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Project 4

Simulating Genetic Drift and
Mutation

Allele frequencies change for several reasons, one of which is sheer chance. These random changes,
which we call genetic drift, occur for many reasons. When a heterozygote produces a gamete,
that gamete may inherit either of the two parental alleles—the choice between them is random.
Similarly, there are random forces that affect how long we live, whether we succeed in mating,
and how many children we produce if we do. All of these effects contribute to genetic drift, but
population geneticists seldom try to model them in detail.

Instead, we think of genetic drift more abstractly. To produce each new generation, we imagine
that the genes of the parental generation are sampled to produce those of the offspring. The size
of this sample equals the number of gene copies in the offspring generation. On average, the allele
frequency of the offspring generation is the same as that of the parental generation, but in any
particular case it will be slightly higher or lower. The smaller the sample, the larger these random
changes are likely to be—the larger, in other words, is the effect of genetic drift.

The conventional way to model genetic drift involves the “urn” metaphor. We think of the
parental gene pool as an “urn” from which gametes (gene copies) are drawn at random, and we
think of the offspring gene pool as an initially empty urn to be populated by the gametes drawn
from the parents. Probability theory tells us about the distributions of outcomes to expect, given
the population size (N) and the allele frequency (p) among the parents. But what if we want to
observe a particular instance of this process, or more to the point, a sequence of such instances,
representing the long-term evolution of the population? Before computers, this was very difficult.
Now it’s easy and enlightening.

4.1 The easy way to sample from an urn

Each time you draw a ball, it is red with a probability (p) that equals the relative frequency of red
balls within the urn. This is just like tossing a coin, whose probability of “heads” is equal to p. You
already know how to do that because we did it in a previous project. Thus, you have all the tools
you need to write a computer simulation of genetic drift. In this project, however, we will show you
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PROJECT 4. SIMULATING GENETIC DRIFT AND MUTATION 4

an easier way.
In that previous project, you tossed coins using Python’s random function. We could use that

here again, but there’s an easier way. On the class website there is a file called pgen.py which
contains several functions that we have written for you. One of these is called bnldev. As explained
on on page 51, bnldev generates random values (deviates) from the binomial distribution. Be-
fore using it, you must import the bnldev function into your program. After that, the command
bnldev(N,p) will generate a binomial random deviate with parameters N (the number of trials)
and p (the probability of “success” on each trial).

Here is an example:

from pgen import bnldev

for i in range(5):

print(bnldev(10000, 0.5))

These three lines of code do five repetitions of Kerrich’s coin experiment. In each repetition,
bnldev(10000, 0.5) simulates the entire process of tossing a fair coin 10000 times. Try this on
your computer. You will be amazed at how fast it runs.

4.2 Iterating over a list

Before we get started in earnest, you need to learn a Python trick. Below, you will need to run a
simulation repeatedly, each time with a different value of the mutation rate, u. We want to show
you two ways of doing that. Instead of doing an entire simulation, each pass through the loop in
my examples will simply print the current value of u.

Here is the first approach:

u = [0.0001, 0.001, 0.01]

for i in range(len(u)):

print(u[i])

Consider how this works. The range command generates the following list: [0,1,2].1 Then the
for command iterates through this list. It is not necessary, however, to go through this extra step.
The for command will iterate through any list, whether it was produced by range or not. Here is
a re-write that avoids the range and len commands:

for u in [0.0001, 0.001, 0.01]:

print(u)

The second approach is simpler, and not only because it leaves out range and len. It also allows
one to refer to the current mutation rate simply as u rather than using the more cumbersome u[i].
Our bias in favor of the second method is pretty obvious, but you can use whichever method you
please.

1This is not quite true in Python 3.x, but we don’t need to worry about the difference.
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4.3 Simulating drift and mutation

On his own page 56, Gillespie presents a program that simulates genetic drift. Here is an improved
version, which uses bnldev:

1 from __future__ import division, print_function # not needed for Python 3.x

from pgen import bnldev

twoN = 100 # population size (number of gene copies)

5 maxgen = 100000 # maximum generation count

p = 0.5 # initial frequency of allele A

H = 2*p*(1-p) # initial heterozygosity

g = 0 # count generations

10

# Loop continues until heterozygosity is exhausted or we reach

# the maximum number of generations.

print("%4s %8s %8s" % ("g", "p", "H"))

while H > 0 and g < maxgen:

15 # Draw balls from urn. x is a binomial random

# variate representing the number of copies of A

# in the next generation.

x = bnldev(twoN, p)

20 p = x/twoN

H = 2*p*(1-p)

g += 1

print("%4d %8.3f %8.3f" % (g, p, H))

You will find this code on the lab page of the course web site in a file called drift.py. Download
it and run it a few times.

Once you get the program going, it should run to completion in 100 generations or so. The
middle column of output is p, which should wobble around and end up either at 0 or 1. Meanwhile,
H declines fairly steadily from 0.5 to 0.

Make sure you understand the code. Line 1 is not necessary if you’re running a recent version of
Python. It’s there so that the code will run correctly under older versions of Python. In line 18, x is
the number of copies of some allele (say A1) in the new generation. Using x, the program calculates
new values of p and H. Finally, it increments the count of generations and prints a line of output.

This program simulates drift in its purest form—no other evolutionary force is involved. In this
exercise, you will add mutation into this simulation. In the end, you will need to loop over several
values of u, the mutation rate. For the moment, however, start small by defining a single value.
Put the line u = 0.01 just after line 6 in your program. (Refer to the listing above for the line
numbering.) You have now defined a mutation rate. We will assume that the rate of mutation from
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A1 to A2 is the same as the rate from A2 to A1. How should these assumptions be incorporated
into the simulation?

The mathematical details depend on the order of events during the life cycle. Let us suppose
that the life cycle has the following steps:

1. Each individual produces many many gametes. Because there are so many gametes, the
frequency of A1 among them is essentially identical to that among parents. In other words,
there is no genetic drift at this stage. A fraction u of the copies of A1 become A2, and a
fraction u of the A2 become A1. As a result, the frequency of A1 becomes

p′ = p(1− u) + (1− p)u.

Among the gametes, a fraction p were allele A1. Of these, a fraction 1 − u failed to mutate
and are therefore still A1. Thus, p(1 − u) is the fraction of the gametes that carried A1 and
did not change, whereas (1 − p)u is the fraction that were A2 before mutation but are A1

after.

2. From these gametes, a smaller number (2N) of gene copies is chosen to become adults in the
next generation. This is where drift happens. In the new generation, the number of copies of
A1 among the adults is a binomial random variable with parameters 2N and p′.

Exercise

We are finally in a position to do something interesting. When the mutation rate is very low,
heterozygosity behaves as though there were no mutation at all—it declines to 0. This is not true,
however, for larger values of u. The question is, under what circumstances is the effect of mutation
large enough to matter? In other words, what is the smallest value of u for which H is appreciably
greater than 0? The answer will certainly depend on u, because u measures the force of mutation.
It may also depend on N , if the answer turns out to depend on the force of mutation relative to
that of drift. To answer these questions, the first step is to put mutation into your drift program:

1. Modify your drift program so that mutation occurs in each generation. This will involve
adding a line of code in between lines 14 and 15 in the listing above. Run your modified
program a few times. It should still run to fixation, but it should take more generations.

2. Modify your program so that it runs the simulation repeatedly, once for each of the several
mutation rates. Use at least four rates, which span the range from 0.0001 to 0.1, using the
method discussed above. Think carefully about how you want to divide this interval up. Do
you want to space the rates evenly on an arithmetic scale? On a logarithmic scale?2 Does it
matter? You will need to add a for statement just after line 6. This new loop will enclose
lines 7–23 of the original program, and those original lines will need to be indented. Remove
the print statement (line 23). The new program should have a single print statement, which

2On an arithmetic scale, the difference between each pair of adjacent mutation rates is the same. For example:
1,2,3, and 4 are equally spaced on an arithmetic scale. On a logarithmic scale, the ratios are the same. For example:
1, 10, 100, and 1000.
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should execute at the end of each pass through the outer loop. It should print the current
values of the following quantities:

2N twice population size
u mutation rate per gene copy per generation

4Nu twice the number of mutations per generation in the population as a whole
H heterozygosity
g count of generations

Format it so that the numbers line up in columns. In the output, pay close attention to the
printed value of gen. It tells you how many generations elapsed before either fixation of one
allele or the other. If neither allele was fixed, then H will be greater than 0, and gen will equal
maxgen.

3. Use this program in an effort to answer the question posed above. Search for the smallest
value of u (and 4Nu) for which H is appreciably greater than 0. Let’s call these the critical
values of u and 4Nu. To make your answers more precise, play around with the range of u
values in your simulation. But do not get carried away. We are not expecting high precision.
Just try for an answer that is correct within roughly a factor of 5.

4. Having found the critical values under a specific assumption about 2N , do it again with a
larger value of 2N—one that is 10 or 100 times as large. As population size increases, do the
two critical values go up, go down, or stay about the same? Is the pattern simpler in terms
of u or 2N or 4Nu?

5. Write a sentence or two summarizing the pattern in your results. Attempt to answer the
question posed above.

What to submit Upload your code to Canvas as a plain-text file with extension .py. This is
exactly the format produced by Idle; you shouldn’t have to change anything. In future labs, you
may need to write more than one program. If so, upload multiple files. In addition, upload a “lab
report”—a document in .pdf or .docx format, which contains relevant output and a paragraph or
two explaining what you did and what you learned.

What not to include in the lab report The lab report should not include computer code.
Neither should it include extraneous output. While you’re debugging a program, it’s often useful to
print the values of variables during intermediate steps, or that print a line of output on each pass
through a loop. This output does not belong in your lab report. Remove these print statements
before generating the output that you will submit.



Project 5

Simulating Gene Genealogies

This project introduces a procedure—a sort of recipe—for simulating genetic drift. In computing,
recipes are called “algorithms.” The one below is called the “coalescent algorithm.” It is based on
the theory about gene genealogies that you have been learning in lecture and in the text. We will
give you a simple version of the algorithm and ask you to modify it.

You used a different method to simulate genetic drift in Project 4. There, you kept track of each
copy of every allele in the entire population. In the new approach described here, we keep track
only of the copies within our sample. This is one of several reasons why the coalescent approach is
so powerful. This approach also differs from the traditional one in going backwards through time.

As we travel forward in time, genetic drift reduces variation within populations and increases
that between them. Thus, we focus on these variables in forward-time simulations. In backwards
time, drift implies that individuals share ancestors. The smaller the population, the more recent
these ancestors are likely to be. Thus, backward-time simulations focus on shared ancestors. Yet in
spite of this difference in focus, both kinds of simulation describe the same biology.

5.1 Exponential and Poisson random variates

In this project you will generate random variates from two probability distributions, the exponential
and the Poisson. (To refresh your memory about these, see Just Enough Probability.) The random

module of the Python Standard Library contains a function called expovariate, which generates
exponential random variates. Python has no built-in generator for Poisson random variates, how-
ever, so we provide one called poidev in our module pgen.py. You will need to download pgen.py

from the class web site. To make these functions available to Python, start your program with

from random import expovariate

from pgen import poidev

The expovariate function (described on page 51) returns a value drawn at random from the
exponential distribution. The single parameter of this distribution is called the hazard or the rate. In
this project, we will be interested the hazard of a coalescent event. In class we discussed this hazard
in the context of the standard model for neutral genes and constant population size. For example,
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in a sample of two gene copies, the hazard of a coalescent event is h = 1/2N per generation, where
2N is the number of gene copies in the population. We can use expovariate to simulate the time
since the last common ancestor (LCA) of two random gene copies. For example,

>>> from random import expovariate

>>> twoN = 1000.0

>>> expovariate(1.0/twoN)

380.65658779723157

Here, we handed expovariate a hazard of 1/2N , and it returned a value of 380.66 generations.
Think of this as the number of generations since the LCA of a pair of gene copies drawn at random
from a population in which 2N = 1000. Do this a few times yourself in Python’s interactive window
to get a feel for how such intervals vary in length.

To sample random values from the Poisson distribution, we use the poidev function, which is
described on page 52. We will use this distribution to model the number of mutations that occur
within a given gene genealogy. In this context, the mean is uL, the product of the mutation rate u
and the total branch length L. (The total branch length is the sum of the lengths of all branches
within the genealogy.) The command poidev(u*L) generates a random number that represents the
number of mutations within such a genealogy. Here are a couple of examples:

>>> from pgen import poidev

>>> u = 1/1000

>>> L = 4000

>>> poidev(u*L)

7

>>> poidev(u*L)

5

The two returned values—7 and 5—represent the numbers of mutations within two random ge-
nealogies within which L = 4000 and u = 1/1000. Do this a few times yourself.

Combining the exponential and Poisson distributions We usually do not know the lengths
of branches in a gene genealogy. What we do know are the values of genetic statistics such as S,
the number of segregating sites. In class we discussed the model of infinite sites, which implies that
S equals the number of mutations that occurred along the genealogy. How can we simulate that?

Let us go back to the simplest case: the genealogy of a pair of neutral genes in a population
consisting of 2N gene copies and with mutation rate u. We proceed in two steps. In the first step,
we use expovariate(1.0/twoN) to get a random value of t, the depth of the genealogy. Since there
are two lines of descent, the total branch length is L = 2t, and the expected number of mutations
is 2ut. Next, we call poidev(2*u*t) to get the number of mutations along a random genealogy.
Here’s an example:

>>> from pgen import poidev

>>> from random import expovariate

>>> u = 1/1000
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>>> twoN = 4000.0

>>> poidev(2*u*expovariate(1.0/twoN))

15

The result—15—represents the number of mutations between a random pair of genes drawn from
a population in which 2N = 4000 and u = 1/1000. Do this yourself a few times yourself.

Usually, we work with much larger samples, and we cannot get t directly from expovariate. In
this project, you will use the coalescent algorithm to find the total branch length (L) of a random
gene genealogy. Then you will use poidev to add mutations, just as in the preceding paragraphs.

5.2 The Coalescent Algorithm

The coalescent algorithm begins in the current generation with a sample of K gene copies. As we
trace the ancestry of this sample backwards in time, it will occasionally happen that two of the
ancestral genes are copies of a single gene in the previous generation. This is called a coalescent
event. With each coalescent event, the number of ancestral gene copies is reduced by one until
eventually only a single gene copy remains. This is the LCA of all the genes in the sample.

The time interval between two adjacent coalescent events is called a coalescent interval. As you
learned in class, the length of each interval is an exponential random variable. In the computer
program, we can use this fact to step from interval to interval. We need not concern ourselves with
individual generations.

As you learned in class, the hazard of a coalescent event is

h = x(x− 1)/4N

per generation, where 2N is the number of gene copies in the population, and x is the number
(during some previous generation) of gene copies with descendants in the modern sample. Below,
we use this fact together with expovariate to obtain simulated lengths of coalescent intervals.

The coalescent algorithm is very simple to code. Here’s a program called coal_depth.py, which
uses it:

1 from random import expovariate

K = 30 # sample size (number of gene copies)

twoN = 1000 # population size (number of gene copies)

5 tree_depth = 0.0 # age of last common ancestor in generations

# Each pass through loop deals with one coalescent interval.

while K > 1:

h = K*(K-1)/(2.0*twoN) # hazard of a coalescent event

10 t = expovariate(h) # time until next coalescent event

tree_depth += t

print("%2d %7.2f %7.2f REMOVE ME" % (K, t, tree_depth))

K -= 1 # must be the last line in the loop
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15 print("Tree depth:", tree_depth, "generations")

Download this program from the lab page of the class web site, and run it a few times. At the end
of each run, it reports the depth of a random gene tree.

In this code, K represents the number of gene copies. We set it initially to 30, the number of
gene copies in the modern sample. This value is reduced by one with each coalescent interval. The
heart of the algorithm is the while loop in lines 8–13. Each pass through that loop deals with one
coalescent interval. Within the loop, the program calculates the coalescent hazard and hands it
to expovariate, which provides the length (t) of the current coalescent interval. This version of
the program does nothing but add these values together to obtain the time since the LCA of the
sample. At the very end of the loop, we subtract 1 from K, because after a coalescent event has
occurred, there is 1 fewer lineage. As you modify this code, make sure this statement remains at
the very end of the while loop.

Exercise

1. The code above generates simulated values of the tree’s depth—the number of generations
from the present back to the LCA. Modify the code so that instead of depth, it simulates
the total branch length (L). To see how to do this, consider an interval during which there
were 18 distinct gene copies in the tree. If that interval lasted 45 generations, then it would
contribute 45 to the depth of the tree, as shown in line 11 of the code above. However, this
interval would contribute 45× 18 to L. Modify the code accordingly.

2. Once your program is producing random values of L, add a line near the top that sets
u = 0.001. Then, at the very end, use poidev as explained above to get the number of
mutations in the genealogy. (This number is a Poisson-distributed random variable with
mean uL.) At this stage, the program should produce a single line of output showing the
number of mutations on a random tree, given the population size and mutation rate.

3. A few years ago, Jorde et al published data in which the number of segregating sites was
S = 82 for a mitochondrial sample from 77 Asians. This is a good estimate of the number
of mutations in the mitochondrial genealogy of these subjects. In these data, the mutation
rate is thought to be about u = 0.001 per sequence. Let us entertain the hypothesis that the
Asian female population was historically very small: say 2N = 5000. Use these values to set
u, twoN, and K within your program, and then run it 20 times, keeping track of the results.

4. Use these results together with the observed data (S = 82) to evaluate the idea that the
simulation model describes reality. How many of the simulated values are smaller than 82?
How many are larger? Does the observed value represent an unusual outcome, or is it pretty
typical of the simulated values?

In the last step above, we are not asking for any detailed quantitative analysis. Just compare the
observed to the simulated values and make a subjective judgement. We’ll show you in the next
project how to put such conclusions on a firmer basis. Your project report should include (1) your
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program, (2) the 20 simulated values of S, and (3) a few sentences summarizing the conclusion that
you reached in the last step.



Project 6

Using Simulation to Test a Statistical
Hypothesis

In Project 5 you used a coalescent simulation to evaluate a hypothesis about 2N and u, two pa-
rameters that play central roles within population genetics. Your evaluation was subjective because
we did not ask for any formal statistical test. In this project, you’ll do it right. But first, you need
to learn some basic principles. We begin with two definitions.

6.1 A statistic and its sampling distribution

All data have noise. They are noisy because of measurement error, because of sampling error, and
because of unpredictable factors involved in the phenomena we study. This is why we need statistical
methods in the first place. Things that we calculate from data are called statistics. Familiar examples
include the mean and variance of a sample. Less familiar examples include estimates of the site
frequency spectrum and the mismatch distribution. When a gene genealogy is estimated from data,
even that is a statistic. Because they are based on noisy data, statistics are noisy too. In this
context, “noise” refers to random variation. Scientists deal with such randomness using probability
theory, and you should be familiar with that before reading further. (See Just Enough Probability.)

Scientific hypotheses are often tested by comparing a statistic to its sampling distribution. To
get this idea across, we re-visit a simple problem: that of tossing a coin. As you learned in Just
Enough Probability, John Kerrich tossed a coin 10,000 times and observed 5070 heads. This number
is a statistic. How could we use it to test a hypothesis?

Suppose we suspected that Kerrich’s coin was slightly unfair, that the probability (p) of heads
was 0.45 on each toss. To test this idea, we would need to know whether the value that Kerrich
observed is unusual in similar experiments for which p really does equal 0.45. Suppose that we
somehow managed to manufacture such a coin and then used it in 100,000 repetitions of Kerrich’s
experiment. Suppose in addition that in none of these was the number of heads as large as Kerrich’s
value, 5070. Then Kerrich’s result would clearly rank as unusual, and this might lead us to doubt
the original hypothesis that p = 0.45. This is the reasoning that usually underlies tests of statistical
hypotheses. The difficulty is that usually (as here) these repetitions are impossible to carry out.

13
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Figure 6.1: Two ways to graph a sampling distribution. Areas under the density function correspond to
probabilities. For example, the left shaded region comprises a fraction 0.1 of the total area, because 0.1
is the probability that X < x0. On the right, the vertical axis shows F (x), the probability that X < x.
For example, F (x0) = 0.1 and F (x1) = 0.9.

There is no way to manufacture a coin for which p is exactly 0.45. Even if that were possible, who
would volunteer to toss that coin 100, 000× 10, 000 = 1 billion times?

Nonetheless, let’s pretend that we had really done 100,000 repetitions of Kerrich’s experiment
under conditions that guarantee that p = 0.45. We could calculate the number of heads from each
repetition and then summarize these values using a frequency distribution. Since the number of
repetitions was so large, this frequency distribution would approximate a special sort of probability
distribution called a sampling distribution.

The sampling distribution of a statistic is its probability distribution, but only in a restricted
sense: it is the probability distribution implied by a particular hypothesis. Different hypotheses
imply different sampling distributions, even for the same statistic. In our example, we assumed
that p = 0.45. A different hypothesis would imply a different sampling distribution.

In short, a sampling distribution is the probability distribution of a statistic, as implied by a
particular hypothesis.

6.2 Using sampling distributions to test hypotheses

Let us postpone the question of how one gets a sampling distribution. For the moment, our focus is
on using one to test a hypothesis. It is sometimes useful to distinguish between a random variable
and the particular values it may take. In this section, we use upper case for the former and lower
case for the latter. Thus, X represents a random variable and has a probability distribution, but x
is just a number.

Figure 6.1 shows two ways to graph the sampling distribution of a hypothetical statistic, X.
In the left panel, the vertical axis shows the probability density function, f . Areas under the curve
correspond to probabilities in the sampling distribution of X. The shape of this particular density
function may look familiar, but that has no relevance here. Sampling distributions can have any
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shape.
In the density function in the left panel, the two “tails” of the distribution are shaded. These

tails comprise only a small fraction of the total area under the curve. For this reason, the observed
value of our statistic is unlikely to fall within either tail. If it does, then either (a) we have observed
an unusual chance event, or (b) our hypothesis and its implied sampling distribution are incorrect.
When this happens, we say that the hypothesis has been rejected.

This does not mean it is wrong, for correct hypotheses may be rejected too. The probability of
such an error is called α and is equal to the shaded area of the graph. To minimize these errors, we
usually choose small values of α, such as 0.05 or 0.01. In figure 6.1, we have set α to a very large
value (0.2) so that the shading is easy to see.

The right panel of Figure 6.1 shows another way to graph the same sampling distribution. The
vertical axis shows F (x), the probability of observing a value less than or equal to x. This is called
the cumulative distribution function. For example, in the figure’s left panel, a fraction 0.1 of the
area under the curve lies to the left of x0 and a fraction 0.9 lies to the left of x1. Consequently, the
right panel shows that F (x0) = 0.1 and that F (x1) = 0.9.

We explained above how f can be used to test a statistical hypothesis: if the observed value
falls within the shaded tails, then we reject. This idea can be re-expressed in terms of F because
F and f contain the same information. In terms of F , we reject if

F (xobs) ≤ α/2, or F (xobs) ≥ 1− α/2, (6.1)

where xobs is the observed value of the statistic, and α is the level of significance.1 This is just
another way of saying that the observed value fell into one of the tails.

In testing a statistical hypothesis, one can work either with the density function (f) or with
the cumulative distribution function (F ), but the latter approach is often easier. We don’t need to
know the whole sampling distribution—just a single value, F (xobs). As we shall see, this value is
easy to estimate by computer simulation.

6.3 Sampling distributions from computer simulations

Long ago there was only one way to figure out the sampling distribution implied by a hypothesis—
it required a sharp pencil and a mathematical turn of mind. That approach doesn’t always work
however, even for gifted mathematicians. Fortunately there is now another way: we can estimate
sampling distributions from computer simulations.

In an informal way, you have done this already. In Project 5, you generated several simulated
values of a genetic statistic (S) under a particular hypothesis about u and 2N . You then compared
these simulated values to the one (Sobs = 82) that Jorde obtained from real data. Near the end of
that assignment, we asked: “How many of the simulated values are smaller than 82? How many are
larger?” These are questions about F (Sobs). We then asked: “Does the observed value represent an

1Consider first the left shaded tail. This tail contains half the shaded area and thus has probability α/2. This
means that F (x0) = α/2. If xobs falls within this tail, then it must be true that F (xobs) ≤ α/2. We can reject
any hypothesis for which this condition is true. Applying the same reasoning to the right shaded tail, we reject if
F (xobs) ≥ 1 − α/2.
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Simulation x Simulation x

1 4439 6 4508
2 4474 7 4521
3 4484 8 4527
4 4489 9 4558
5 4495 10 4566

Table 6.1: The number (x) of heads in ten draws from the binomial distribution with N = 10, 000 and
p = 0.45.

unusual outcome, or is it pretty typical of the simulated values?” In answering that question, you
used the same logic that we explained above. The approach is more formal this time, but the idea
is the same.

To see how this works in detail, let us return to our hypothesis about Kerrich’s coin. Our
statistic (xobs) is the number of heads in 10,000 tosses, which equalled 5070 in Kerrich’s data. We
are interested in F (xobs) under the hypothesis that p = 0.45. The conditions of Kerrich’s experiment
imply that the number of heads is drawn from a binomial distribution. This distribution has two
parameters: the number (N) of trials and the probability (p) of “heads” on each trial. Our hypothesis
assumes that p = 0.45, and we can take N = 10, 000, because that is how many times Kerrich tossed
the coin. We need to calculate F (5070) from a binomial distribution with these parameter values.

We could do this calculation by summing across the binomial distribution function, but we’ll
do it here by computer simulation. The procedure is simple: over and over, we simulate Kerrich’s
experiment under the conditions of our hypothesis. Each simulation generates a value of x, the
number of heads. Table 6.1 shows the result of 10 such simulations. In every one, the simulated
value of x is smaller than xobs = 5070, the value that Kerrich observed. Already we begin to
suspect that our hypothesis is inconsistent with the data. Let us relate this to the probability,
F (xobs), discussed above.

As you know, probabilities are estimated by relative frequencies. We can estimate F (xobs) as the
relative frequency of observations such that x ≤ xobs. Every one of the 10 observations in Table 6.1
satisfies this condition. Thus, we estimate F (xobs) as 10/10 = 1. Our sample is small, so this may
not be a very good estimate. But let us take it at face value for the moment. To test a hypothesis,
we must first specify α, so let us set α = 0.05. With this significance level, equation 6.1 says that we
can reject if F (xobs) ≤ 0.025 or ≥ 0.975. Our estimate is F (xobs) = 1, which is clearly greater than
0.975. Thus, we reject the hypothesis—or we would do so if we trusted our estimate of F (xobs).

A convincing answer will require many more simulations, a potentially tedious project. Here is
a program called cointest.py, which removes the tedium:

1 from pgen import bnldev

xobs = 5070 # Observed value of statistic.

nreps = 100 # Number of repetitions to do.

5
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p = 0.45 # As assumed by hypothesis.

F = 0.0 # Will hold Pr[X <= xobs]

for i in range(nreps):

10 x = bnldev(10000, p) # Number of heads in one experiment

if x <= xobs: # Count number of x’s that are <= xobs

F += 1

F /= nreps # Turn count into a fraction.

15

print("F[%d] = %6.3f for hypothesis: p=%5.3f" % (xobs, F, p))

In this code, each execution of line 10 repeats Kerrich’s experiment, using the function bnldev.
(This function is described in Project 4 and documented more fully on p. 51 of appendix B.3.1.)
Lines 11–12 count the number of such repetitions for which the outcome is less than or equal to the
observed value 5070, and line 14 converts the resulting count into a fraction. Download this code
from the class web site and run it. You should get something that looks like this:

F[5070] = 1.000 for hypothesis: p=0.45

The critical piece here is the value 1.000. This is the fraction of simulations for which the simulated
value was less than or equal to Kerrich’s value, 5070. It estimates F (xobs). Even in this larger
sample, every simulation resulted in fewer heads than Kerrich saw. If our hypothesis about p is
correct, then Kerrich saw something remarkable. This is probably not what happened. It seems
more likely that our hypothesis about p is way off the mark.

This estimate of F (xobs) is a lot more reliable than the previous one, because it is based on
100 simulations rather than 10. It would be more accurate still if we had done 10,000. We did not
start with 10,000, because it’s wise to keep the number small until you get the code running. Try
increasing nreps to 10,000. Does it makes a difference?

Exercise

1. Revise your coalescent code from Project 5 so that it tests the same hypothesis (u = 0.001
and 2N = 5000) that we considered there, using the same data (Sobs = 82, K = 77). To do
this, use cointest.py as your model. Simply replace line 10 with the simulation that you
wrote in Project 5. Like cointest.py, your program should produce a single line of output.
Show us the program and its output, and write a sentence or two saying whether and why
the hypothesis can be rejected.

The tricky parts of this exercise are getting the indentation right and making sure that each variable
is initialized where it needs to be.

Before proceeding, make sure you understand what this program does. In principle, it is exactly
what you did in Project 5. The program does the same simulation many times and allows you to
tell whether the observed value, Sobs = 82, is unusually large, unusually small, or typical, under a
particular evolutionary hypothesis.
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6.4 Confidence intervals

In the preceding section, we tested a single hypothesis about the value of p. It would be more
interesting to examine a range of p values in order to see which can be rejected and which cannot.
Here is a modified program called coin_ci.py, which does this:

1 #!/usr/bin/python

from pgen import bnldev

xobs = 5070 # Observed value of statistic.

5 nreps = 1000 # Number of repetitions to do.

for p in [0.49, 0.495, 0.5, 0.505, 0.51, 0.515, 0.52, 0.525]:

F = 0.0

10 for i in range(nreps):

x = bnldev(10000, p)

if x <= xobs:

F += 1

15 F /= nreps

print("F[%d] = %6.3f for hypothesis: p=%5.3f" % (xobs, F, p))

Notice how little this differs from cointest.py. Line 6 has been re-written, and lines 7–16 have
been shifted to the right. We also bumped nreps up to 1000. Apart from these minor changes, the
two programs are identical. These changes create an additional loop, which does a separate test
for each of the values of p listed on line 6. Make sure you understand why the values of xobs and
nreps are set outside this loop, and why that of F is set inside it.

Download this program and get it running. Your output should look similar to this:

F[5070] = 1.000 for hypothesis: p=0.490

F[5070] = 0.995 for hypothesis: p=0.495

F[5070] = 0.921 for hypothesis: p=0.500

F[5070] = 0.675 for hypothesis: p=0.505

F[5070] = 0.259 for hypothesis: p=0.510

F[5070] = 0.067 for hypothesis: p=0.515

F[5070] = 0.004 for hypothesis: p=0.520

F[5070] = 0.001 for hypothesis: p=0.525

Each line of this output tests a different hypothesis. We can reject the first two (at α = 0.05)
because F (xobs) ≥ 0.975. We can reject the last two because F (xobs) ≤ 0.025. The hypotheses we
cannot reject include all values within the range 0.5 ≤ p ≤ 0.515. These values—the ones we cannot
reject—are called the confidence interval of p.
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There is a little ambiguity here. We can reject p = 0.495 but not p = 0.5, so the lower boundary
of the confidence interval must lie somewhere between these values. Exactly where, we cannot
say. There is a similar ambiguity involving the upper boundary. It is safe however to say that the
confidence interval is enclosed by the slightly larger interval 0.495 < p < 0.52. The limits (0.495
and 0.52) of this larger interval are clearly outside the confidence interval, for we were able to reject
them. This is why we use the strict inequality symbol (<). To be conservative, it is good practice
to use this larger interval when reporting a confidence interval.

Exercise

2. Revise your coalescent code using coin_ci.py as a model, and estimate the confidence interval
of 2N . Show us your code, the output, and a brief explanation. Your explanation does not have
to be long. Just explain what you have learned about the parameter 2N . Which hypotheses
about 2N can we reject, and which are still on the table?

At this point, we hope you can see (a) that testing a statistical hypothesis just amounts to
asking whether your observation is unusual, and (b) that a confidence interval is just a summary
of hypothesis tests. The methods of statistics are complex, but the underlying ideas are simple.

6.5 p-hacking

This lab has introduced the classical approach to testing a statistical hypothesis. Although such
tests play an important role in science, they can also mislead. To see how, we encourage you to
spend some time with this website:

https://fivethirtyeight.com/features/science-isnt-broken

The interactive tool there will enable you to prove either that Democrats are good for the economy
or that Republicans are, depending on your own preconceptions.

That bit is discouraging, but keep reading. The second part of the article describes a study in
which 29 teams of scientists each used identical data in an effort to answer the same question: do
referees give more red cards to dark-skinned soccer players than to light-skinned ones? The teams
of scientists used different methods and got different answers. Yet if you focus on the results that
were statistically significant, you’ll find that they tell a consistent story.



Project 7

Simulating Selection and Drift

In Project 4, you incorporated the effect of mutation into a model of genetic drift. Here, you will
modify that code once again to incorporate the effect of selection and then use the resulting code
in an experiment.

In his section 3.1, Gillespie lays out the algebra of natural selection. At the top of page 62, he
presents a classical formula for the frequency (p′) of allele A1 among offspring, given the genotypic
fitnesses and the allele frequency of the parents:

p′ =
p2w11 + p(1− p)w12

w̄
(7.1)

Here, wij is the fitness of genotype AiAj , and

w̄ = p2w11 + 2p(1− p)w12 + (1− p)2w22

is mean fitness.
This formula gives the allele frequency expected among offspring in the absence of genetic drift.

In a finite population, however, there will also be variation around this expected value. We can
model this process using a modified version of the urn model of genetic drift. In the standard urn
model, we are equally likely to choose any ball in the urn. If p is the fraction of balls that are black,
then p is also the probability that the ball we choose will be black. Now, however, there is a bias:
one allele has higher fitness than the other. In the urn metaphor, balls of one color (say black) are
more likely to be drawn. A ball drawn from this biased urn is black with probability p′, as given
by equation 7.1. You will use this idea below in order to simulate the combined effects of selection
and drift. As you will see, the procedure is almost identical to the one you used in Project 4, where
you modeled the combined effects of mutation and drift.

Exercise

1. Begin either with your code from Project 4, or else with a fresh copy of file drift.py from
the class web site. Next, modify this code so that it performs the simulation many times.
You did this with the coalescent simulation in Project 6, so you already know how. You need
something along the following lines:

20
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1 twoN = 40 # population size

2 nreps = 100 # number of replicates

3 for rep in range(nreps):

4 p = 1.0/twoN

5 <then the "while loop" from the drift simulation>

Note that line 5 is not real code. You should replace it with code from your own program.

It will be useful to simplify the drift simulation a bit. In the previous lab, the inner loop
began like this:

while H > 0 and g < maxgen:

This required that we define H, maxgen, and g ahead of time, and then keep the variables
up to date. None of this is needed for the current lab, so get rid of the code defining and/or
updating these variables, and replace the while statement above with

while 0.0 < p < 1.0:

This loop will continue until the allele we’re tracking is either fixed or lost. It’s simpler,
because it doesn’t require any additional variables.

With this set up, each run of the program will perform 100 replicate simulations. So far, the
program does not simulate selection. It just does 100 runs of the drift simulation. Later on,
you will want to make nreps much larger. Notice that p = 1/2N at the beginning of each
replicate. With this setup, we can interpret each replicate as a model of a newly arisen mutant
allele.

Make sure you understand why some variables (twoN and nreps) are set before the for loop,
and the others are set within the loop but before any other code. Beginners often get this sort
of thing wrong, so make sure you understand what is happening here. What would happen
if twoN were set inside the for loop?1 What would happen if nreps were set inside the for

loop?2 What would happen if gen and p were set before the for loop rather than within it?3

Once you understand the code, take out all the old print statements. At the very end—after
all replicates have run—print the fraction of replicates in which A1 was fixed (p = 1) rather
than lost (p = 0).

2. Now modify the program to implement the biased urn model that we discussed above. At the
top of your program, define the following constants: 2N = 40, s = 0.1, h = 0.5, w11 = 1 + s,
w12 = 1 +hs, and w22 = 1. This says that A1 is favored and that there is no dominance. hs is

1The code would still run correctly, but not quite as fast. This is because twoN is a constant whose value never
needs to change.

2You must set nreps before you first use it, in the range statement. Otherwise the code will break. Once range

executes, it doesn’t matter whether you set nreps again, although doing so is a waste of time.
3On the second pass through the loop, things would break because gen and p would begin the loop with the values

they had at the end of the first pass.
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the fitness advantage of heterozygotes over A2A2 homozygotes. Note the difference between
this fitness scheme and the one in the text.

Next, modify the value of p just before the call to bnldev, and then use this modified p in the
call to bnldev. You did this in Project 4 in order to model mutation. Now you will do it again
(this time using Eqn 7.1) in order to model selection. (Incidentally, you may be tempted to
define a new variable called p’. This will not work, because the “’” character is illegal within
Python names. Use some other name instead, or simply redefine the variable p.)

3. So far, you’ve got a program that runs the same simulation nreps times. Now you want to
repeat that entire process for each of the following values of 2N : 500, 1000, 2000 and 4000.
This will involve enclosing the existing code in a for loop, as we illustrated in coin_ci.py

(see p. 18 of Project 6).

4. Once you have the program working, it is time to collect some data. Set nreps to 10000,
and run the simulation with each of the following values of s: 0, 0.001, and 0.02. You will
discover that this takes awhile for the case in which s = 0. Use the results to make a graph
with log10 2N on the horizontal axis and “fraction fixed” on the vertical. Draw three lines:
one connecting the points with s = 0, one for s = 0.001, and one for s = 0.02. Summarize
the graph in words. How does the probability of fixation respond to population size? Write a
paragraph interpreting your results using the theory discussed in Gillespie and in class.

Hint: To save yourself some work, you may want to ask Python to calculate the log10 values
rather than using your calculator. To do this, put

from math import log10

at the top of your program. Then log10(100) will give log10 100 (which equals 2).



Project 8

Using HapMap

Several large databases of human genetic variation have become available during the past decade,
and they have revolutionized the field. This project will introduce you to one of them, the HapMap.
The HapMap project has genotyped millions of single-nucleotide polymorphisms (SNPs) throughout
the human genome within samples from several human populations. You will learn how to download
and manipulate these data, and will then use them to explore the relationship between observed
and expected heterozygosity in HapMap SNPs.

8.1 Choosing a population and chromosome at random

The original HapMap provided data on the following populations:

Label Sample

YRI 90 Yorubans from Nigeria
CEU 90 Utahns of western and northern European ancestry
CHB 45 Han Chinese from Beijing
JPT 44 Japanese from Tokyo

JPT+CHB combined Chinese and Japanese samples

Although recent releases of HapMap have added additional populations, we will focus on these. The
data from these populations are made available as plain text files, one for each chromosome within
each population. You will download one of these files onto your computer, but first you must figure
out which one.

For this project, you will choose a chromosome and population at random. To do so, cut and
paste the following program into the Python interpreter, and run it once.

from random import choice, randrange

print("Your chromosome is number", randrange(1,23))

print("Your population is", choice(["YRI", "JPT+CHB", "CEU"]))

It will tell you the number of your chromosome, and the name of your population. This program
uses two new functions—choice and randrange—from Python’s random module. We’ll be using

23
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these at several points in this project, so you should experiment with them until you understand
how they work. They are described in section B.2, page 50.

8.2 Downloading data

Now that you know your chromosome and population, you are ready to visit the HapMap web
site. This is a task that you’ll need to do for several projects, so we’ve put the instructions into a
self-contained appendix, which you’ll find on page 48. Please download two data files: the one for
your own chromosome and population, and also the one for chromosome 22, population JPT.

From here on, we’ll assume that you have already downloaded the appropriate data file for this
project. We recommend that you put all relevant files into the Documents folder. Before proceeding,
make sure that the data file and pgen.py are both in the same folder (or directory), and that Python
can execute the command from pgen import * without generating an error.

8.3 Using the pgen module to work with HapMap data

The pgen module provides several tools for use with HapMap data files. These are described in
section B.3.2 (page 52). Here, we merely illustrate their use. At the top of your program, you will
need the line:

from pgen import *

The portion of the program that uses HapMap data should begin like this:

pop = "JPT"

chromosome = 22

hds = hapmap_dataset(hapmap_fname(chromosome, pop))

Here, the call to hapmap fname tries to find the name of an appropriate HapMap data set—one
for chromosome 22 and population JPT. If it succeeds, it hands that name to hapmap dataset,
which reads the file and stores it in a useful form (more on this in a moment). In the last line, the
assignment statement creates a variable called hds, which points to this data structure. We use the
name hds to help us remember that it refers to an object of type “hapmap dataset,” but you can
use any name you please.

But what exactly is an object of type “hapmap dataset?” Well, it is a lot like a Python list.
Like a list, it has a length:

>>> len(hds)

11235

And like a list, it also has a sequence of data values that we can access like this:

>>> snp = hds[3]
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Now snp refers to the data value at position 3 within the data set. This data value is an object of
another specially-created type, called “hapmap snp.”

An object of type hapmap snp has a variety of types of data. Having defined snp, we can type

>>> snp.chromosome

’22’

>>> snp.position

14603201

>>> snp.id

’rs1041770’

These commands report (1) the chromosome on which this SNP lies, (2) the position of the SNP
in base pairs, measured from the end of the chromosome, and (3) the “rs-number,” a name that
uniquely identifies this SNP. You might think that the rs-number was redundant, once we know
the SNP’s position. However, the position values change a little with each new build of the data
base, whereas the rs-numbers are invariant from build to build.1 Thus, the rs-number is essential if
you want to find a SNP that is discussed in the literature.

hapmap snp also contains all the genetic data for the SNP. For example,

>>> snp.alleles

[’G’, ’T’]

returns a list containing the two alleles that are present at this locus. In the original data file, the
genotype of each individual would have been represented as GG, GT, or TT. In hapmap snp, these
genotypes are recoded as numbers:

>>> snp.gtype

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

Each integer counts the number of copies of alleles[0] in one individual. In these data, allele 0
is G, so the integers 0, 1, and 2 correspond to genotypes TT, TG, and GG. Since the genotypes
are now integers, they have a mean and a variance, which you can access like this:

>>> snp.mean

0.066666666666666666

>>> snp.variance

0.06222222222222222

Objects of type hapmap snp behave like lists. The command snp[3] returns the genotypic value at
position 3, len(snp) and snp.sampleSize both return the number of genotypes in the data, and
sum(snp) returns the sum of the genotypic values.

In these examples, snp is the name of a variable that points to an object of type hapmap snp.
But we could have used any other name just as well. For example,

1Occasionally, rs-numbers do change. This happens when it is discovered that two numbers actually refer to the
same SNP. Then the higher number is retired, and lower number becomes the official designation.
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>>> another_snp = hds[23]

>>> another_snp.alleles

[’A’, ’C’]

8.3.1 Some examples

This section shows how pgen’s HapMap facilities can be used to solve problems. Read them carefully,
and try them out in Python’s interactive interpreter. They will all be useful later on.

Working with gtype In a miniature sample of 8 genotypes, gtype might look like this:

>>> snp.gtype

[1, 0, 0, 1, 1, 2, 0, 1]

Each number counts the copies of allele 0 in an individual genotype. The sum of these values—in
this case 6—is the number of copies of this allele in the data set. Since each genotype has two genes,
the total number of genes is 2 × 8 = 16. The frequency of allele 0 is therefore p = 6/16. On the
other hand, the average of the data values is x̄ = 6/8. The allele frequency is exactly half the mean
and is thus amazingly easy to calculate:

>>> p = 0.5*snp.mean

Just remember that this is the frequency of allele 0—the one that is listed first in snp.alleles.

Counting genes and genotypes As explained above, the number of copies of allele 0 is just
the sum of genotypic values:

>>> n0 = sum(snp)

What about the number of heterozygotes? The variable snp.gtype is a Python list. As such, it has
a built-in method called count that will count the number of copies of any given value within the
list. In our data, every heterozygote is represented by the integer “1.” We can count the number of
heterozygotes with a single command:

>>> snp.gtype.count(1)

Here, count is a built-in method that would work on any Python list. To calculate the frequency
of heterozygotes:

>>> snp.gtype.count(1)/snp.sampleSize

Looping over SNPs There are several ways to loop over the SNPs in a hapmap dataset. If you
want to include all the SNPs, the code is very simple:

>>> for snp in hds:

... print(snp.mean)
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This works because objects of type hapmap snp behave like lists. Today’s project involves making
a graph. If you tried to graph all the SNPs, the graph would be incomprehensible. Consequently,
we will look only at a limited sample. The easy way to do this is as follows:

>>> for i in range(50):

... snp = choice(hds)

... print(snp.mean)

This loop includes 50 SNPs chosen at random from among all those in the data. The code makes
use of the choice function, which we introduced on p. 23 and discuss more fully on p. 51.

Exercise

Create a hapmap dataset for chromosome 22 of population JPT. From this dataset, select the SNP
whose index is 83, i.e. hds[83]. Use this SNP to answer the following questions: (1) What is the
nucleotide state (A, T, G, or C) of allele 0? (2) How many copies of this allele are present? (3) What
is its relative frequency? (4) What is the expected frequency of heterozygotes at Hardy-Weinberg
equilibrium? (5) What is the observed frequency of hetetozygotes? (6) What is the position (in
base pairs) of this SNP on the chromosome?



Project 9

Heterozygosity of HapMap SNPs

Heterozygosity is perhaps the most fundamental measure of genetic variation. In this project, we’ll
study the heterozygosity of SNPs within the HapMap data base. For each SNP, we’ll calculate not
only the observed heterozygosity, but also the value expected at Hardy-Weinberg equilibrium. We’ll
be interested to see how well the two numbers agree.

The exercise will involve modifying the incomplete code below. You can download it from the
lab website, where it is called haphetinc.py.

1 from pgen import *

from random import choice

chromosome = 22

5 pop = ’JPT’

hds = hapmap_dataset(hapmap_fname(chromosome,pop))

for i in range(20):

snp = choice(hds)

10

ohet = 0.0 # REPLACE ME

ehet = 0.0 # REPLACE ME

print("%5.3f %5.3f" % (ohet, ehet))

The guts of this little program is the loop in lines 8–14. Each time through the loop, we choose a SNP
at random from the data set. Then we set the observed (ohet) and expected (ehet) heterozygosities,
and print these values. Only, as you can see, the present code just sets these values to 0.

Exercise

1. Change lines 11-12 so that they calculate the observed and expected heterozygosities of each
SNP.

28
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So far, your program merely lists the expected and observed heterozygosity values. It is hard
to get a good sense of these values, just by staring at the numbers. You’ll appreciate the pattern
better after making a scatter plot. Before you can do this, you must first get the data values into
lists.

9.1 Storing values in a list

As you calculate values of ohet and ehet, you will need to store them in a list. Before you can
do so, the list must first exist. Thus, you will need to create an empty list before the main loop in
your program. For example, you might use a command like obs_vals = 3*[None] to create a list
with room for three observed values. Here, the keyword “None” is Python’s way of representing an
unknown value. In subsequent commands, you replace these with real values. Here is how it works:

>>> obs_val = 2*[None]

>>> obs_val

[None, None]

>>> obs_val[0] = 3.0

>>> obs_val[1] = 111

>>> obs_val

[3.0, 111]

Below, you will create two lists (one for ohet and one for ehet) to store the values you calculate
within the loop in the program above. Your lists should be defined before the loop and should be
long enough to hold all the values you will calculate within the loop.

It is also possible to start with an empty list:

>>> obs_val = []

>>> obs_val

[]

Then you can add values using the append method, which works with any list:

>>> obs_val.append(3.0)

>>> obs_val.append(111)

>>> obs_val

[3.0, 111]

Either way, you end up with the same answer. The first method is faster with large jobs, but the
second is easier. Feel free to use either approach.

9.2 Making a scatter plot

There are several Python packages for making high-quality graphics. If you are working on your own
machine at home, you may want to download either matplotlib or gnuplot.py. Unfortunately,
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none of these packages is available in the Mac Lab at Marriott Library. As a partial solution to this
problem, we have implemented a crude graphics function within pgen.py. It constructs a scatter
plot out of ordinary text characters—a style of graphics that has not been common since the 1970s.

The function charplot is described on page 53. Here is a listing that illustrates its use:

from pgen import charplot

x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

y = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

charplot(x, y)

When this program runs, it makes a scatter plot of the (xi, yi) values, with x on the horizontal axis
and y on the vertical. Try it yourself. The function accepts several optional arguments, which you
can use if you wish to control the number of tick marks or the dimensions of the plot. See page 53
for details.

Exercise

2. Instead of printing the heterozygosity values, put them into two lists: one for the expected
values and the other for the observed values. At the end of the loop, make a scatter plot, with
expected heterozygosity on the horizontal axis and the observed value on the vertical axis.

3. Use your program to produce a graph. Experiment to find the best number of SNPs. With a
ruler and pencil, draw a line on the graph representing the function y(x) = x. (To help you
draw this line, you may want to append a dummy pair of data values such as (0.7, 0.7) before
calling charplot.) If observed values always equaled expected ones, all points would fall on
this line. Write a short paragraph describing the pattern you see. Is there good agreement
between observed and expected values, or do you see a discrepancy? Does variation about the
expected value increase with the expected value, or does it decrease or stay the same? Why
might this be?

What to hand in Your answers to step 1, the final version of your program, the graph, and a
paragraph discussing the results.
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Simulating Selection and Drift at Two
Loci

This project is motivated by the current widespread interest in using linkage disequilibrium (LD)
to detect selective sweeps. The goal is to find out how linkage disequilibrium (as measured by r2)
behaves when one locus is undergoing a selective sweep and the other is neutral. You will build a
simulation model involving selection, recombination, and drift at two loci.

In the end, you will need to tabulate values of a continuous variable, r2. We’ve written a Python
class called Tabulator, which simplifies this task. See sec. C.3, p. 58, for details.

We assume that selection acts at one locus, where allele A is favored over allele a. At a linked
locus, alleles B and b are neutral. The simulation starts with pA = 1/2N and stops when pA ≥ 1/2.
At that point, it prints out pA, pB, and r. By doing a number of replicate simulations, you will get
a sense of how r behaves when pA is near 1/2. On the class website, you will find a program called
twolocinc.py, which does most of this job. Your task is to fill in the pieces that we have left out,
and then to run the program a few times to collect data. But first, we need to tell you about some
nuts and bolts.

10.1 Sampling from the multinomial distribution

Thus far, our simulations have involved a single locus with two alleles. To model drift in such a
system, we used the metaphor of an urn containing balls of two colors. Now we need to keep track
of four types of chromosome (or gamete): AB, Ab, aB, and ab. The urn metaphor still works, but
now the urn contains balls of four types. In a slight modification of Gillespie’s notation, we write
the relative frequencies of the four gamete types as:

Gamete AB Ab aB ab
Rel. freq. x0 x1 x2 x3

Our initial subscript is 0 (rather than 1) for consistency with subscripting in Python.
Suppose the urn contains four types of balls in these frequencies. You draw 2N balls at random

from the urn, replacing each one and then shaking the urn before selecting the next ball. Among
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the balls that you selected, we represent the number of each type as follows:

Gamete AB Ab aB ab
Count n0 n1 n2 n3

In other words, n0 is the number of balls of type AB that were drawn from the urn, and so on.
Each time you repeat this experiment, the values in the array [n0, n1, n2, n3] will vary at random.
The probability distribution that describes this variation is called the multinomial. In the special
case when there are only two types of balls, there is no difference between the multinomial and
binomial distributions. The multinomial distribution is more general because it applies regardless
of the number of types of balls.

We are not going to tell you much about the multinomial. All your program needs to do is
draw samples from it, and we have provided a function called mnldev that simplifies this task. This
function is described on page 51. To use it, you need to specify the number of balls to draw, and
the relative frequency of each type within the urn. Here’s an illustration:

1 >>> from pgen import mnldev

2 >>> mnldev(5, [0.2, 0.3, 0.5])

3 [2, 0, 3]

4 >>> mnldev(5, [0.2, 0.3, 0.5])

5 [1, 1, 3]

In these calls to mnldev, the first argument is the integer 5. This says that we want to draw 5 balls.
The second argument is a list containing 3 relative frequencies. For each call, mnldev returns a list
of 3 integers that sums to 5. These returned values are samples from the multinomial distribution.
They represent the numbers of balls drawn, with one number for each of the 3 types.

In your application, you will want to draw twoN balls from an urn whose relative frequencies
are stored in a Python list called x. The returned counts should be stored in a list called n. Thus,
the call to mnldev will look like n = mnldev(twoN, x).

Ordinarily, a list of relative frequencies must be normalized so that it sums to 1.0. Making sure
that this is true often involves an extra step in computer code. You can omit this step, because
mnldev does the normalizing automatically. The call mnldev(5, [2, 3, 5]) is exactly the same
as mnldev(5, [0.2, 0.3, 0.5]). We’ll explain below how to use this trick to simplify your code.

10.2 An incomplete program

On the course website you’ll find a program called twolocinc.py, which looks like this:

1 # twolocinc.py

from pgen import mnldev, Tabulator

3 from math import sqrt

twoN = 500

6 s = 10/twoN # selective advantage of allele A
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c = 0.001 # recombination rate

w = [1.0+s, 1.0+s, 1.0, 1.0] # fitnesses of AB, Ab, aB, & ab

9

# Tabulate values in [0,1] into 10 bins

tab = Tabulator(low=0, high=1, nBins=10)

12

print("2N=%d s=%f c=%f" % (twoN, s, c), end=’ ’)

print("Fitnesses:", w)

15 print("%6s %6s %6s" % ("pA", "pB", "rsq"))

trials = 0

ngot = 0

18 nwant = 50

while ngot < nwant:

trials += 1

21 x = [1.0/twoN, 0, 0.5-1.0/twoN, 0.5] # freqs of AB, Ab, aB, & ab

pA = x[0]+x[1]

pB = x[0]+x[2]

24 while True:

# Insert code here to adjust x for recombination

# Insert code here to adjust x for gametic selection

27 n = mnldev(twoN, x) # sample from multinomial

x = [z/twoN for z in n]

pA = x[0]+x[1]

30 pB = x[0]+x[2]

if pA==0 or pA>=0.5 or pB==0 or pB==1:

break

33

if pA >= 0.5 and (0 < pB < 1):

# Insert code here to calculate rsq.

36 rsq = 0.0

print("%6.3f %6.3f %6.3f" % (pA, pB, rsq))

tab += rsq

39 ngot += 1

print(f"Trials: {trials}")

42 # Print the tabulation in a readable format.

print(tab)

This program will run, but it is incomplete. It does neither recombination nor selection and does
not calculate the value of r2. These are the parts you need to add. But first, get it running.

In its overall structure, this program is a lot like the one you wrote in Project 7. The top
section defines parameters and prints them. Two of these deserve comment. We will simulate the
history of a large number of newly-arisen mutations. Most of these will be quickly lost, and these
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we will ignore. We are interested in mutations that manage to increase to a frequency of 1/2. The
parameter nwant specifies the number of these successful mutations that we want to study. The
variable ngot holds the number of successful mutations we have encountered so far. The outer loop
continues until ngot == nwant.

The main part of the program consists of two nested loops. Each pass through the outer loop
simulates the history of one mutation, which is initially present in only a single copy. The inner
loop models the history of that mutant, and each pass through that loop corresponds to a single
generation. The inner loop stops when either of the loci becomes monomorphic, or when the A
allele reaches a frequency of 1/2. This entire process is repeated many times—once for each mutant
allele—under the control of the outer loop. This new program differs from that of Project 7 in that
there are four gamete types rather than just two alleles.

This becomes apparent on line 21, which initializes a list containing the relative frequencies of
the four gamete types. In the one-locus model, you would have written p = 1.0/twoN at this point.
The new code needs to make some assumption about the state of the population just before the
initial mutation. The one made by line 21 is completely arbitrary: just before the mutation, allele A
didn’t exist, and allele B had frequency 0.5, so the four gamete frequencies were x = [0, 0, 1/2, 1/2].
Then one of the aB gametes mutated to become an AB. The resulting list of gamete frequencies
is x = [1/2N, 0, 1/2− 1/2N, 1/2], as indicated on line 21.

After setting the value of x on line 21, we set pA and pB on lines 22–23. These depend on x and
must therefore be reset each time x changes, as seen on lines 28–29.

Each pass through the inner loop (lines 24–32) corresponds to a single generation. Based on
current gamete frequencies, we sample from the multinomial distribution. This yields a list of
counts, which represent the number of copies of each gamete type in the next generation. After
converting these back into relative frequencies, we check to see if it is time to stop. That is all there
is to it. If this seems familiar to you, that is probably because the program you wrote in Project 7
worked the same way.

Note that lines 34–39 execute only after we drop out of the inner loop. The if statement
there makes sure that nothing prints unless both loci are polymorphic. We are not interested in
monomorphic cases. Line 38 adds the current value of r2 to the Tabulator, and line 43 prints the
tabulated values. (Tabulator is described in section C.3, p. 58.)

Make sure this program runs before you begin changing it. With the current parameter values,
you’ll find that only a few of the replicates generate output. The program prints fitnesses, a re-
combination rate, and r2, but these are misleading. As it stands, there is no recombination and no
selection, and r2 is simply set to zero. Your job is to rectify that.

Exercise

1. Recombination. We’re going to model recombination using a trick that you have already
used twice before. In Project 4, you incorporated mutation into a simulation of drift by
adjusting allele frequencies before calling bnldev. Then in Project 7 you used the same trick
in order to model selection. Now you will use that trick once again to model recombination.
There is only one real difference. In those earlier projects, there were only two alleles so you
only had to adjust the value of one allele frequency. Now you must adjust the values of all
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four gamete frequencies and then call mnldev instead of bnldev.

In his Eqn. 4.1 (p. 102), Gillespie shows how recombination changes the frequency of one
gamete type. There are analogous formulas for all four types:

x′0 = x0(1− c) + cpApB

x′1 = x1(1− c) + cpA(1− pB)

x′2 = x2(1− c) + c(1− pA)pB

x′3 = x3(1− c) + c(1− pA)(1− pB)

where c is the recombination rate, pA is the frequency of A, and pB is the frequency of B. By
the time the program reaches line 20 in the code above, it knows the value of c and all the
values in the list x. From these, it is easy to calculate pA = x0 + x1 and pB = x0 + x2. This
is all you need to evaluate the equations above, which yield the frequencies of gamete types
after recombination. Add code that does this just after line 23 above. However you decide to
do this, make sure your results end up in the list named x.

2. Selection. Before calling mnldev, we need to adjust the gamete frequencies once again—this
time for the effect of selection. The idea is the same as before. We have a theoretical formula
that converts pre-selection frequencies into post-selection frequencies. As input to this process,
we use the values in the Python list x, which have already been adjusted for recombination.

For simplicity, assume that selection acts at the gamete stage rather than the diploid stage.
(This makes our formulas a little simpler than Gillespie’s.) After selection, the new gamete
frequencies are

x′i = xiwi/w̄

where w̄ =
∑
xiwi is the mean fitness. You have all the xi and wi values, so it is easy to

calculate w̄. Given w̄, it is easy to calculate x′i for all four gamete types.

But before you start, take another look at the formula. In it, w̄ plays the role of a normalizing
constant. It is there so that the new gamete frequencies will sum to 1. As discussed above,
mnldev will do this normalizing for us, so we don’t have to. It is sufficient (and a little faster)
to set x′i = xiwi, without bothering to calculate w̄. With this simplification, the list that we
hand to mnldev contains values that are proportional to gamete frequencies, and that is good
enough. Add code that does this just after line 24. As before, make sure that your results end
up in the list named x.

3. Linkage disequilibrium. You have one more change to make. One conventional measure of
linkage disequilibrium is the correlation between loci,

r =
x0x3 − x1x2√

pA(1− pA)pB(1− pB)

Note that this r is not the recombination rate. That is why we used a different symbol (c)
for that. The numerator here equals D, a measure of LD that was discussed in lecture and in
the text. Modify line 34 so that it calculates r2.
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4. Collect data. Set 2N = 5000 and c = 0.001. Run the program once with s = 0/2N , once
with s = 10/2N , and once with s = 100/2N . (These correspond to 2Ns = 0, 2Ns = 10, and
2Ns = 100.) The program will take awhile to run when s = 0, because only a few of the
simulated mutations will reach a frequency of 1/2. For each value of s, Tabulator will print
the frequency distribution of the values of r2. How easy would it be to distinguish strong from
weak selection, based on the value of r2?



Project 11

Linkage Disequilibrium in the Human
Genome

In Project 10 we modeled selection and drift at two linked loci. The focus there was on linkage
disequilibrium (LD), which was measured using the statistic r, a form of correlation coefficient. It
is easy to estimate r, provided that we can tell which nucleotides occur together on individual chro-
mosomes. Unfortunately, we are often ignorant about this. We are ignorant, in other words, about
“gametic phase.” This makes it hard to measure LD with any data set that—like the HapMap—
consists of unphased genotypes.

There are several solutions. The simplest is to estimate LD using a second correlation coefficient
(discussed below), which is easy to estimate from diploid genotypes at two loci. This is useful,
because it turns out that this second correlation is a good estimate of the first1. To distinguish
between the two correlation coefficients, let us refer to the first as rH (since it correlates Haploid
gametes), and to the second as rD (since it correlates Diploid genotypes). In this project, we will
estimate rD, and interpret its value as an estimate of rH .

In this project we use these estimates to study how LD varies across large regions of chromo-
some. Each of you will study a different chromosome. You’ll compare the pattern of LD in three
populations. This project will require working with correlations, so that is where we begin.

11.1 Correlating diploid genotypes

In raw HapMap data, each genotype is a character string. The pgen module, however, recodes these
as integers, as explained on page 25. For example, genotypes TT, CT, and CC might be recoded
as 0, 1, and 2. The table below shows genotypes at two neighboring SNP loci on chromosome 22
in the Utah HapMap population (CEU). It was made by the program sketched below.

1Rogers, A.R. & C. Huff. 2009. Genetics 182(3):839–844.
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locus A [rows] (C/T) at 22181701

locus B [cols] (A/G) + 793

0 1 2

0 [ 90 41 2]

1 [ 0 21 5]

2 [ 0 0 3]

rAB = 0.612, r^2 = 0.375, n = 162

Locus A is at position 22181701, and locus B is 793 base pairs to the right of it. Locus A has
two nucleotides, C and T, whereas locus B has two others, A and G. The 3 × 3 table shows the
distribution of genotypes at the two loci, with labels 0, 1 and 2 to indicate the genotypic values at
the two loci. If you study the table, you’ll see that the two loci are not independent. Individuals in
row 0 tend to fall in column 0; those in row 1 tend to fall in column 1; and all those in row 2 fall in
column 2. There is thus a positive relationship between the genotypic values of the two loci. This
reflects a similar association in the underlying genotypes: individuals with genotype TT at locus A
tend to have genotype GG at locus B, and so on. The last line of the report above summarizes
the strength of this association. The diploid correlation coefficient is rD = 0.612, and its square is
r2D = 0.375. Now this is not the same as the statistic rH that we used in Project 10 to measure
LD. Yet as discussed above, it is a good estimate of rH . This justifies our use of it in what follows
as a measure of LD.

The correlation between two variables is based on their covariance, and the concept of covariance
is related to that of variance. So let us begin there. As explained in section 2.2 of JEPr, the variance
VX of X is its average squared deviation from the mean:

VX = E[(X − X̄)2].

Similarly, the covariance (JEPr section 2.3) is the average product of the deviations of X and Y
from their respective means:

Cov(X,Y ) = E[(X − X̄)(Y − Ȳ )].

Cov(X,Y ) is positive when large values of X often pair with large Y , negative when large X often
pairs with small Y , and zero when neither variable predicts the other. The maximum possible
(absolute) value of Cov(X,Y ) is

√
VXVY , so the natural way to define a dimensionless correlation

coefficient is as
rD = Cov(X,Y )/

√
VXVY ,

which can range from −1 to +1.

11.2 Calculating variances and covariances

The convenient ways to compute variances and covariances are also closely related. You may recall
from JEPr that VX = E(X2) − E(X)2 and that Cov(X,Y ) = E(XY ) − E(X)E(Y ). Thus, we
can calculate the variance from the averages of X and of X2. The covariance is only slightly
more complicated: we need the averages of X, of Y , and of the “cross-product” XY . In JEPr,
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these averages were across probability distributions, because we were discussing the variances and
covariances of random variables. We are now concerned with data, so we average across the values
in our data. Apart from that, the procedure is the same.

You will not need to calculate variances in today’s main assignment, for they are calculated
automatically when you create an object of type hapmap dataset. You will however need to calcu-
late covariances. The first step in today’s assignment is to figure out how. It will help to think first
about variances, because that calculation is so similar. Consider the listing below.

1 # Return the variance of the values in xvec

def var(xvec):

m = msq = 0.0

for x in xvec:

5 m += x

msq += x*x

n = float(len(xvec))

m /= n # mean

msq /= n # mean square

10 return msq - m*m # variance

x = [5, 25, 36, 37, 41, 50, 60, 73, 75, 99]

y = [15, 16, 21, 44, 49, 62, 71, 73, 78, 94]

15 print("Var(x):", var(x))

print("Var(y):", var(y))

This code is available on the class web site, where it is called var.py. Download it, run it, and see
what it does. You should get two lines of output, which report the variances of the two data sets.

How would this code need to change if we wanted to calculate a covariance rather than a
variance? For one thing, we would want to step through the two data lists simultaneously in order
to accumulate the sums of X, Y , and XY . There are several ways to do this, the simplest of which
is involves a facility called zip, which you have not yet seen. Let us pause for a moment to discuss
this new facility.

zip(xv, yv) is a Python facility that steps through the elements of several sequences (lists,
tuples, strings, or whatever). For example,

>>> xv = [’x1’, ’x2’]

>>> yv = [’y1’, ’y2’]

>>> for x, y in zip(xv, yv):

... print(x, y)

...

x1 y1

x2 y2
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Each time through the loop, x and y are automatically set equal to corresponding elements from
the lists xv and yv. Here we have “zipped” a pair of lists, but one can also zip three or more.

To use this facility in calculating a covariance, you would begin with a framework like this:

def cov(xvec, yvec):

mx = my = mxy = 0.0

for x, y in zip(xvec, yvec):

Exercise

1. Write a new function called get cov, which calculates the covariance between two lists, and
use it to print the covariance as the last line in the program.

11.3 Smoothing data

In this project, you will be comparing LD between tens of thousands of pairs of loci. Without some
way of simplifying the output, you would drown in data. In the end, you will plot the results rather
than just staring at numbers. This will help, but it is not enough—the noise in the LD estimates
would still obscure the pattern. We can get rid of much of this noise by smoothing the data. This
is the purpose of the scatsmooth function, which is available within pgen.py and is described on
page 53.

There are many ways to smooth data, and scatsmooth implements perhaps the simplest. It
divides the X axis into bins of equal width, and calculates the mean of Y within each bin. For
example, suppose that we have data in two Python lists called x and y. To smooth them, we could
type

>>> bin_x, bin_y, bin_n = scatsmooth(x, y, 5, 0, 40)

As you can see, scatsmooth takes five arguments: (1) x, a list of horizontal coordinate values;
(2) y, a list of vertical coordinate values; (3) the number of bins (5 in this case); (4) the low end
of the first bin; and (5) the high end of the last bin. In this example, we have asked scatsmooth

to divide the interval from 0 to 40 into 5 bins. If you leave off the last two arguments, scatsmooth
will calculate them from the data. scatsmooth returns three values, each of which is a list. The
first (bin_x in this example) contains the midpoints of the X-axis values of the bins. The second
(bin_y) contains the mean Y -axis values. The third returned list (bin_n) contains the numbers of
observations within the bins. In your own code, you can name the returned values whatever you
like; you don’t need to call them bin_x, bin_y, and bin_n.

We can now manipulate the three returned lists any way we please. For example, here is a listing
that prints their values.

>>> for xx, yy, nn in zip(bin_x, bin_y, bin_n):

... print("%8.3f %8.3f %4d" % (xx, yy, nn))

...

4.000 4.000 5
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12.000 19.000 10

20.000 39.000 10

28.000 59.000 10

36.000 74.000 5

Experiment with scatsmooth until you understand how it works.

11.4 An incomplete program

On the website, you will find a program called rscaninc.py, which is an incomplete version of the
program you will need for this project. Here is the listing:

1 from pgen import *

from random import randrange

nreps = 500

5 chromosome = 22

pop = ’JPT’

window = 200

# DEFINE GET_COV AND GET_RSQ FUNCTIONS HERE

10

hds = hapmap_dataset(hapmap_fname(chromosome,pop))

distvec = []

rsqvec = []

15 for rep in range(nreps):

i = randrange(len(hds) - window) # index of random snp

# scan right

for j in range(i+1, len(hds)):

kilobases = abs(hds[j].position - hds[i].position)*0.001

20 if kilobases > window:

break

distvec.append(kilobases)

rsqvec.append( get_rsq(hds[i], hds[j]) )

25 print("Chromosome %d pop %s; %d focal SNPs, %d values of rsq" % \

(chromosome, pop, nreps, len(rsqvec)))

# YOUR CODE GOES HERE

You will need to insert code of your own just after lines 9 and 28. You do not need to modify
anything else. Nonetheless, let us step through the existing code to see what it does.
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Lines 1–7 import modules and define variables for later use. The main loop (lines 15–23) looks
at a large number (nreps) of randomly-selected SNPs, which we will call “focal SNPs.” The inner
loop compares this focal SNP with each neighboring SNP within an adjoining region whose size
(in kb) is given by the variable window. You need not worry about how lines 19–21 work. All you
need to know is this: by the time we reach line 22, i is the index of a random SNP, and j is the
index of a neighboring SNP. The goal is to find out (a) the distance between these two SNP loci
in kb, and (b) their LD value, r2D. The first of these data values is calculated for you: it is in the
variable kilobases. The second is obtained from a call to get rsq, which you can see on line 23. At
the bottom of the loop (lines 22–23), both data values (kilobases and r2D) are appended to their
respective lists. In line 25 we have dropped out of the main loop, and both data lists are complete.
The program prints a line of output and stops.

Exercise

In this exercise, the goal is to examine the relationship between LD and the distance that sepa-
rates loci on a chromosome. You will study the LD-distance relationship in three different human
populations.

2. We assume that you already know which chromosome you are working with. If not, refer to
section 8.1 of Project ??.

3. This week you will need HapMap data files for three populations, CEU, YRI, and JPT. Please
download them as explained in appendix A. For debugging, you may want to use the dummy
data set described on page 48.

4. Download rscaninc.py from the class web site and save it as rscan.py. Modify it so that it
specifies the right chromosome.

5. Paste your get cov function definition into the program just after line 9. Immediately below,
define a function called get_rsq, which returns r2D.

6. At the end of the program, add code that uses scatsmooth to smooth the data over the
interval from 0 to window, using 20 bins. Treat distvec as your X-axis variable and rsqvec

as your Y -axis variable. Then print the smoothed data in a table. The table should contain a
row for each bin, one column for dist, one for r2D, and one for n (the numbers of observations
within bins).

Make sure your program runs before proceeding.

7. Set nreps to 500 and window to 200. Run the program once with pop set equal to each of
the following values: CEU, YRI, and JPT. These values refer to the European, African, and
Japanese populations. If you have been using the dummy data set, you will also need to reset
chromosome.

8. Use the data to make a graph with dist on the horizontal axis and r2D on the vertical. You
should end up with three curves—one for each population—on a single graph. You may do
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this by hand, with Excel, or however you please. Label it so that we can tell which curve
refers to which population.

9. Write a paragraph or two describing the pattern in the data and (if possible) suggesting an
explanation. Pay particular attention to the differences (if any) between populations.

What to turn in (1) your code, (2) the output from the three runs, (3) the graph, and (4) your
prose describing and interpreting the results.



Project 12

Linkage Disequilibrium Near the
Human Lactase Gene

Most mammals are able to digest milk only during infancy. Later in life, their bodies stop producing
the enzyme lactase and are thus unable to digest milk sugar (lactose). Some humans however
continue to make lactase throughout life, a condition called lactase persistance. (It’s opposite is
lactose intolerance.) This condition is common in European (and some African) populations and
seems to result from a single point-mutation in the promoter region of the lactase gene. Todd
Bersaglieri and his colleagues (Am. J. Hum. Genet., 74:1111–1120, 2004) argue that the European
mutant arose a few thousand years ago and has been strongly favored by natural selection. Their
evidence for this comes from the amount of linkage disequilibrium (LD) in this genomic region.
In this project, you’ll see for yourself. You will estimate LD in the region around the putative
advantageous mutation and then compare this estimate to the LD on chromosome 2 as a whole.

12.1 An incomplete program

As usual, we provide code that does much of the work. You will find this code on the class web site
in a file called lactaseinc.py. Here is what it looks like:

1 from pgen import *

from random import randrange

3

reach = 5000

chromosome = 99

6 pop = "CEU"

focal_position = 136325116 # position of SNP rs4988235

9 # REPLACE THIS WITH YOUR OWN get_rsq FUNCTION

def get_rsq(snp_x, snp_y):

return 0.0

12

44
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# Find average rsq between one SNP (hds[mid]) and all other SNPs that

# are nearby on the chromosome. Return None if no such SNPs are

15 # found. Average will include all SNPs between x-reach and x+reach,

# where x is the position of the SNP at hds[mid]

def window_rsq(hds, mid, reach):

18 midsnp = hds[mid]

lo = hds.find_position(midsnp.position - reach)

hi = hds.find_position(midsnp.position + reach)

21 if lo == hi: # make sure hi > lo

return None

24 rsqsum = n = 0

for i in range(lo, hi+1):

if i == mid:

27 continue

rsq = get_rsq(hds[i], midsnp)

if rsq != None:

30 n += 1

rsqsum += rsq

33 return rsqsum / float(n)

hds = hapmap_dataset(hapmap_fname(chromosome, pop))

36 focndx = hds.find_position(focal_position)

print("looking for SNP at pos %d; nearest is at %d" \

% (focal_position, hds[focndx].position))

39 if focndx == len(hds)-1:

print("Error: couldn’t find focal_position", focal_position)

exit(1)

42 rsq_mean_obs = window_rsq(hds, focndx, reach)

print("Mean rsq w/i %d kb of %s: %f" % (round(reach/1000.0),

45 hds[focndx].id, rsq_mean_obs))

# From here on, the program should estimate the probability that a

48 # random region in this chromosome would have as much LD as the region

# around focal_position.

51 # To get you started, here is how to set up a loop that will examine "nreps"

# different regions, randomly distributed across the chromosome.

tail = 0 # Count replicates >= rsq_mean_obs

54 nreps = 100

for rep in range(nreps):
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ndx = randrange(len(hds)) # index of a random SNP

57

# Your code goes here. It should calculate rsq_mean_sim for ndx,

# and add 1 to tail if this value is >= rsq_mean_obs

60

# At the end, divide tail by nreps and print the answer.

Lines 4–7 define several parameters. The parameter reach determines determines the size of the
window within which you will estimate LD. In this initial version of the program, the window
reaches from 5000 bases to the left of the focal SNP to 5000 bases to the right. (That is why it
is called “reach.”) The chromosome number is set to 99, so that we can use the dummy data
file during debugging. (See page 48.) In the end, you’ll want to set chromosome = 2 in order to
analyze the real data. Line 7 identifies the SNP that is thought to be under selection. This SNP
was identified in the Bersaglieri paper mentioned above. It’s label is “rs4988235,” and in our data
it lies at position specified on line 7 of the code above. (This number may change in future versions
of HapMap, but the label should remain the same.)

In the HapMap data for this target SNP, one of the genotypes has a missing value. Our pgen
software eliminates SNPs with missing values, so this site will not appear in our data. For this
reason, the call to hds.find_position(focal_position) will not find the target SNP. Instead, it
will find the nearest SNP. That’s OK, because there is so much LD in this region that SNPs in LD
with the target SNP will also be in LD with this nearest SNP.

Lines 9–11 define the stub of a function that is supposed to calculate r2—except that it doesn’t
in this incomplete code. Replace this function definition with your own version from Project 11.
The function window_rsq is new. It takes three arguments, hds (the data set), mid (an index into
that data set), and reach (discussed above). The function compares a central SNP (hds[mid]) to
each SNP in the region around it. If no other SNPs are found in this region, the function returns
None. Otherwise it returns the average value of r2 between the SNPs in this region and the central
SNP. The calls to find_position will seem mysterious, since you have not yet seen this function
used. If you are curious, see page 52.

In line 35, we are done defining things and ready to do real work. In rapid succession, we define
the dataset (hds), find the index (focndx) of the “focal SNP” (the one that is supposedly under
selection), and calculate the mean value (rsq_mean_obs) of r2 within the region around this focal
SNP.

Exercise

1. Download the relevant files for the current project. You will need: (a) pgen.py, (b) the
incomplete Python program lactaseinc.py, (c) the HapMap data file for chromosome 2
in the European population (CEU), and (d) the dummy data file for “chromosome 99.” For
instructions on downloading HapMap data files, see appendix A. For instructions on getting
the dummy data file, see page 48.

2. Replace lines 10–11 with your own working copy of the get rsq function. You’ll need the cov

function too. You won’t need the var function, because variances have already been calculated
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for you (see pages 25 and 53).

At this point, your program should calculate the mean value of r2 in the region surrounding the
putatitive selected SNP.

3. Add code to the end of the program that calculates

(a) the mean r2 value within 100 randomly selected regions on chromosome 2,

(b) the fraction of these regions whose mean r2 is greater than or equal to the “observed
value,” i.e. the value for the region surrounding the putative selected SNP.

Hint: To calculate r2 in randomly selected regions, choose random SNPs as we did in Project 11,
and then hand each one to function window_rsq. To calculate the fraction of these values that is
greater than or equal to the observed value, proceed as we did in Project 6.

4. Now it is time to analyze real data, so set chromosome equal to 2. Then run the program with
reach set to each of the following values: 20,000, 200,000, and 1,000,000. These runs will take
longer, so be patient.

5. Write a paragraph discussing the results. Is the LD around the lactase gene unusual on
chromosome 2? If so, how far does the region of unusual LD seem to reach? The answer to
this question should be based on the tail probabilities you calculated for the three values of
reach.
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Downloading HapMap data

A.1 Interacting with the HapMap ftp server

The HapMap data are available via an ftp site at NCBI. There is a link to that site under the “lab”
page of the course website. Or to go directly there, point your web browser at

https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2008-10_phaseII/fwd_strand/non-redundant

This will bring you to a list of files with names like genotypes_chr22_JPT_r24_nr.b36_fwd.

txt.gz In these file names, the string “chr22 JPT” means “chromosome 22” in population “JPT”
(Japan). Scroll down the list to the file you need. Then right-click and select “Save link as” in
order to download the file onto your own computer.

The file will end with “.gz,” which indicates that it has been compressed using the gnuzip

program. You don’t need to decompress it, because pgen.py can read files that are compressed in
this way.

A.2 The dummy data file

As you are debugging your programs, you must execute it after each edit. This can be a slow
process unless the program executes very fast. Unfortunately, even the smaller HapMap data files
are pretty large, and parsing them repeatedly can slow down the process of programming.

To solve this problem, we have created a dummy HapMap data file called genotypes_chr99_

CEU_r23a_nr.b36_fwd.txt. In contains only a small number of SNPs, and your program can parse
it almost instantly. We encourage you to use this file rather than any real data until you get your
code running. To do so, place the file in the same folder with your other programs and specify

chromosome = 99

pop = ’CEU’

The dummy data file is under Data on the lab page of the class web site.

48
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A.3 Put the data files into the folder where you plan to use them

Once the data file is on your machine, you need to figure out where (in which folder) to put it. If you
work on your own machine, it’s probably best to create a separate folder. On the Marriott Macs,
it makes more sense just to work on the desktop. Whatever you decide, make sure that the folder
exists and that it contains your HapMap data file along with a copy of pgen.py. Then launch Idle,
get into the interactive window, and try importing pgen. To do so, just type “from pgen import

*”. If this works, nothing will print. If you get an error message, then Idle was unable to find the
file pgen.py. To fix this problem, see section B.4 on page 53.

A.4 Downloading all the HapMap files

On your home machine, you may want to download all of the HapMap files, for your own personal
use. You would not want to do this by pointing and clicking on each file, one after the other. It is
much easier to use the program ftp, and connect to ftp.hapmap.org. If you want to do this, we’ll
be happy to show you how.
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More Python

In writing this lab manual, we have introduced various Python constructs that were not covered in
JEPy. We collect them here for convenient reference.

B.1 Basic Python

zip(xv, yv) is a Python facility that steps through the elements of several sequences (lists,
tuples, strings, or whatever). For example,

>>> xv = [’x1’, ’x2’]

>>> yv = [’y1’, ’y2’]

>>> for x, y in zip(xv, yv):

... print(x, y)

...

x1 y1

x2 y2

Each time through the loop, x and y are automatically set equal to corresponding elements from
the lists xv and yv. This function is often used with a pair of lists, but it will also work with three
or more. (This paragraph is a copy of one on page 39.)

B.2 The random module

This module is part of Python’s standard library and is documented in full on the Python website:
http://docs.python.org/3.1/library. We have made use of the functions listed below. Before
using them, be sure to import the random module with a line of code such as

from random import *

After that command executes, you will have access to all the facilities of the random module. We
list only a few of these here—the ones used in the lab projects but not covered by JEPy.

50
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choice(seq) returns a random element from the sequence seq, which may be a list, a tuple, a
string, or any Python object with similar properties. For example, choice("abc") returns "a",
"b", or "c" with equal probability.

expovariate(h) returns a random value drawn from the exponential distribution with hazard h,
or mean 1/h.

randrange(a, b) returns a random integer from a, a+1, . . . , b−1. The first argument is optional
and defaults to 0 if omitted. Thus, randrange(3) returns either 0, 1, or 2 with equal probability,
but randrange(1,3) returns either 1 or 2.

B.3 The pgen module

This module is available on the class website: http://www.anthro.utah.edu/~rogers/ant5221/
lab as a file called pgen.py. Download that file, and place it in the same folder (or directory) as
the Python program you are writing. At the top of your own Python program, import the pgen

module as follows:

from pgen import *

B.3.1 Random numbers

bnldev(n,p) returns a random deviate drawn from the binomial distribution. When the function
is called, n is a integer, the number of trials, and p is a float, the probability of “success” on each
trial. Consider for example the experiment of tossing an unfair coin for which the probability of
“heads” is 0.6 on each toss. To simulate the experiment of tossing this coin 30 times, we could use
the command x = bnldev(30,0.6). After the command executes, x will hold an integer between
0 and 30, which represents the number of “heads.”

mnldev(n, p) returns a random deviate drawn from the multinomial distribution. This distribu-
tion generalizes the binomial. It might be used, for example, to describe the process of sampling
balls with replacement from an urn containing balls of several colors. The number of balls drawn is
called the number of trials. The probability that a random ball is (say) red is equal to the relative
frequency of such balls within the urn. When mnldev is called, n (an integer) is the number of
trials, and p is a list or tuple whose ith entry (pi) is the probability that outcome i is observed on
any given trial. The values in p only need to be proportional to the corresponding probabilities.
They do not need to sum to unity; they only need to be positive numbers. For example, suppose
that the urn contains 300 red balls, 100 black ones, and 50 white ones. To simulate the experiment
of drawing 10 balls (with replacement), we could use the command x = mnldev(10, [300, 100,

50]). After the command executes, x will point to a list that contains the number of red balls
drawn, then the number of black ones, and then the number of white.



APPENDIX B. MORE PYTHON 52

poidev(m) returns a random deviate drawn from the Poisson distribution with mean m. For
example, the command x = poidev(10) sets x to a value drawn from the Poisson distribution
with mean 10.

B.3.2 For HapMap

The pgen module contains several facilities for working with HapMap genotype data. For a gentle
introduction to these methods, see section 8.3.

hapmap fname(chromosome, population) returns the name of the file (on your own computer)
containing data for a given chromosome and population. It can find this file only if it resides in
Python’s current working directory (see section B.4).

hapmap dataset(filename) creates an object of type hapmap dataset. Such objects include the
following data:

filename the name of the original HapMap data file

snps a list of objects of type hapmap snp, each containing data from a single snp.

Objects of type hapmap dataset are created as follows:

chromosome = 22

pop = "CEU"

hds = hapmap_dataset(hapmap_fname(chromosome, pop))

Now hds is an object of type hapmap dataset. Its instance variables can be accessed like this:

>>> hds.filename

’/home/rogers/hapmap/hapmap-r23/genotypes_chr22_JPT_r23a_nr.b36_fwd.txt’

The variable hds behaves like a list or tuple of SNPs. len(hds) returns the number of SNPs in the
data set, and hds[3] returns a pointer to the SNP at position 3 within the data set. The first SNP
is hds[0], and the last is hds[len(hds)-1]. Objects of type hapmap dataset provide the following
methods:

find position(pos) returns the index of the SNP whose position on chromosome (measured
in base pairs) is closest to (but not necessarily identical to) pos. The argument pos should
be a positive integer. If pos >= len(self), the function returns len(self)-1.

find id(id) returns the index of SNP whose identifying string (“rs number”) equals id. On
entry, id should be a string, formatted as in HapMap data files. For example: “rs4284202.”
If id is not present in the data, the function returns len(self).
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hapmap snp An object of this type represents all the data for a single SNP. Each such object
includes the following data values:

id the “rs number” (a unique identifier) of this SNP

alleles a list of the alleles present at locus

chromosome the label of the chromosome on which this SNP resides

position an integer; the position of the SNP on the chromosome

gtype a list of genotype data. Each item in the list is an integer, the number of copies of
alleles[0] in an individual genotype.

sampleSize number of values in gtype.

mean the mean of gtype

variance the variance of gtype

Suppose that snp is an object of type hapmap snp. Then its data values can be accessed by syntax
such as snp.mean, snp.variance, and so on. In addition, snp behaves like a list or tuple of geno-
types. For example, len(snp) returns the number of genotypes (as does snp.sampleSize), and
snp[4] returns the genotype at position 4.

B.3.3 Plotting

charplot(x, y, nticks, outputheight, outputwidth) prints scatterplots on terminals with-
out graphics capabilities. On entry, x is a list of x-axis values and y a list of y-axis values. The
other arguments are optional and specify the number of tick marks per axis, and the height and
width of the output in character units. The specified number of tick marks is advisory only. The
program will do its best to use tick marks that are as close as possible to the number requested
without being ugly.

scatsmooth(x, y, n, minx, maxx) smooths a set of (x,y) data by dividing the range of x

values into n equally-spaced bins, and calculating the average y-value within each bin. Function
returns (bin_x, bin_y, bin_n). For bin i, bin_x[i] is the midpoint of the x values, bin_y[i] is
the mean of y, and bin_n[i] is number of observations. All parameters except x and y are optional.
If n is omitted, the default value is 10. If minx and maxx are omitted, they default to min(x) and
max(x). See page 40.

B.4 Helping Python find input files

In these projects, Python will need to read several kinds of input files: HapMap data files, pgen.py,
and the programs that you write. If it fails to find these files, nothing works. Here is an interaction
that illustrates the problem:

>>> from pgen import *

Traceback (most recent call last):
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File "<stdin>", line 1, in <module>

ImportError: No module named pgen

Here, I tried to import the pgen module, and Python let me know that it could not find it. To
avoid this problem, you must tell Python where your data files are.

Python searches for input files in a list of folders called the “path.” To help it find these files,
do one of two things: either put your own input files into one of the folders in Python’s path, or
else modify that path so that it includes the folder where your files reside. To examine the path,
use Idle’s “Path Browser,” which you will find under the “File” menu.

B.4.1 Putting your own files into Python’s path

On Macs, Python searches the Documents folder by default. If you put all your files there, Python
will have no trouble finding them. This is the easiest approach and is the one to use when you are
working in the lab at Marriott.

B.4.2 Putting your files into some other folder

If you work on your own computer, you may not want to clutter up Documents with the files from
this class. On my own machine, I keep the material for this class in a separate folder called “pgen.”
You might want to do something similar.

If you launch Idle from an icon, it will not initially know about the folder that contains your
files. But if you open a .py file within this folder and execute it, Idle automatically adds this folder
to the path. After that, you can execute commands like import pgen without difficulty.

Those of us who work with the command line interface have it even easier. If you launch Idle
from the command line, it automatically adds the current working directory to its search path and
thus has no difficulty finding files.

B.4.3 Manipulating Python’s current working directory

Python looks for input in a folder called the “current working directory,” or CWD. This works well
if you launched Python from the command line, for then the CWD is just the directory within
which you typed the “python” command. But if you launched Python by clicking on an icon, the
CWD is unlikely to be set to a useful value. You can, however, manipulate it by typing commands
into Python’s interpreter.

To do so, you must first import the os module:

>>> import os

You can then check the CWD like this:

>>> os.getcwd()

’/home/rogers’
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This tells me that the CWD is the directory /home/rogers. If my input file is in that directory,
Python will find it.

But suppose it is in a subdirectory of /home/rogers called pgen. I can change the CWD by
typing

>>> os.chdir("pgen")

This changes the CWD to /home/rogers/pgen, provided that this directory exists on my computer.
To check that this worked, use the os.getcwd command once again:

>>> os.getcwd()

’/home/rogers/pgen’

In the preceding example, the os.chdir command was very simple, because we were moving
into a subdirectory of the directory we started in. If you need to make a more drastic move, specify
the entire path name. For example, the command

>>> os.chdir("/home/rogers/pgen")

would would move us to /home/rogers/pgen no matter where we started from.
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Tabulating Frequency Distributions

C.1 Introduction

To see the pattern in data, we often need to summarize it in a compact form. Tabulations are one
such summary. They tell us how many observations are in each of several categories. This appendix
describes two methods for tabulating data in Python, one for discrete data and one for continuous
data.

C.2 Tabulating discrete data

Consider the following data set, which represents genotypes at a single nucleotide site:

>>> gtype = [’AA’, ’AA’, ’AT’, ’TA’, ’TA’, ’AA’, ’TA’]

There are 7 observations in this data set, but all of them fall into 3 categories. We can use Python’s
set function to extract these three categories:

>>> for i in set(gtype):

... print(i)

...

AA

AT

TA

In these data, we have both AT and TA. The distinction between these ordinarily doesn’t matter
in genetics. To convert all these into a common format, we can sort the characters within each
genotype as follows:

>>> gtype = ["".join(sorted(i)) for i in gtype]

This uses a list comprehension (indicated by the square brackets) to create a new list. Within the
list comprehension, the builtin function sorted turns each genotype into a sorted list of individual
characters. Then "".join converts each list into a character string. In the end, we have a data set
with 7 observations but only two genotypes, AA and AT:

56
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>>> for i in set(gtype):

... print(i)

...

AA

AT

To count the occurrences of each genotype in the data, we make use of the fact that gtype is
defined as a Python list, and lists have a builtin method called count, which counts the occurrences
of its argument in the list. For example,

>>> gtype.count(’AA’)

3

Here’s a snippet of code that counts the occurrences of each genotype in the data:

>>> h = {}

>>> for i in set(gtype):

... h[i] = gtype.count(i)

...

>>> print(h)

{’AA’: 3, ’AT’: 4}

This defines a Python dictionary called h, which is initially empty. Then we iterate across the
genotypes, using the count method to add observations to the dictionary. Finally, we print the
dictionary. The output says that the data contain 3 copies of AA, and 4 of AT.

This is helpful, but the output is hardly pretty. It would be better to print the output as a
table, with genotypes in one column and counts in another. Here’s how:

>>> for key in sorted(h.keys()):

... print(key, h[key])

...

AA 3

AT 4

Here, I’ve used the keys method that is built into Python dictionaries to get a list of genotypes.
I then hand this list to sorted, which sorts the list of genotypes. We then iterate across these
genotypes, printing the genotype and the corresponding count in two columns.

Suppose you had a list of genotypes, but you wanted to tabulate alleles rather than genotypes.
The trick is to begin by concatenating all the genotypes into a single character string:

>>> dnaseq = ’’.join(gtype)

>>> for i in set(dnaseq):

... print(i, dnaseq.count(i))

...

A 10

T 4
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C.3 Tabulating continuous data

When working with continuous data, the number of different values may be enormous. There is
thus little point in counting the occurrences of each value. We need a different approach. With
continuous variables, it makes more sense to group the data into bins. This is tedious, so we have
written a Python module that does the heavy lifting. It is in a file called pgen.py, which you can
download from the class web site. Put it in the same directory (or folder) as your other Python
programs.

Here is a program that tabulates continuous data into 5 bins:

1 from pgen import Tabulator # read module Tabulator

2

3 data = [0.39760402926232336, 0.38844722349063998, 0.15828823308128848,

4 0.21675307512013373, 0.67759054634129579, 0.63336008432108437,

5 0.7791838758913473, 0.11329205659594056, 0.088616376501101851,

6 0.27797955173023731]

7

8 # Construct a Tabulator named tab. The range [0,1] is divided into 5

9 # bins, and the Tabulator counts the number of values within each

10 # bin. It also counts the values that fall above or below the range [0,1].

11

12 tab = Tabulator(low=0.0, high=1.0, nBins=5)

13

14 # Each pass through the for loop examines one piece of data

15 for x in data:

16 tab += x # Add 1 to the count in the relevant bin

17

18 print(tab) # print the tabulated data


