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What inbreeding depression tells us

(Jones 1924)

Inbreeding depression is
widespread in Nature.

Implies that deleterious
alleles tend to be partially
recessive,

or that there is widespread
overdominance in fitness.
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Measuring the effect
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l Survival of human children
declines with their inbreeding

coefficient.

Cousin mating ⇒ F = 0.0625.

Morton, Crow, and Muller (1956)
built a model to estimate this

effect.
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Genotype frequencies and fitnesses

Genotype Frequency Fitness

A1A1 p2 + pqF 1
A1A2 2pq(1− F ) 1− hs
A2A2 q2 + pqF 1− s

Mean fitness:

w̄ = 1− 2pq(1− F )hs − (q2 + pqF )s

= 1− a− bF ⇐ linear func of F

where

a = 2pqsh + q2s

b = 2pqs(1/2− h)
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Why is inbreeding harmful?

We have just seen that mean fitness is

w̄ = 1− a− bF

where
b = 2pqs(1/2− h)

Fitness decreases with inbreeding if b > 0, which is true if s > 0
and h < 1/2, or in other words, if deleterious alleles are at least
partially recessive.

If h < 0, then heterozygotes have higher fitness than either
homozogte—the case of overdominance. Fitness declines with
inbreeding in this case too, because b > 0.

Inbreeding depression is consistent with either hypothesiss.
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Model of Morton, Crow, and Muller

Model

S = Pr[survival]

=
L∏

i=1

1− ai − biF

≈
∏

i=1

e−ai−biF

≈ e−A−BF

where A =
∑

ai and B =
∑

bi .

Estimates

Â = 0.1612

B̂ = 1.734

Example
For mating between full sibs,
F = 1/4, and

S = exp{−0.1612− 1.734/4}
= 0.85

So we expect 15% mortality in
the offspring of full-sib matings.
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Discussion

Inbreeding reduces fitness if h < 1/2 at the average locus.

This is true if deleterious alleles tend to be recessive or if there is
heterozygote advantage (h < 0).

Morton, Crow, and Muller did a “genome-wide” analysis long
before there were genome-scale data.
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Inbreeding and drift

Even under random mating, there is inbreeding in any finite
population.

This “random inbreeding” is the same thing as genetic drift.
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Number of ancestors

generation year ancestors

0 1994 1
1 1965 2
2 1936 4
3 1907 8
4 1878 16
5 1849 32
6 1820 64
7 1791 128
8 1762 256
9 1733 512

10 1704 1,024
11 1675 2,048
12 1646 4,096
13 1617 8,192
14 1588 16,384
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Number of ancestors: II

generation year ancestors

15 1559 32,768
16 1530 65,536
17 1501 131,072
18 1472 262,144
19 1443 524,288
20 1414 1,048,576
21 1385 2,097,152
22 1356 4,194,304
23 1327 8,388,608
24 1298 16,777,216
25 1269 33,554,432
26 1240 67,108,864
27 1211 134,217,728
28 1182 268,435,456
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Number of ancestors: III

generation year ancestors

29 1153 536,870,912
30 1124 1,073,741,824
31 1095 2,147,483,648
32 1066 4,294,967,296

If you were born in 1994, then you had over 4 billion ancestors in
1066.

But there were not that many people on the planet.

Many of your ancestors in 1066 were the same people—we are all
inbred.

Let us build a model of this inbreeding.
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Drift and inbreeding

Drift After t generations of genetic drift, the expected
heterozygosity is

E [H(t)|p0] = 2p0q0(1− 1/2N)t

Inbreeding If Ft is the average inbreeding coefficient in generation
t, relative to generation 0,

E [H(t)|p0] = 2p0q0(1− Ft)

Equating these expressions gives

Ft = 1− (1− 1/2N)t

Inbreeding is genetic drift.
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