.

(The total is around 2% of my genome.)

It appears as more than 250 small fragments, scattered over all the chromosomes.

My sister, and most of you, have fewer. Am I less human than you?

Three observations about protein evolution stimulated development of the "neutral theory of molecular evolution" in the early 1970s.
Pattern 1: Seemingly constant rates of amino-acid evolution over many millions of years, by individual proteins (e.g. β-globin)

Figure 2.6: The number of amino acid substitutions in beta globin that occurred in the lineages leading to humans and various species as a function of the time back to their common ancestors.

Pattern 2: Different proteins evolving at characteristically very different rates.

This recent analysis uses the genome sequences of human, mouse and chicken, comparing the accumulated differences of 647 proteins.

Pattern 3: Different parts of the same protein evolving at very different rates.
(And later, different rates at synonymous and nonsynonymous sites in coding DNA sequences.)
(a)

Protein distance
(b)

The Neutral Theory in a nutshell

At any site, there are 2 Nu new mutations each generation (by definition of u).

1. If the site is neutral, then the fixation probability for each mutation will be $1 / 2 \mathrm{~N}$, and so the rate of molecular evolution will be $\rho=(2 \mathrm{Nu})^{*}(1 / 2 \mathrm{~N})=u$.
2. If the site is under purifying selection, then $p(f i x)$ will be less than $1 / 2 N$ (perhaps much less), and the rate of evolution will be less than u.
3. Conversely, if the site is under positive selection to change state, then p (fix) will be more than $1 / 2 \mathrm{~N}$ and the rate of evolution will be greater than u.
If cases 1 and 2 predominate, then most of the molecular divergence between species, and most of the standing polymorphism within species, will be neutral (or effectively neutral).
And the rate of molecular evolution will be approximately constant!

Most sites in coding sequences are under purifying selection, so they evolve slowly and show little variation within species.

But "synonymous" sites can mutate without changing the amino-acid sequence of the protein.

4-fold synonymous or "degenerate" sites can mutate to any of the other three bases.

2-fold degenerate sites can mutate to the other purine $(A \leftrightarrow G)$ or pyrimidine $(C \leftrightarrow T=U)$.

Overall, roughly 25\% of random nucleotide substitutions in a typical coding sequence will be synonymous, and 75% will be non-synonymous.

	U		C		A		G	
U	$\begin{aligned} & \text { UUU } \\ & \text { UUC } \end{aligned}$	Phe Phe	$\begin{aligned} & \text { UCU } \\ & \text { UCC } \end{aligned}$		$\begin{aligned} & \text { UAU } \\ & \text { UAC } \end{aligned}$	Tyr Tyr	$\begin{aligned} & \text { UGU } \\ & \text { UGC } \end{aligned}$	Cys Cys
	UUA	Leu Leu	UCA UCG	Ser Ser	$\begin{aligned} & \text { UAA } \\ & \text { UAG } \end{aligned}$	TER TER	$\begin{aligned} & \text { UGA } \\ & \text { UGG } \end{aligned}$	$\begin{aligned} & \text { TER } \\ & \text { Trp } \end{aligned}$
C		Leu Leu Leu Leu	$\begin{aligned} & \mathrm{CCU} \\ & \mathrm{CCO} \\ & \mathrm{CCA} \\ & \mathrm{CCG} \end{aligned}$	Pro Pro Pro Pro	$\begin{aligned} & \text { CAU } \\ & \text { CAC } \\ & \text { CAA } \\ & \text { CAG } \end{aligned}$	His His GIn GIn	$\begin{aligned} & \mathrm{CGU} \\ & \mathrm{CGC} \\ & \mathrm{CGA} \\ & \mathrm{CGG} \end{aligned}$	Arg Arg Arg Arg
A	AUU AUC AUA AUG		ACU ACC ACA ACG	Thr Thr Thr Thr	$\begin{aligned} & A A U \\ & A A C \end{aligned}$	$\begin{aligned} & \text { Asn } \\ & \text { Asn } \end{aligned}$	$\begin{aligned} & \mathrm{AGO} \\ & \mathrm{AGO} \end{aligned}$	$\begin{aligned} & \text { Ser } \\ & \text { Ser } \end{aligned}$
					$\begin{aligned} & \mathrm{AAA} \\ & \mathrm{AAG} \end{aligned}$	$\begin{aligned} & \text { Lys } \\ & \text { Lys } \end{aligned}$	$\begin{aligned} & A G A \\ & A G G \end{aligned}$	Arg Arg
G	GUU Val GUO Val GUA Val GUG Val		$\begin{aligned} & \mathrm{GCU} \\ & \mathrm{GCC} \\ & \mathrm{GCA} \\ & \mathrm{GCG} \end{aligned}$	Ala Ala Ala Ala	$\begin{aligned} & \text { GAU } \\ & \text { GAC } \\ & \text { GAA } \\ & \text { GAG } \end{aligned}$	Asp Asp Glu Glu	$\begin{aligned} & \mathrm{GGU} \\ & \mathrm{GGC} \\ & \mathrm{GGA} \\ & \mathrm{GGG} \end{aligned}$	Gly Gly Gly Gly

A simple nuclear protein-coding gene:

313 amino acids, in the one-letter code:
MTLSDGNHSGAVFTLLGFSDYPELTIPLFLIFLTIYSITVVGNIGMIVIIRINPKLHIPMYFF LSHLSFVDFCYSSIVAPKMLVNLVTMNRGISFVGCLVQFFFFCTFVVTESFLLGVMAYDRFVA IRNPLLYTVAMSQRLCAMLVLGSYAWGVVCSLILTCSALNLSFYGFNMINHFFCEFSSLLSLS RSDTSVSQLLLFVFATFNEISTLLIIILLSYVLIVVTILKMKSASGRRKAFSTCASHLTAITIF HGTILFLYCVPNSKNSRHTVKVASVFYTVVIPMLNPLIYSLRNKDVKDTVKKIIGTKVYSS

Translated human and mouse OR73 ("eugenol receptor") coding sequences

Anth/Biol 5221, 18 February 2020

314 codons (313 amino acids), 942	base pairs
44 first-position differences	(14.0%)
30 second-position differences	(9.6%)
113 third-position differences	(36.0%)
187 total nucleotide differences	(19.9%)
56 amino-acid differences	(17.9%)

mousetactttttcctcagccaactctcctttgtggatttctgctattcctccatcattgctcccaagatgttggtgaaccttgttgtcaaagac270

tg.270
human 120
agaaccatttcatttttaggatgcgtagtacaattctttttcttctgtacctttgtggtcactgaatcctttttattagctgtgatggcc 360
mouse
\qquadFirst- and second-position differences,and amino-acid differences, are much lesscommon than third-position differences!
OR "I7" orthologs in rat and mouse

Ks: synonymous substitutions per synonymous site

Ka: non-synonymous substitutions per non-synonymous site
$\mathrm{Ks}=0.125 \quad \mathrm{Ka}=0.024 \quad \mathrm{Ka} / \mathrm{Ks}=0.193 \quad(\mathrm{Ks} / \mathrm{Ka}=5.2)$alignment, boththe DNA andamino-acidsequences areshown.
For ease of comprehension, sequences
rat
mouse
tattttttcttggctaatatgtcatttctggagatttggtatgtcactgttacgattcctaagatgctcgctggcttcattggttccaag 90
270after the firstone (here rat)are shown asdifferencesfrom the firstone. (A dotrat
In this type of
atggagcgaaggaaccacagtgggagagtgagtgaatttgtgttgctgggtttcccagctcctgccccactgcgagtactactattttc 30 30 90
mouse
g.c. 90
rat 60-------------------
ctttctcttctggcctatgtgttggtgttgactgaaaacatgctcatcattatagcaattaggaaccacccaaccctccacaaacccatg 80
mouse .gt. 60 180
-

rat 120gagaaccatggacagctgatctcctttgaggcatgcatgacacaactctactttttcctgggcttgggttgcacagagtgtgtccttctt
360mouse120360
means "same asin the firstsequence".)180gctggatcctgggctggaggttttggtatctccatggttaaagttttccttatttctcgcctgtcttactgtggccccaacaccatcaac 540180
gctgtgatggcctatgaccgctatgtggctatctgtcatccactccactaccocgtcattgtcagtagccggctatgtgtgcagatggca 450150450

A central prediction of the Neutral Theory:

I7 orthologs in human and chimpanzee

The overall rate of molecular evolution should be roughly proportional to the mutation rate, other things being equal.
Here are the five bands in the human-chimp I7 alignment where the nucleotide differences (just 7 of them) occur.
In this nuclear gene:
7 nt diffs in $981 \mathrm{bp}=$ 0.71 \%

Mitochondrial genome: 1305 nt diffs in $15.5 \mathrm{~kb}=$ 8.44\%

Human
chimp

-••••••••••••g. .
 tccatggtcaaagtttttcttatttctggcctctcttactgtggccccaacatcatcaac 540
chimp

Human
chimp

aaggecttttccacctgtgectctcatctcactgttgtgataatcttctatgcagccagt 780 260
K A F S I C A S H
aaggcettttccacctgtgectctcatctcactgttgtgataatcttctatgc
. 780

$\begin{array}{lllllllllllllllllllll}\text { E } & \text { V } & \text { K } & \text { R } & \text { A } & \text { L } & \text { C } & \text { C } & \text { T } & \text { L } & \text { H } & \text { L } & \text { Y } & \text { Q } & \text { H } & \text { Q } & \text { D } & \text { P } & \text { D } & \text { P } & 320\end{array}$ 360

Human

Human chimp

80
240

Human

chimp
chimp360

R

\qquad 540

gaggtcaagagagccctatgctgtactctgcacctgtaccagcaccaggatcctgacccc 960
gaggtcaagagagccctatgctgtactctgcacctgtaccagcaccaggatcctgacccc960

Human
 atggagtggcggaaccatagtgggagagtgagtgagtttgtgttgctgggcttccctgct 60
chimp

Human I

codons

2 first-position differences
1 second-position differences third-position differences total differences

"Molecular clocks" keep time (not precisely, but remarkably well)

Rat and mouse last had a common ancestor around 15 million years ago (mya).
Their I7 genes differ at 48/981 nucleotide positions, and the I7 proteins encoded by those genes differ at 15/327 amino-acid positions.
Humans and rodents last had a common ancestor around 80 mya.
Their 17 genes differ by around 86 nucleotides and 34 amino acids, on average.

Because "accepted" mutations (neutral or nearly neutral) occur at roughly constant rates on the lines of descent separating species. These appear as fixed differences between the species.

Traditional explanation: Multiply the number of neutral mutations by the probability that any one of them will eventually fix. $\rho=(2 \mathrm{Nu})^{*}(1 / 2 N)=u$.
Modern explanation: Just look at the tree! Neutral mutations hit any line of descent with probability u per generation (by definition).

Figure 2.4: The allele picked at random from the population at time zero is indicated by the open circle. The closed circles represent mutations on the lineage. The first three mutations are substitutions; the fourth mutation is polymorphic.

Back to Question \#1:

 How can the variation among modern humans be greater than the variation between those same humans and a Neanderthal or a chimp?

TIME from here to tips, and E (\# of diffs), is also But TIMES of separation VARY greatly for pairs of modern mitochondria. the SAME in every case.
~180/210 differences are all the same (fixed) between N and moderns.

Distribution of k (muts)	1000 trees all $L=10$	Distribution of k (muts)	1000 trees, half $L=8$ half $L=12$	
		1 : 1		
$2:$ $3:$:		2: ${ }^{2} \mathbf{4}$		
3: ${ }^{3}$: ${ }^{\text {a }}$		3 4 4	T	
5 : 43		5 : 48	-	
6 : 63		6 : 62	-	
7 : 96		7 : 93	-	
8 : 119		8 : 96	-	
9 : 111		9 : 111	\square	
10 : 125		10 : 108	\square	
11 : 106		11 : 105	\square	
12 : 106		12 : 72	-	
13 : 68		13 : 62	-	
14 : 52		14 : 61	-	
15: 38		15 : 33	-	
16 : 17		16 : 39	\square	
17 : 14		17 : 15	1	
18 : 3		18 : 21		
$19: 3$		19 : 7		
$20: 1$		20 : 5	The variance	
$21: 3$		$21: 1$	of 8 and 12	
22: 1		$22: 1$		
$25: 1$		25 :	$\text { is } 4!$	
mean $=$	9.9	mean $=$	0.0	
var $=$	10.2	var =	3.9	

How can we calibrate molecular clocks?

The flu-virus clock has been calibrated directly, by analyzing viruses sampled at many times during the last several decades.
These data for the virus's hemagglutinin gene show a steady accumulation of nucleotide substitutions over a period of more than 20 years.

These data for several genes show higher rates for the surface-expressed hemagglutinin and neuraminidase genes than for nonstructural proteins, and higher rates for synonymous (S) than for nonsynonymous (N) substitutions.

The apparent rates of synonymous substitution per synonymous site per year are $0.014,0.011,0.009$.
The rates of nonsynonymous substitution per nonsynonymous site per year are are 0.0029 , 0.0028 , and 0.0015 .

Thus the synonymous sites evolve around five times as fast as the nonsynonymous sites.
But either kind of site could be used as a molecular clock, as could any of the genes.

Calibrating the molecular clock "retrospectively"

If substitutions occur at a more or less constant rate, then the total molecular divergence is simply the product of the elapsed time and the rate of substitution.

It follows that if we know any two of these quantities, we can infer the other one!

The divergence (K) is our primary observation, from alignments of present-day sequences.

Sometimes we can also know the time (T), from fossils or other geological events.

Then we can estimate the rate of substitution (μ).

The Isthmus of Panama emerged as a wrinkle in the earth's crust during the Miocene, as the South American Plate pushed into the North American Plate.

Epoch	Age Ma
Holocene	
Pleistocene	1.8
Pliocene	
Miocene	23.8
Oligocene	33.5
Eocene	55.6
Paleocene	65

10 million years ago

The closure of the Isthmus separated Atlantic and Pacific populations of shallow-water organisms

Today, these sibling or "geminate" (twin) species pairs are separated by 3 million years (T).
$K=2 T \mu$, which means $\mu=K /(2 T)$.
So all we need is an estimate of K, which we can obtain by comparing orthologous sequences.

But which orthologous sequences, in which species?

Nancy Knowlton and her colleagues collected many species of snapping shrimp (genus Alpheus) from both sides of the Isthmus, and sequenced part of their COI (cox1) genes.
They found much variation in levels of divergence between trans-isthmian sibling species. Those living at greater depths were more diverged than those from shallow, inshore habitats.

From RDM Page and EC Holmes, Molecular Evolution: A Phylogenetic Approach (Blackwell, 1998)

3 first-position differences 0 second-position differences 20 third-position differences
23 total differences
1 amino-acid difference
$\mathrm{Ks}=0.132 \quad(\mathrm{sd}=0.0301)$
$\begin{array}{ll}\mathrm{Ks}=0.132 & (\mathrm{sd}=0.0301) \\ \mathrm{Ka}=0.002 & (\mathrm{sd}=0.0022)\end{array}$
$\begin{array}{ll}\mathrm{Ks}=0.132 & (\mathrm{sd}=0.0301) \\ \mathrm{Ka}=0.002 & (\mathrm{sd}=0.0022)\end{array}$

Sibling species pair \#2:
A. antepenultimus (Pacific) A. chacei (Atlantic/Carribean)

22 synonymous differences 1 nonsynonymous difference

Aante (P)
Achac (A)

Aante (P)
Achac (A)
 cacccagaagtttatattctcattctccoagcotttggtataatctoccatattattaac
\qquad
Q E \quad E \quad G \quad K \quad K \quad E A caagagtcaggaaaaaaagaagca.n.ggaacccta.n.ataatctacgctatagccgca
\qquad
I G I G \quad V V W A $\mathbf{x} \quad \mathbf{~ M} \boldsymbol{F} \quad \mathrm{V}$ G M D atcggaatcctaggatttgtagtatgagca.n..n.atattcaccgttggaatagacgta
\qquad
 gatacacgagcatacttcacatcagcaaccataattattgctgttcctaccggaattaaa
\qquad
\qquad
\qquad
\qquad
$\begin{array}{llllllllllllllllllll}\text { I } & F & S & W & L & G & T & L & H & G & S & Q & F & T & Y & S & P & S & L & L\end{array}$ attttcagatgattaggaacacttcacggaagacaatttacatatagaccotcattactt
\qquad
 tgggccctaggatttgtgttcctatttacaataggaggtctaacaggagtagtcctagcc
\qquad

$$
\begin{array}{llllllllllllllllllll}
\mathrm{N} & \mathrm{~S} & \mathrm{~S} & \mathrm{I} & \mathrm{D} & \mathrm{I} & \mathrm{I} & \mathrm{~L} & \mathrm{H} & \mathrm{D} & \mathrm{~T} & \mathrm{Y} & \mathrm{Y} & \mathrm{~V} & \mathrm{~V} & \mathrm{~A} & \mathrm{H} & \mathrm{~F} & \mathrm{H} & \mathrm{Y}
\end{array}
$$ aactcatcaatcgacattattttacacgatacttattacgtggtagcccacttccactac

\qquad

$$
\begin{array}{llllllllllllllllllll}
\mathrm{V} & \mathrm{~L} & \mathrm{~S} & \mathrm{M} & \mathrm{G} & \mathrm{~A} & \mathrm{~V} & \mathrm{~F} & \mathrm{G} & \mathrm{I} & \mathrm{~F} & \mathrm{~A} & \mathrm{G} & \mathrm{I} & \mathrm{~A} & \mathrm{H} & \mathrm{~W} & \mathrm{~F} & \mathrm{P} & \mathrm{~L}
\end{array}
$$ gtcctatctataggagcagtatttggaatcttcgcaggtattgcccactgattcecccta

\qquad
$\begin{array}{lllllllllllllllllllll}F & T & G & L & S & L & N & P & Q & W & L & K & M & H & F & F & T & M & F & I\end{array}$ ttcacaggactatctttaaacccccaatgacttaaaatacacttctttactatatttatc
\qquad

G V N I T F F P
ggagtaaatatcacatttttcccc

The synonymous nucleotide substitutions

(plus 1 non-syn transversion between A.ante/A.chac)

Three ways to calibrate the Alpheus COI clock

(1) Use all sites and substitutions, don't distinguish fast and slow sites, don't correct for multiple hits.
The two pairs of sequences differ by 23 and 33 of 564 base pairs (bp).
That's 28/564 $=0.05$ substitutions per site (5%) on average.
Dividing by 3 MYr , we get a raw divergence of 1.7% per million years.
Along each branch: $\mu=P / 2 T=(0.05$ subs $/$ site $) /(6 \mathrm{MYr})=0.0083$ subs/site/MYr.
(2) Use synonymous sites and substitutions only.

There are roughly $\frac{1}{4}(564)=141$ effectively synonymous sites.
The sequences differ by 27.5 synonymous substitutions, on average.
Thus $P=27.5 / 141=0.195$ subs/site (for synonymous substitutions).
Along each branch: $\mu=P / 2 T=(0.195$ subs/site $) /(6 \mathrm{MYr})=0.0325$ subs/site/MYr.
Or in scientific notation, $\mu=3.25 \times 10^{-8}$ subs/site/yr.
This is four times as great as the simple estimate (1) that ignored codon structure.
Note that this is an estimate of $K s$ (synonymous substitutions per synonymous site)
(3) Use the Jukes-Cantor correction for multiple hits (to account for failure of the infinite-sites model)

Method (2) shows that the synonymous site divergence is around 20\% -- large enough that we expect multiple hits at some sites.
The number of mutations along a branch (or branches) will follow a Poisson distribution.
The actual or expected number (K) can be anything, but the proportion or probability of different states (P) can't exceed 0.75 .

The Jukes-Cantor correction extrapolates from the observed pairwise difference (P) to the expected total number of substitutions $(K): K=-\frac{3}{4} \ln (1-4 P / 3)$
For the snapping-shrimp synonymous sites: $K=-\frac{3}{4} \ln \left(1-4^{\star} 0.195 / 3\right)=0.226$ subs/site.

Our estimate of μ therefore increases from 3.25 to 3.8×10^{-8} subs/syn-site/yr.

Caveat: Even this model is simpler than those used in real research, but it makes the ideas clear and does a good job, under "easy" cirumstances like these.

Fully degenerate sites, introns and pseudogenes evolve at neutral rate (at least in typical mammals) These average rates for different kinds of nucleotide positions in the nuclear genome were estimated from alignments of about 50 human and rodent orthologs, assuming a last common ancestor 80 MYA.

What about humans and chimpanzees?
We differ by around 35,000,000 nucleotide substitutions.

Given 3×10^{9} base pairs per haploid genome, that's roughly $1 / 86$ base pairs, or $K \approx 0.012$ per site.
Fossils suggest a last shared ancestor around $T \approx 6 \times 10^{6} \mathrm{yr}$.
Remember, $K=2 T \mu$.
So $\mu=K / 2 T=1.2 \times 10^{-2} / 2 \times 6 \times 10^{6}$

$$
=1 \times 10^{-9} / \mathrm{yr} .
$$

That's a bit lower than the rates estimated for typical mammals. But we (hominids) have had longer generation times!
Suppose 10-20 years.
Then $\mu \approx 1-2 \times 10^{-8}$ hits/site/gen.

STAR FORMATION A massive protostar unveiled CANCERIMMUNOLOGY How tumours dupe T cells

AIR POLLUTION China's NO_{2} build-up seen from space

Summary

At any site, there are 2Nu new mutations each generation (by definition of u).

1. If the site is neutral, then the fixation probability for each mutation will be $1 / 2 \mathrm{~N}$ and the rate of molecular evolution will be $\rho=(2 N u)^{*}(1 / 2 N)=u$.
2. If the site is under purifying selection, then $p(f i x)$ will be less than $1 / 2 N$ (perhaps much less), and the rate of evolution will be less than u.
3. Conversely, if the site is under positive selection to change state, then p (fix) will be more than $1 / 2 \mathrm{~N}$ and the rate of evolution will be greater than u.
If cases 1 and 2 predominate, then most of the molecular divergence between species, and most of the standing polymorphism within species, will be neutral (or effectively neutral).

Summary II

Amazingly, selection at neighboring sites does not affect the rate of evolution at neutral sites! (That's because the neutral mutations had no effect on the survival probabilities of the surviving lineage.)

Figure 2.4: The allele picked at random from the population at time zero is indicated by the open circle. The closed circles represent mutations on the lineage. The first three mutations are substitutions; the fourth mutation is polymorphic.

Summary III

However, selection at neighboring sites may greatly affect the amount of neutral polymorphism, and its "shape" (e.g.: the site frequency spectrum).

Figure 2.5: A stylized view of molecular evolution in the infinite-sites, norecombination model.

