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Linkage versus
associlation

mapping

Linkage mapping uses information from
a pedigree while association mapping
uses information from ‘unrelated’
individuals in a population

In linkage mapping, the genetic
architecture may be simpler and
population structure is not a problem,
but the resolution is low due to the
limited number of recombination events
on the necessarily short time scale
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Genome-wide association studies (GWAS)
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Schematic of a
GWAS pipeline

a Data collection

b Genotyping € Quality control
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Argument for genome-wide association studies

» Risch and Merikangas argued that we can use the information from the Human Genome Project
 They argued that as a next step, a project to assay common polymorphisms in human
populations was needed

The Future of Genetic Studies of ks amalyis for loci conferting ORR of

H because the number of families required
Co m p I ex H uman D ISeases (more than ~2500) is not practically achiev-
able.

Although tests of linkage for genes of mod-
est effect are of low power, as shown by the
above example, direct tests of association with
a disease locus itself can still be quite strong.
To illustrate this point, we use the transmis-
Geeneticists have made substantial progressin  age analysis we have chosen for this argu-  sion/disequilibrium test of Spielman et al. (3).
identifying the genetic basis of many human ment is a popular current paradigm in which  In this test, transmission of a particular allele
diseases, at least those with conspicuous deter-  pairs of siblings, both with the disease, are  at a locus from heterozygous parents to their

Neil Risch and Kathleen Merikangas

.........

We argue below that the method that has been used successful)y (Iinkage analysis) to find
major genes has limited power to detect genes of modest effect, but that a different
approach (association studies) that utilizes candidate genes has far greater power, even if

one needs to test every gene in the genome. Thus, the future of the genetics of complex
diseases is likely to require large-scale testing by association analysis.

Science 1996



The HapMap Project

The human genome project can have more than one reward. In addition to sequencing the
entire human genome, it can lead to identification of polymorphisms for all the genes in the

human genome and the diseases to which they contribute. It is a charge to the molecular
technologists to develop the tools to meet this challenge and provide the information
necessary to identify the genetic basis of complex human diseases.

Risch and Merikangas, 1996
The Human HapMap Project aimed to characterize polymorphism

and linkage disequilibrium across the genome with the goal of
identifying common representative DNA polymorphisms that could be
used for genome-wide association studies

Q: Why identify ‘representative’ polymorphisms?
A: Because at the time it was infeasible to sequence entire genomes
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The HapMap Project Goal:

SNP
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HapMap relied on the assumption that ‘tag SNPs’
could be chosen the represent linked disease SNPs

« Sequencing large enough

numbers of individuals was not ndirect Association
possible at the time, so the plan
was to identify ‘tag SNPS’ that LU“]HMLUJUMJ_HJ “MUJ Chromosome

could be genotyped in large
populations and represent

) Region of High Linkage
disease SNPs = = 5

Disequilibrium

 Because LD was so central, Disease RISk Genotyped SNP
association mapping was also SNP

called ‘LD-mapping’

doi:10.1371/journal.pcbi. 1002822.g003



Familial linkage versus population-level LD

Linkage Within A Family Linkage Disequilibrium Within A Population
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What assumptions were being made?

* The idea that genome wide association studies would work
hinged on the idea that risk variants would be common in
populations

* And that the risk variants would be represented by haplotype-
tagging variants that were mostly randomly selected



Competing hypotheses about complex disease
inheritance

For a fixed disease incidence, individuals
who are clinically affected can either have
mutations at only one of many possible
disease loci (in which case the mutant

affected

alleles are rare in the population) or :
. : . risk
harbour mutations at multiple loci S — / \
simultaneously (in which case the mutant
alleles are common in the population). aa/++/++/..  aabbcc...
++/bb/++/..
++/++/cd..
These hypotheses are the extremes of ¢
many other possible intermediate scenarios. rare common
variants variants

Chakravarti, 1999



Within a region, variants arose at different times and
therefore have different expected frequencies (under
neutrality) and patterns of LD
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“We need to answer some central questions regarding the nature of genetic variation of complex diseases. Are
they at single or multiple genes? Is the mutational diversity high or low? Are the relevant alleles rare or
common? Are they young or old? What is the nature of selection for or against them? Are individuals affected
because they harbour too many susceptibility alleles or because they have too few protective alleles? Almost

all of the contemplated studies of nucleotide sequence will assist in ferreting out the answers.*
Chakravarti, 1999



ompeting hypotheses about
complex disease inheritance

On the allelic
spectrum of human
disease

David E. Reich and Eric S. Lander

Human disease genes show enormous variation in their allelic spectra; that i

Common vs. rare allele hypotheses for complex diseases
Nicholas J Schork, Sarah S Murray, Kelly A Frazer and Eric J Topol

There has been growing debate over the nature of the genetic
contribution to individual susceptibility to common complex
diseases such as diabetes, osteoporosis, and cancer. The
‘Common Disease, Common Variant (CDCV)’ hypothesis
argues that genetic variations with appreciable frequency in the
population at large, but relatively low ‘penetrance’ (or the
probability that a carrier of the relevant variants will express the
disease), are the major contributors to genetic susceptibility to
common diseases. The ‘Common Disease, Rare Variant
(CDRV)’ hypothesis, on the contrary, argues that multiple rare
DNA sequence variations, each with relatively high penetrance,
are the major contributors to genetic susceptibility to common
diseases. Both hypotheses have their place in current research
efforts.

known today as Mendelian genetics as espoused by the
‘Mendelian’ camp at the time owing to the fact that
discrete units of heredity, such as Mendelian-segregating
genes, could not, it seemed to them, explain the
continuous range of phenotypic varation seen in real
populations.

The debate between the Mendelians and Biometricians
was resolved, to a high degree, by RA Fisher among

others.
the for
each fi
(prima
sion an

in the number and population frequency of the disease-predisposing alleles
at the loci. For some genes, there are a few predominant disease alleles. For
others, there is a wide range of disease alleles, each relatively rare. The allelic
spectrum is important: disease genes with only a few deleterious alleles can
be more readily identified and are more amenable to clinical testing. Here, we
weave together strands from the human mutation and population genetics
literature to provide a framework for understanding and predicting the allelic
spectra of disease genes. The theory does a reasonable job for diseases where
the genetic etiology is well understood. It also has bearing on the Common
Disease/Common Variants (CD/CV) hypothesis, predicting that at loci where
the total frequency of disease alleles is not too small, disease loci will have
relatively simple spectra.

Jonathan K. Pritchard

Department of Statistics, University of Oxford, Oxford

Am. ]. Hum. Genet. 69:124-137, 2001

mightd  Are Rare Variants Responsible for Susceptibility to Complex Diseases?

Little is known about the nature of genetic variation underlying complex diseases in humans. One popular view
proposes that mapping efforts should focus on identification of susceptibility mutations that are relatively old and
at high frequency. It is generally assumed—at least for modeling purposes—that selection against complex disease
mutations is so weak that it can be ignored. In this article, I propose an explicit model for the evolution of complex
disease loci, incorporating mutation, random genetic drift, and the possibility of purifying selection against sus-
ceptibility mutations. I show that, for the most plausible range of mutation rates, neutral susceptibility alleles are
unlikely to be at intermediate frequencies and contribute little to the overall genetic variance for the disease. Instead,
it seems likely that the bulk of genetic variance underlying diseases is due to loci where susceptibility mutations
are mildly deleterious and where there is a high overall mutation rate to the susceptible class. At such loci, the
total frequency of susceptibility mutations may be quite high, but there is likely to be extensive allelic heterogeneity
at many of these loci. I discuss some practical implications of these results for gene mapping efforts.




Competing hypotheses about complex disease
inheritance

« Common disease common variant hypothesis

* This hypothesis states that the variants that cause common disease
are likely to be old and thus at intermediate frequencies and accessible
by association mapping

« |t fits with the idea that genetic variants that cause diseases late in life
may not be under strong purifying selection

« GWAS is likely to work if this is true

« Common disease, rare variant hypothesis

« Stabilizing selection should keep most disease-causing alleles at low
frequency in the population

* Thus, common disease variants are likely at low frequency and there
may be high allelic heterogeneity

* If this is true, GWAS may not work very well



First genome-wide association mapping study
(WTCCC)

* The first set of genome-wide association studies were conducted by
the Wellcome Trust Case-Control Consortium

* Traits examined included bipolar disorder, coronary artery disease,
Crohn’s disease, hypertension, type 1 diabetes, type 2 diabetes and
rheumatoid arthritis

* Across all traits, there were 2,000 cases for each disease and 3,000
shared controls (no quantitative trait measures)

* Trend tests were conducted across 500K SNPs for each disease

* The authors attempted to focus on samples from a broadly defined

UK/European ancestB/§)o ulations and removed outliers from
genetic clustering (MDS), but there was no population structure

control incorporated into the model

McKay et al., NRG 2009



Disease status
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Testing for signficant associations

The authors used logistic regression to test for
associations between each genotyped SNP and trait

Expected under the null Expected under the alternative
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The test statistic is expected to be y? distributed under the null



Comparing the genome-wide distribution of the
test statistic against the expected distribution

* A quantile-quantile plot is used to compare two distributions

* This approach can be used to assess whether there is an
excess of signficant associations relative to expected genome-
wide

Observed quantiles

Expected quantiles



Q-Q plots for T2D at different levels of filtering

All SNPs SNPs passing standard filter & MAF>1%
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Observed test statistic
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Q-Q plots for genome-wide scans (after filtering)

Since the test statistic is chi-square distributed under the null, they compared the
distribution of observed test statistics to the expected under a chi-square distribution
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GWAS results for BD, CAD, CD
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the GWAS

Positive controls: known loci are detected in

Table 2 | Evidence for signal of association at previously robustly replicated loci

Collection Gene Chromosome Reported SNP WTCCC SNP HapMap r? Trend Genotypic P value
P value

CAD APOE 19q13 * rs4420638 - 1.7 x107% 1.7 X 107%*
CcD NOD2 16q12 rs2066844 rs17221417 0.23 9.4x 10712 40 x 10711
CcD IL23R 1p31 rs11209026 rs11805303 0.01 6.5% 1071 59 X 10712
RA HLA-DRB1 6p21 . rs615672 - 2.6 X 107 75 x 1074
RA PTPN22 1p13 rs2476601 rs6679677 0.75 49 X 107% 56 X 1072°
T1D HLA-DRB1 6p21 * rs9270986 - 40 x 10711 23x 1071%2
T1iD INS 11p15 rs689 t . - -

T1D CTLA4 2933 rs3087243 rs3087243 1 25x 107% 1.8 X 1079
T1D PTPN22 1p13 rs2476601 rs6679677 0.75 1.2x 107% 5.4 X 1072¢
T1D IL2RA 10p15 rs706778 rs2104286 0.25 8.0x 107% 43 x 1079
T1D IFIH1 2q24 rs1990760 rs3788964 0.26 19x 107 % 76 X 10793
T2D PPARG 3p25 rs1801282 rs1801282 1 13x 107% 54 %X 10793
T2D KCNJ11 11p15 rs5219 rs5215 09 1.3x 107% 56 X 107%°
T2D TCF7L2 10925 rs7903146 rs4506565 092 57x 107" 51 X 10”12

Where information on the strength of association at a particular SNP had been previously published and replicated we tabulated the Pvalue of both the trend and genotype test at the same SNP (if in
our study), or the best tag SNP (defined to be the SNP with highest r” with the reported SNP, calculated in the CEU sample of the HapMap project). Positions are in NCBI build-35 coordinates.
*Previous reports relate to haplotypes rather than single SNPs. "Not well tagged by SNPs that pass the quality control, see main text.



Q: How do you determine significance
with so many tests?

A: Bonferroni correction based on the
inferred number of independent tests



Bonferroni correction

* In genome-wide association studies, a very large number of tests are
conducted, which leads to a multiple testing problem

* The Bonferroni correction can be used to adjust a significance test to
correct for multiple tests

* Using a 5% significance threshold (a = 0.05), we would expect 5% of
the markers whose true marker effect is 0 to be significant just by
random chance

 This error is called the “type | error rate” , i.e., the probability of
rejecting the null when the null is true

* When testing multiple hypotheses, the Bonferroni correction is used
to control the type | error rate across hypotheses




Bonferroni correction

* If m is the total number of hypotheses tested, the Bonferronl

correction rejects the null hypothesis for each p; < E

 So, if you are testing 10° 5unllnked (independent) markers, the p-
value cut-off would be % =5x107% or — log4,7.3

 For simplicity, GWAS p-values are plotted on a —log,, scale, as
In this example:

lJ 1'. :‘.l
Chromosome



Not enough data?

Make some up!

Genotype imputation



Genotype imputation is can be used to infer
missing data and boost power in GWAS

In a sample of unrelated individuals, Power to detect associations may be
some genotype data may be missing low due to missing data

due to technical issues )
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222222221212 72220 %
1222121212222220 k-1
1222222202122 2¢21 IO o o
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(and missing data is an even bigger ...in other cases, a researcher may want to combine
problem in whole genome sequencing data sets to conduct a meta-analysis, but different

data!) SNP sets might be genotyped in different data sets

https://www.nature.com/articles/s43586-021-00056-9



A reference set of samples can be used to
impute based on haplotype similarity
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And missing data are imputed
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Considerations

* Haplotype imputation works best when samples of the
population which imputation is needed are drawn from the same
population as the reference sequenced reference

» Diverged samples cannot be imputed with high accuracy



What about population structure?
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Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331



Population structure can confound association
analysis

* Relatedness among individuals that is not accounted for can
result in false positives or loss of power

 False positives may result from correlation between structure and the
trait

 False negatives can result if the effects of structure are strong relative
to the effects of true variants

* Including population structure in the model to detect genetic
effects on phenotype can help solve these problems



PCA can be helpful for finding mistakes or
individuals who do not cluster as expected

a Data collection b Genotyping Quality control
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https://www.nature.com/articles/s43586-021-00056-9



Population structure in the WTCCC

Regions of origin in the WTCCC set Population structure based on MDS scaling
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Approaches to deal with population structure

* Incorporate it into the model to estimate the effect of the genetic
variant in the presence of population structure

* A covariance matrix of individuals, derived from the matrix of
individuals x variants is often used to control for population
structure in the model

 This is either done by including the covariance matrix directly in
the model or by including eigen vectors derived from the
covariance matrix (i.e., principal components) in the model



Linear model for genotype association analysis

Assuming the phenotype is quantitative and genetic basis additive, we can model it
as

Vi = 2,304' xXifj + &

where y; is the phenotype of the ™ individual, B, is the mean, x; j Is the genotype
of the ™ individual at the jt" variant, m is the number of variants ,8 is the effect
size of the j!" variant, and ¢, is the error or noise term for the it mcfmdual

The noise terms are assumed to be independent with a Gaussian (i.e., normal)
distribution.

The genotypes are assumed to be fixed (not random) variables



Linear Model for genotype association analysis

This model is run consecutively on individual SNPs, so in practice, for each
SNP we assess the evidence for its marginal effect:

= Bo +xif + &

where y; is the phenotype of the " individual, 8, is the mean, x; is the

genotype of the M individual, £ is the effect size variant, and E; is the error
or noise term for the " individual.

The noise terms are assumed to be independent with a Gaussian (i.e.,
normal) distribution.

The genotypes are assumed to be fixed (not random) variables



Linear Mixed Model for single SNP analysis

Estimate the effect of each allele on the phenotype, while controlling for
population structure:

V =P+ xif+Zu+ g
where Zu is the random term that accounts for the covariance structure

among individuals. Z is an n x m matrix individuals x variants, uis an m x 1
vector of random effects, and ¢ is an n x 1 vector of errors.

Calculating u and ¢ are computationally expensive steps due to the need to
invert the matrix of residual error variance

Some work-arounds have been developed to improve computational speed,
e.g., GEMMA



Using principal components to account for
population structure

« Start with the matrix of individuals by variants

* |dentify vectors (eigenvectors) that maximize the variance
explained from the total matrix

« Some number of principal components (eigenvectors) can then
be included in the linear model to represent population structure

* Choosing the number of eigenvectors (principal components) to
include in the model is not always straight-forward, but can be
determined based on the amount of the total variance explained




PCA to control for population structure
(Eigenstrat algorithm)

Step 1:

PCA is applied to genotype
data to infer continuous axes of
genetic variation (a single axis
is shown here)

Step 2:
Genotype at a candidate SNP and

phenotype are adjusted by
amounts attributable to ancestry,
removing correlation to ancestry b

Step 3:

d Genotypes

Samples
i1 1 1 0 O
These are
LI IR IR eigenvectors or PCs
2: 1T "1 0 1
PCA :
SNPs 0 0 1 2 Axis of 407 +0.4 -01 -0.4 -0.5
variation
2 1 1 0 O
00 1 1 1 Residual variation after
estimating effect of population
2 2 1 1 0 structure (based on PCs) is

used in association analysis

CandidateSNP 2 2 1 1 0 - 10 14 11 16 038
Phenotype 1 1 0 0 O = 03 06 01 04 05
This correction for population structure = =N =

A corrected association test
statistic results C

often results in a more conservative

association test result ¥ = 0.07 => no association



CHALLENGE: What is the appropriate
scale for defining a population

» Tradeoff between inclusive and specific definition

 Benefits of inclusive design:

 larger Ne: more genetic variation, potentially more phenotypic variation,
less LD

» Benefits of specific definition:
* less genetic heterogeneity
* less allelic heterogeneity



Local versus R ——
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global samples
for GWAS
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Missing heritability: when and why does
GWAS fail?

GWAS findings fail to account for all
heritability

Some potential causes:

« Dominance effects

» Low frequncy variants responsible
for trait variation

 Allelic heterogeneity

« Untagged structural variants
responsible for trait variation

 Uncontrolled environmental
confounders

« Condition-dependent effects (GxG,
GxE)

https://www.nature.com/articles/456018a



Effect Size

High-effect

Rare alleles common

Intermediate Low-frequency

variants

variants

Modest
- Rare variants of Common

small effect variants

Allele Frequency

https://www.nature.com/articles/nature08494



SNPs only represent

one type of variant

Many potential types of
variants are structural variants
Many of these are difficult to
assay accurately in short-read
sequencing data

Since structural variants affect
larger genomic regions, they
may have relatively high
contributions to trait variation

Single nucleotide
Polymorphism (SNP)

Simple sequence repeats
{micro- and minisatellites)

Insertion-deletion
polymorphism {indel)

Block substitution

Inversion variant

Copy number variant (CNV}

Segmental duplications

Translocations

ATGGACCTCAEGCTAGCTTAAG
ATGGACCTCAABCTAGCTTAAG

ATGGACCTC CACACCTAGCTTAAG
ATGGACCTC CACACACCTAGCTTAAG

ATGGACCTCACICAGCTAGCTTAAG
ATGGACCTCACE ——GCTAGCTTAAG

ATGGACCTCACGL TAGCTTAAG
ATGGACCTEGAZL TAGCTTAAG

ATGGACCTEACCCTALCTTAAG
ATGGACCTFAGCETERCTTAAG

ATCCACCTCACTCCACCTCACC TAGCTTAAG

Structural variants



Sequencing technology is improving, allowing
us to assess variation more completely

1977 2005 2010 present

First generation Second generation Third generation

(next generation sequencing)

il 25 P

Sanger sequencing 454, Solexa, PacBio

Maxam and Gilbert lon Torrent, Oxford Nanopore
Sanger chain termination lllumina
Infer nucleotide identity using dNTPs, High throughput from the Sequence native DNA in real time
then visualize with electrophoresis parallelization of sequencing reactions with single-molecule resolution
500-1,000 bp fragments ~50-500 bp fragments | ‘ Tens of kb fragments, on average
Short-read sequencing Long-read sequencing

Source: https://www.pacb.com/blog/the-evolution-of-dna-sequencing-



Potential solutions to the missing heritability
problem

« Larger sample sizes to improve power for low frequency
variants

« Burden tests to combine signals in cases of allelic heterogeneity

* Include structural variants in the analysis

* Collect more thorough information about study subjects during
DNA sampling



WTCCC was the starting point
Where are we now?



GWAS Catalog

As of Feb 2024

* 6,741 publications

» 576,479 variant-trait
association

* 67,504 full summary

statistics files

a . N .
. L .4- Ll 9
l. . - - ‘
BN |-
4 5
. . - £
".

https://www.ebi.ac.uk/training/online/courses/gwas-catalogue-
exploring-snp-trait-associations/what-is-gwas-catalog/



GWAS through time

2006 Jan

. Digestive system disease
M g . Cardiovascular disease
. - v : . . = (O Metabolic disease

B () Immune system disease

e
e

nu

TR
nn

(RN

O Nervous system disease

- @ Liver enzyme measurement
O Lipid or lipoprotein measurement
(O Inflammatory marker measurement
O Hematological measurement
( Body measurement
O Cardiovascular measurement
@ Other measurement
(O Response to drug
(O Biological process
= @ Cancer
- B . @ Other disease
B @ Other trait

TR
[

www.ebi.ac.uk/gwas



Complete sequences: UK Biobank

I
Biochemistry
studies begin

]

Hospital
outpatient
data

Physical activity
monitor

Exome
sequencing

—_—
Pv.v'w.]vy
care inkage

Genetic data
released for
research

https.//labs.icahn.mssm.edu/minervalab/resources/data-ark/uk-biobank/



US-based project All of Us aims to sequence
1M+

—— >413,450 participants ———

Public Tier Controlled Tier
AI I (publicly accessible) (secure, cloud based)
Of u s Data Browser Researcher Workbench
>1,074,881,200 publicly searchable >245,380 WGSs
RESEARCH PROGRAM unique variants >312,920 genotyping arrays
>245,380 >413,370 >337,540 >287,000
Survey Physical
Participants WGSs responses measurements EHRs
>206,100 @) O @ @)

>39,000 @) O O

A major goal of the All of Us project is to increase diversity in GWAS since most of

what we know about trait-variant associations is derived from European populations
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Phenome-wide association of Duffy blood

Phenome-wide association group (ACKR1) identifies variation in

starts with a genetic variant and conduct association individuals with African ancestry

H AFR V' Elevated white blood cell count
analysis across phenotypes - ¥ Diseases of whte blood cels
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[ 25 Decreased white blood cell count 4
& 20
T 15
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5
R O s & A e 7™
Duffy-negative alleles are at high frequency in 1 A
30
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HLA-DQB1
(rs9273363)

AFR: African ancestry

AMR: Latinx/admixed ancestry
EAS: East Asian ancestry
EUR: European ancestry

MID: Middle Eastern ancestry
SAS: South Asian ancestry

https.//www.nature.com/articles/s41586-023-06957-x/figures/9

~logio(p)

PheWAS on rs9273363 annotated with gene HLA-DQB1-AS1
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TCF7L2(rs7903146)

AFR: African ancestry

AMR: Latinx/admixed ancestry
EAS: East Asian ancestry
EUR: European ancestry

MID: Middle Eastern ancestry
SAS: South Asian ancestry

https.//www.nature.com/articles/s41586-023-06957-x/figures/10
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Gleaning biological understanding from GWAS
(combined with other methods)

a What are the associated loci?

100
&
)
9
l
O | | | | | ! ' v LI |
1 3 5 7 9 11 15 19 23
Chromosome

https://www.nature.com/articles/s43586-021-00056-9



Gleaning biological understanding from GWAS
(combined with other methods)

b What are the likely causal variants?

@ —rs12345

GWAS -log, (P)

Chromosome position

https://www.nature.com/articles/s43586-021-00056-9



Gleaning biological understanding from GWAS
(combined with other methods)

C What are the epigenomic effects of variants?
Gene A ‘SNPs GeneB  GeneC

ATAC-seq

H3K27ac

https://www.nature.com/articles/s43586-021-00056-9



Gleaning biological understanding from GWAS
(combined with other methods)

d What are the target genes in the locus?

® 512345

S —
2 &
: E
< ke
v |
< =
D @)
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AA AG GG Chromosome position

rs12345 genotype

Gene A rs12345 GeneB GeneC

-_

https://www.nature.com/articles/s43586-021-00056-9



Gleaning biological understanding from GWAS
(combined with other methods)

€ What are the affected pathways?

https://www.nature.com/articles/s43586-021-00056-9



a Data collection b Genotyping

Review: siiassigi

Quality control

~African ~ Your data ,
~Asian

Schematic of a “aas 5: Tl e e

Principal component 2 ©

e American-—"5 2
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GWAS p I pe I I n e Principal component 1

d Imputation e Asls&)ciation testing
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f Meta-analysis g Replication h Post-GWAS analyses
Cohort A —— Cohort B —— Cohort C

https://www.nature.com/articles/s43586-021-00056-9



