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Linkage versus 
association 
mapping

McKay et al., NRG 2009

• Linkage mapping uses information from 
a pedigree while association mapping 
uses information from ‘unrelated’ 
individuals in a population

• In linkage mapping, the genetic 
architecture may be simpler and 
population structure is not a problem, 
but the resolution is low due to the 
limited number of recombination events 
on the necessarily short time scale



Genome-wide association studies (GWAS)



Schematic of a 
GWAS pipeline

https://www.nature.com/articles/s43586-021-00056-9



Argument for genome-wide association studies

Science 1996

• Risch and Merikangas argued that we can use the information from the Human Genome Project
• They argued that as a next step, a project to assay common polymorphisms in human 

populations was needed

We argue below that the method that has been used successfully (linkage analysis) to find 
major genes has limited power to detect genes of modest effect, but that a different 

approach (association studies) that utilizes candidate genes has far greater power, even if 
one needs to test every gene in the genome. Thus, the future of the genetics of complex 

diseases is likely to require large-scale testing by association analysis.



The HapMap Project

The Human HapMap Project aimed to characterize polymorphism 
and linkage disequilibrium across the genome with the goal of 
identifying common representative DNA polymorphisms that could be 
used for genome-wide association studies

The human genome project can have more than one reward. In addition to sequencing the 
entire human genome, it can lead to identification of polymorphisms for all the genes in the 
human genome and the diseases to which they contribute. It is a charge to the molecular 

technologists to develop the tools to meet this challenge and provide the information 
necessary to identify the genetic basis of complex human diseases.

Risch and Merikangas, 1996

Q: Why identify ‘representative’ polymorphisms?
A: Because at the time it was infeasible to sequence entire genomes





The HapMap Project Goal:

Identify SNPs that could 
tag haplotypes and be 

used to represent all the 
common polymorphisms in 

worldwide populations



HapMap relied on the assumption that ‘tag SNPs’ 
could be chosen the represent linked disease SNPs

doi:10.1371/journal.pcbi.1002822.g003

• Sequencing large enough 
numbers of individuals was not 
possible at the time, so the plan 
was to identify ‘tag SNPs’ that 
could be genotyped in large 
populations and represent 
disease SNPs

• Because LD was so central, 
association mapping was also 
called ‘LD-mapping’



Familial linkage versus population-level LD

doi:10.1371/journal.pcbi.1002822.g002



What assumptions were being made?

• The idea that genome wide association studies would work 
hinged on the idea that risk variants would be common in 
populations

• And that the risk variants would be represented by haplotype-
tagging variants that were mostly randomly selected



Competing hypotheses about complex disease 
inheritance 

For a fixed disease incidence, individuals 
who are clinically affected can either have 

mutations at only one of many possible 
disease loci (in which case the mutant 

alleles are rare in the population) or 
harbour mutations at multiple loci 

simultaneously (in which case the mutant 
alleles are common in the population). 

These hypotheses are the extremes of 
many other possible intermediate scenarios.

Chakravarti, 1999



Within a region, variants arose at different times and 
therefore have different expected frequencies (under 
neutrality) and patterns of LD

Chakravarti, 1999

“We need to answer some central questions regarding the nature of genetic variation of complex diseases. Are 
they at single or multiple genes? Is the mutational diversity high or low? Are the relevant alleles rare or 
common? Are they young or old? What is the nature of selection for or against them? Are individuals affected 
because they harbour too many susceptibility alleles or because they have too few protective alleles? Almost 
all of the contemplated studies of nucleotide sequence will assist in ferreting out the answers.“



Competing hypotheses about 
complex disease inheritance 



Competing hypotheses about complex disease 
inheritance 
• Common disease common variant hypothesis

• This hypothesis states that the variants that cause common disease 
are likely to be old and thus at intermediate frequencies and accessible 
by association mapping

• It fits with the idea that genetic variants that cause diseases late in life 
may not be under strong purifying selection

• GWAS is likely to work if this is true
• Common disease, rare variant hypothesis

• Stabilizing selection should keep most disease-causing alleles at low 
frequency in the population

• Thus, common disease variants are likely at low frequency and there 
may be high allelic heterogeneity

• If this is true, GWAS may not work very well



First genome-wide association mapping study 
(WTCCC)
• The first set of genome-wide association studies were conducted by 

the Wellcome Trust Case-Control Consortium
• Traits examined included bipolar disorder, coronary artery disease, 

Crohn’s disease, hypertension, type 1 diabetes, type 2 diabetes and 
rheumatoid arthritis

• Across all traits, there were 2,000 cases for each disease and 3,000 
shared controls (no quantitative trait measures)

• Trend tests were conducted across 500K SNPs for each disease
• The authors attempted to focus on samples from a broadly defined 

UK/European ancestry populations and removed outliers from 
genetic clustering (MDS), but there was no population structure 
control incorporated into the model

McKay et al., NRG 2009



Testing for signficant associations
The authors used logistic regression to test for 

associations between each genotyped SNP and trait
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The test statistic is expected to be 𝜒2 distributed under the null



Comparing the genome-wide distribution of the 
test statistic against the expected distribution
• A quantile-quantile plot is used to compare two distributions
• This approach can be used to assess whether there is an 

excess of signficant associations relative to expected genome-
wide
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Q-Q plots for T2D at different levels of filtering
All SNPs SNPs passing standard filter & MAF>1%

SNPs removed after manual 
examination of genotype calls

Same as left, showing (blue) the results 
when regions with strong evidence of 

association are removed

Greater inflation of high test statistic values in the unfiltered data



Q-Q plots for genome-wide scans (after filtering)
Since the test statistic is chi-square distributed under the null, they compared the 

distribution of observed test statistics to the expected under a chi-square distribution

Some traits show an 
enrichment of high test 

scores, while others 
(BD and HT) appear to 
lack power to identify 
associated variants



GWAS results for BD, CAD, CD
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GWAS for hypertension, RA, T1D, T2D
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Positive controls: known loci are detected in 
the GWAS



Q: How do you determine significance 
with so many tests?

A: Bonferroni correction based on the 
inferred number of independent tests



Bonferroni correction

• In genome-wide association studies, a very large number of tests are 
conducted, which leads to a multiple testing problem

• The Bonferroni correction can be used to adjust a significance test to 
correct for multiple tests

• Using a 5% significance threshold (𝛼 = 0.05), we would expect 5% of 
the markers whose true marker effect is 0 to be significant just by 
random chance

• This error is called the “type I error rate” , i.e., the probability of 
rejecting the null when the null is true

• When testing multiple hypotheses, the Bonferroni correction is used 
to control the type I error rate across hypotheses



Bonferroni correction

• If m is the total number of hypotheses tested, the Bonferroni 
correction rejects the null hypothesis for each 𝑝! ≤

"
#

• So, if you are testing 106 unlinked (independent) markers, the p-
value cut-off would be $.$&

'$!
= 5 x 10() or – log107.3

• For simplicity, GWAS p-values are plotted on a –log10 scale, as 
in this example:



Not enough data?

Make some up!

Genotype imputation



Genotype imputation is can be used to infer 
missing data and boost power in GWAS

https://www.nature.com/articles/s43586-021-00056-9

In a sample of unrelated individuals, 
some genotype data may be missing 

due to technical issues

(and missing data is an even bigger 
problem in whole genome sequencing 

data!)

Power to detect associations may be 
low due to missing data

…in other cases, a researcher may want to combine 
data sets to conduct a meta-analysis, but different 
SNP sets might be genotyped in different data sets



A reference set of samples can be used to 
impute based on haplotype similarity

Genomes sequenced in a 
reference panel, e.g., HapMap

Haplotypes are matched 
to the reference set based 
on the non-missing data in 

the sample

And missing data are imputed
https://www.nature.com/articles/s43586-021-00056-9



Considerations

• Haplotype imputation works best when samples of the 
population which imputation is needed are drawn from the same 
population as the reference sequenced reference

• Diverged samples cannot be imputed with high accuracy



What about population structure?

Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331



Population structure can confound association 
analysis
• Relatedness among individuals that is not accounted for can 

result in false positives or loss of power
• False positives may result from correlation between structure and the 

trait
• False negatives can result if the effects of structure are strong relative 

to the effects of true variants
• Including population structure in the model to detect genetic 

effects on phenotype can help solve these problems



PCA can be helpful for finding mistakes or 
individuals who do not cluster as expected

https://www.nature.com/articles/s43586-021-00056-9



Population structure in the WTCCC

Regions of origin in the WTCCC set Population structure based on MDS scaling



Approaches to deal with population structure

• Incorporate it into the model to estimate the effect of the genetic 
variant in the presence of population structure

• A covariance matrix of individuals, derived from the matrix of 
individuals x variants is often used to control for population 
structure in the model

• This is either done by including the covariance matrix directly in 
the model or by including eigen vectors derived from the 
covariance matrix (i.e., principal components) in the model



Linear model for genotype association analysis

Assuming the phenotype is quantitative and genetic basis additive, we can model it 
as

where yi is the phenotype of the ith individual, 𝛽0 is the mean, 𝑥𝑖, 𝑗 is the genotype 
of the ith individual at the jth variant, m is the number of variants, 𝛽𝑗 is the effect 
size of the jth variant, and 𝜀𝑖 is the error or noise term for the ith individual.

The noise terms are assumed to be independent with a Gaussian (i.e., normal)
distribution.
The genotypes are assumed to be fixed (not random) variables

𝑦" = #
#$%

&

𝛽' + 𝑥"𝛽# + 𝜀"



Linear Model for genotype association analysis

This model is run consecutively on individual SNPs, so in practice, for each 
SNP we assess the evidence for its marginal effect:

where yi is the phenotype of the ith individual, 𝛽0 is the mean, 𝑥𝑖 is the 
genotype of the ith individual, 𝛽 is the effect size variant, and 𝜀𝑖 is the error 
or noise term for the ith individual.

The noise terms are assumed to be independent with a Gaussian (i.e., 
normal) distribution.
The genotypes are assumed to be fixed (not random) variables

𝑦" = 𝛽' + 𝑥"𝛽 + 𝜀"



Linear Mixed Model for single SNP analysis

Estimate the effect of each allele on the phenotype, while controlling for 
population structure:

where Zu is the random term that accounts for the covariance structure 
among individuals. Z is an n x m matrix individuals x variants, u is an m x 1 
vector of random effects, and 𝜀 is an n x 1 vector of errors.
Calculating u and 𝜀 are computationally expensive steps due to the need to 
invert the matrix of residual error variance
Some work-arounds have been developed to improve computational speed, 
e.g., GEMMA

𝐲 = 𝛽' + 𝑥"𝛽 + 𝒁𝐮 + 𝜀"



Using principal components to account for 
population structure
• Start with the matrix of individuals by variants
• Identify vectors (eigenvectors) that maximize the variance 

explained from the total matrix
• Some number of principal components (eigenvectors) can then 

be included in the linear model to represent population structure
• Choosing the number of eigenvectors (principal components) to 

include in the model is not always straight-forward, but can be 
determined based on the amount of the total variance explained



PCA to control for population structure 
(Eigenstrat algorithm)

Step 1:
PCA is applied to genotype 
data to infer continuous axes of 
genetic variation (a single axis 
is shown here)

Step 2:
Genotype at a candidate SNP and 
phenotype are adjusted by 
amounts attributable to ancestry, 
removing correlation to ancestry

Step 3:
A corrected association test 
statistic results

These are 
eigenvectors or PCs

Residual variation after 
estimating effect of population 

structure (based on PCs) is 
used in association analysis

This correction for population structure 
often results in a more conservative 

association test result



CHALLENGE: What is the appropriate 
scale for defining a population

• Tradeoff between inclusive and specific definition
• Benefits of inclusive design:

• larger Ne: more genetic variation, potentially more phenotypic variation, 
less LD

• Benefits of specific definition:
• less genetic heterogeneity
• less allelic heterogeneity



With global population 
generally have more time 
(in the past) for 
recombination, so LD is 
lower

Local versus 
global samples 
for GWAS

Population structure may 
be less complex in a local 
population

Fewer genes underlying 
trait: less genetic 
heterogeneity in a local 
population

Fewer alleles underlying the 
trait: less allelic 
heterogeneity in a local 
population



Missing heritability: when and why does 
GWAS fail?

GWAS findings fail to account for all 
heritability
Some potential causes:

• Dominance effects
• Low frequncy variants responsible 

for trait variation
• Allelic heterogeneity
• Untagged structural variants 

responsible for trait variation
• Uncontrolled environmental 

confounders 
• Condition-dependent effects (GxG, 

GxE)

https://www.nature.com/articles/456018a



https://www.nature.com/articles/nature08494



SNPs only represent 
one type of variant

• Many potential types of 
variants are structural variants

• Many of these are difficult to 
assay accurately in short-read 
sequencing data

• Since structural variants affect 
larger genomic regions, they 
may have relatively high 
contributions to trait variation 



Sequencing technology is improving, allowing 
us to assess variation more completely

2005 present1977 2010

Source: https://www.pacb.com/blog/the-evolution-of-dna-sequencing-
tools/



Potential solutions to the missing heritability 
problem
• Larger sample sizes to improve power for low frequency 

variants
• Burden tests to combine signals in cases of allelic heterogeneity
• Include structural variants in the analysis
• Collect more thorough information about study subjects during 

DNA sampling



WTCCC was the starting point
Where are we now?



https://www.ebi.ac.uk/training/online/courses/gwas-catalogue-
exploring-snp-trait-associations/what-is-gwas-catalog/



GWAS through time



Complete sequences: UK Biobank

https://labs.icahn.mssm.edu/minervalab/resources/data-ark/uk-biobank/



US-based project All of Us aims to sequence 
1M+

A major goal of the All of Us project is to increase diversity in GWAS since most of 
what we know about trait-variant associations is derived from European populations



Mapping in the 
All of Us panel

LDL Cholesterol

https://www.nature.com/articles/s41586-023-06957-x



Phenome-wide association 
starts with a genetic variant and conduct association 
analysis across phenotypes

Phenome-wide association of Duffy blood 
group (ACKR1) identifies variation in 

individuals with African ancestry

Duffy-negative alleles are at high frequency in 
African populations and confer resistance to 

vivax malaria (Plasmodium vivax)

Howes et al., Nature Communications, 2011
Phenotype



HLA-DQB1 
(rs9273363)

https://www.nature.com/articles/s41586-023-06957-x/figures/9

AFR: African ancestry
AMR: Latinx/admixed ancestry
EAS: East Asian ancestry
EUR: European ancestry
MID: Middle Eastern ancestry
SAS: South Asian ancestry



TCF7L2(rs7903146)

https://www.nature.com/articles/s41586-023-06957-x/figures/10

AFR: African ancestry
AMR: Latinx/admixed ancestry
EAS: East Asian ancestry
EUR: European ancestry
MID: Middle Eastern ancestry
SAS: South Asian ancestry



https://www.nature.com/articles/s43586-021-00056-9

Gleaning biological understanding from GWAS 
(combined with other methods)



https://www.nature.com/articles/s43586-021-00056-9

Gleaning biological understanding from GWAS 
(combined with other methods)



https://www.nature.com/articles/s43586-021-00056-9

Gleaning biological understanding from GWAS 
(combined with other methods)



https://www.nature.com/articles/s43586-021-00056-9

Gleaning biological understanding from GWAS 
(combined with other methods)



https://www.nature.com/articles/s43586-021-00056-9

Gleaning biological understanding from GWAS 
(combined with other methods)



Review:
Schematic of a 
GWAS pipeline

https://www.nature.com/articles/s43586-021-00056-9


