
Homework Excercises for Human Evolutionary Genetics

Alan R. Rogers1 Jon Seger2

February 21, 2024

1Department of Anthropology, University of Utah, Salt Lake City, UT 84112
2Department of Biology, University of Utah, Salt Lake City, UT 84112



Contents

1 Probability 3

2 Random mating 6
2.1 Frequencies of alleles and genotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Using F -statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Final words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Genetic Drift 8
3.1 Drift acting alone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Mutation and drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Gene Genealogies 10
4.1 Gene genealogies without mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Gene genealogies with mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Mismatch Distribution and Spectrum 14

6 Neutral Theory 17
6.1 The Jukes-Cantor model of nucleotide substitution . . . . . . . . . . . . . . . . . . . . . . 17

6.1.1 Deriving the Jukes-Cantor formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Other models of substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Rodent mitochondrial DNA sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Selection 20
7.1 How selection changes allele frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 Selection and drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Two Loci 23

9 Inbreeding 27

10 Population Structure 28

11 Admixture 30

12 Quantitative Characters 31

A Answers 34

1



Introduction

This document contains homework assignments
for Human Evolutionary Genetics (Anth/Biol 5221,
at the University of Utah). The due dates of the
assignments are given on the course syllabus. In
some cases, more than one assignment may be due
on the same day.

Answers to even-numbered problems are at the
back of this document, beginning on p. 34.

Notation for logarithms

Logarithms appear in various places in the following
homework assignments. Usually, we are interested
in the “natural” logarithm—the logarithm to base
e, where e ≈ 2.72. Our notation is as follows:

Base Notation
e loge x or lnx or log x

10 log10 x
2 log2 x

Note that for us, log x means loge x. Some disci-
plines and some calculators use a different conven-
tion, in which log x means log10 x, so be sure to
understand what your own calculator does.

Our convention is also used within the Python
programming language. For example,

>>> from math import *

>>> log(e**3)

3.0

>>> log10(10**2)

2.0

In this example, Python’s log function inverts (re-
verses the effect of) raising e to a power. This im-
plies that Python’s log(x) means loge x. Similarly,
Python’s log10 function inverts the operation of
raising 10 to a power, so log10(x) means log10 x.

2



Homework 1

Probability

Each exercise is worth 10 points.

Exercise 1.1. You toss a fair coin twice. What
is the probability of observing two heads?

Exercise 1.2. With the same coin experiment,
what is the probability of a head and a tail (in that
order)?

Exercise 1.3. What is the probability of a tail
and then a head?

Exercise 1.4. What about a head and a tail in
either order?

Exercise 1.5. You toss a coin three times and
observe 2 heads and a tail in some order. In how
many ways can this happen? (In other words, how
many sequences like “HHT” contains 2 “H”s and
one “T”?)

Exercise 1.6. You toss a coin four times and
observe 2 heads and 2 tails in some order. In how
many ways can this happen? (In other words, how
many sequences like “HHTT” contains 2 “H”s and
2 “T”s?)

Exercise 1.7. What is the probability of ob-
serving 2 heads and a tail (order unspecified) in 3
tosses.

Exercise 1.8. What is the probability of ob-
serving 2 heads and 2 tails (order unspecified) in 4
tosses.

Exercise 1.9. You toss two fair dice, one red
and one black. What is the probability that you ob-
serve either a red 4 or a black 6 (or both)?

Exercise 1.10. You toss one fair die. What is
the probability that you observe either a 4 or a 6?

Exercise 1.11. You toss two fair dice, one
red and one black. What is the probability that you
observe both a red 4 and a black 6?

Imagine a modified version of Kerrich’s urn ex-
periment in which each trial begins with 3 balls of
each color (red and black).

Exercise 1.12. What is the probability that,
in a single trial, both of the balls drawn are red?

Exercise 1.13. What is the probability that,
in a single trial, the first ball is red and the second
black?

You toss a fair coin 3 times. You receive $1 for
each head and nothing for tails. Let X represent
the number of dollars you receive.

Exercise 1.14. For this random variable, what
are the possible values and the probability of each
value? In other words, what is the probability dis-
tribution of X?

Exercise 1.15. What is the mean?

Exercise 1.16. What is the variance?

In JEPr, you saw several tables of counts. Here
is another:

My mood
Weather Happy Sad Sum
Rain 30 70 100
Sun 90 10 100
Sum 120 80 200

In this table, each cell counts the number of days
during which (a) it rained and I was happy, (b) it
rained and I was sad, and so on. The table tells us
that it rained on 100 days, was sunny on another
100, and that I was happy 90% of the time on the
sunny days but only 30% of the time on rainy ones.
Use this table in the following exercises.

Exercise 1.17. What is the unconditional rel-
ative frequency of sad?

Exercise 1.18. What is the unconditional rel-
ative frequency of rainy?
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Exercise 1.19. What is the conditional rela-
tive frequency of sad given rainy?

Exercise 1.20. What is the conditional rela-
tive frequency of rainy given sad?

It should turn out that f(rain|sad) 6= f(rain). In
a statistical sense, therefore, the weather depends
on my mood. Yet this does not imply that my mood
has any causal effect. Statistical dependence should
not be confused with causation.

Exercise 1.21. Consider a locus with two alle-
les, A and a, whose frequencies are p and q = 1−p.
Suppose that you draw one gene copy from this pop-
ulation at random. Let X = 1 if that gene is a copy
of A and let X = 0 otherwise. What are (a) the
mean and (b) the variance of X, as a function of
p?

Exercise 1.22. Suppose we form diploid
offspring by sampling with replacement from the
parental gene pool. Then in any random offspring,
the number, Y , of copies of allele A is the sum of
two independent random variables, each of which
equals 1 with probability p and 0 with probability
1 − p. What does this imply about the mean and
variance of Y ?

Consider a particular nucleotide site in the DNA
of some hypothetical population. In this popula-
tion, 80% of chromosomes have the nucleotide ade-
nine (A) while 20% have guanine (G). In other
words, the relative frequency of allele A is 0.80. We
take samples from this population, each of which
consists of two chromosomes drawn independently
and at random. In each sample, we observe either
AA, AG, or GG. The number of A’s in this sam-
ple is a random variable, which I will call X. This
variable can take values 0, 1, or 2.

Exercise 1.23. What is the distribution of X?

Exercise 1.24. What is the mean?

Exercise 1.25. What are the variance and
standard deviation?

Exercise 1.26. Sketch a histogram of the dis-
tribution of X.

JEPr describes Bortkiewicz’s data on the fre-
quency of deaths caused by mule kicks in the Prus-
sian army. As you will recall, those data are approx-
imately Poisson, and the mean number of deaths
per corps-year was λ = 0.61. Use the Poisson dis-
tribution formula to answer the following questions.

Exercise 1.27. What is the probability that
there will be zero such deaths during a given year
for a given corps?

Exercise 1.28. What is the probability that
there will be one such death during a given year for
a given corps?

Exercise 1.29. What is the probability that
there will be AT LEAST one such death during a
given year for a given corps?

Exercise 1.30. What is the probability that
there will be 2 such deaths during a given year for
a given corps?

Suppose that the number of offspring per female
is Poisson, and that the average female has two off-
spring. (This keeps the population from growing or
shrinking.) We are assuming, in other words, that
the Poisson distribution has mean λ = 2.

Exercise 1.31. What is the probability that a
random female will have no children at all?

Exercise 1.32. What is the probability that a
random female will have one child?

Exercise 1.33. What is the probability that a
random female will have AT LEAST one child?

In Kerrich’s urn experiment, suppose you get $1
for each red ball and $0 for each green one, and let
X and Y represent the dollars you receive on the
two draws within a single trial of the experiment.

Exercise 1.34. Write down the probability dis-
tribution of X and Y in tabular form. Your table
should have columns for X, for Y , and for the joint
probability of X and Y , i.e. Pr[X,Y ].

Exercise 1.35. What are the expected values
of X and of Y ?

Exercise 1.36. What are the variances of X
and of Y ?

Exercise 1.37. What is the covariance of X
and Y ?

Imagine an urn with N balls, of which 1 is red
and the rest are green. You draw 2 balls from the
urn at random without replacement. Let X = 1 if
the first ball is red and X = 0 otherwise. Define Y
similarly for the second ball.

Exercise 1.38. Draw a tree to represent the
probabilities in this experiment. Use Fig. 2 of JEPr
as a model.

Exercise 1.39. What are the mean and vari-
ance of X?

Exercise 1.40. What are the mean and vari-
ance of Y ?
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Exercise 1.41. What is the covariance of X
and Y ? (Hint: the previous two questions used
a table to represent the probability distribution of
(X,Y ). Add a column to this table to represent the
product, XY .)

Suppose that, in a class of 50 students, 20 are
women.

Exercise 1.42. If we choose a student at ran-
dom from the class, what is the probability that this
student is a woman?

Exercise 1.43. If we choose 2 students from
this class at random without replacement, what is
the probability that both are women?

JEPr discussed the following probability distri-
butions: (1) binomial, (2) Bernoulli, (3) Pois-
son, (4) uniform, (5) exponential, and (6) normal.
Which of these choices would be most appropriate
in each of the following contexts? (Just write down
the name of the appropriate distribution.)

Exercise 1.44. The weight of a mouse, se-
lected at random from those that live in this build-
ing.

Exercise 1.45. The number of neutral muta-
tions on a gene genealogy of known length.

Exercise 1.46. The number of copies of A1

(a neutral allele) on some small island in the South
Pacific, assuming that we know the size of this pop-
ulation and the allele frequency among the parents.



Homework 2

Random mating

Table 2.1: Transferrin genotype frequencies in a ba-
boon troop [4, p. 56].

Number of
Genotype individuals allele C allele D

CC 80 160 0
CD 15 15 15
DD 5 0 10

Total 100 175 25

2.1 Frequencies of alleles and
genotypes

Transferrin is a protein involved in iron transport.
Table 2.1 shows the number of individuals in a ba-
boon troop, grouped by transferrin genotype. The
relative frequency of each genotype is simply the
number of individuals of that genotype divided by
the total number of individuals.

Exercise 2.1. What is the relative frequency,
PCC , of the CC genotype?

Exercise 2.2. What is the relative frequency
of the CD genotype?

Exercise 2.3. What is the relative frequency
of the DD genotype?

There are two ways to calculate the allele fre-
quency within a sample:

1. Divide the number of copies of one allele by the
total number of gene copies in the sample.

2. If the locus has just two alleles, we can use the
formula

p1 = P11 + P12/2 (2.1)

where P11 and P12 are the frequencies of geno-
types A1A1 and A1A2, and p1 is the frequency
of allele A1.

Exercise 2.4. Use both methods to calculate
the frequency, pC of the C allele.

Exercise 2.5. Use both methods to calculate
the frequency, pD of the D allele.

Exercise 2.6. Prove that the two methods are
equivalent.

At some SNP locus, a sample of 100 individuals
includes 15 copies of genotype “CC,” 50 of “CT,”
and 35 of “TT.” Please use these data in answering
the following:

Exercise 2.7. What is the number of gene
copies in this sample?

Exercise 2.8. What are the allele frequencies
p and q of the two nucleotides (C and T)?

Exercise 2.9. What is the expected heterozy-
gosity under random mating?

Exercise 2.10. What is the observed heterozy-
gosity?

2.2 Using F -statistics

The observed and HW genotype frequencies are

Genotype Frequencies
Genotype Observed Hardy-Weinberg
A1A1 P11 p2

A1A2 P12 2pq
A2A2 P22 q2

In the HW formulas, p and q are the allele fre-
quencies of the population and are unknown. We
can, however, estimate them from our data by
p̂ = P11 + P12/2 and q̂ = 1 − p̂. Plugging these
estimates into the HW formulas will provide esti-
mates of the HW genotype frequencies, which can
then be compared with P11, P12, and P22.
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To measure the deviation between observed and
expected genotype frequencies, it is convenient to
define a variable, F , which satisfies

P11 = p2 + pqF

P12 = 2pq − 2pqF

P22 = q2 + pqF

The three equations above provide three different
ways to estimate F :

F =
P11 − p2

pq
(2.2)

F = −P12 − 2pq

2pq
(2.3)

F =
P22 − q2

pq
(2.4)

All three formulas produce the same number.
Consider the following data

Number
Genotype of copies
A1A1 n11 = 100
A1A2 n12 = 100
A2A2 n22 = 100

In other words, there are 100 copies of each of the
three genotypes.

Exercise 2.11. Use these data to calculate both
the observed and the expected genotype frequencies.

Exercise 2.12. Next, calculate F using each
of formulas 2.2, 2.3, and 2.4.

Exercise 2.13. In a sample of 72 individuals,
we have the following genotype counts: n11 = 0,
n12 = 5, and n22 = 67. What are P11, P12, P22, p1,
and F?

Exercise 2.14. In another sample, we have
the following genotype counts: n11 = 53, n12 = 19,
and n22 = 1. What are P11, P12, P22, p1, and F?

2.3 Final words

We have glossed over various technicalities in this
homework assignment. For example, the HW for-
mulas p2, 2p(1 − p), and (1 − p)2 are correct when
p is the allele frequency in the population, but we
have encouraged you to substitute the estimate of
p obtained from the data. This introduces a small
bias, which can be corrected by using suitably mod-
ified versions of the HW formulas. For details, see
Morton et al. [6, p. 509]. Unless your sample is very
small, however, the effect of this correction is small.



Homework 3

Genetic Drift

Each question is worth 10 points.

3.1 Drift acting alone

In the first few problems, we assume that the only
force at work is genetic drift. There is no selec-
tion, no mutation, and no migration. The first few
problems all involve the equation

Ht = H0(1− 1/2N)t (3.1)

which describes the decay of heterozygosity in a
randomly-mating population.

Exercise 3.1. In the urn model of genetic drift,
there are 2N balls in the urn of which a fraction p
are black. The remaining fraction, 1− p, are white.
Suppose we draw 2N balls from the urn with replace-
ment. Of the balls that we draw, a random number
X are black, and the remaining 2N −X are white.
What are the mean and variance of X? (Your an-
swers should be in terms of 2N and p.)

Exercise 3.2. Consider a very small popula-
tion in which 2N = 10, mating is at random, and
genetic drift is the only evolutionary force at work.
If heterozygosity equals 1/2 in one generation, what
is its expected value in the following generation?

Exercise 3.3. Consider a larger population
in which 2N = 1000, mating is at random, and
genetic drift is the only evolutionary force at work.
If heterozygosity equals 1/2 in one generation, what
is its expected value in the following generation?

Exercise 3.4. In Series I of Buri’s experiment,
the initial heterozygosity was H0 = 0.514 and in
the 18th generation it was H18 = 0.183. Take these
values as given and solve equation 3.1 for 2N . In
your answer, include two digits to the right of the
decimal point. How does your estimate compare to
the one (2N = 18) that Buri got?

Exercise 3.5. Suppose that 2N = 18 on av-
erage, but that the value was not constant. Specifi-
cally, suppose that 2N = 26 for the first 9 genera-
tions and 2N = 10 for the last 9. (Note that these
numbers average to 18.) What value would you pre-
dict for H18? Compare this to the answer you get
when 2N = 18 in every generation. Which answer
is higher? How does variation in population size
affect the decay of heterozygosity?

Exercise 3.6. Suppose now that the popula-
tion size alternated between 2N = 26 and 2N = 10.
It was 26 in the 1st generation, 10 in the 2nd, 26
again in the 3rd, and so on. What is the expected
heterozygosity in generation 18? (Hint: Think care-
fully about equation 3.1. There is a way to answer
this without doing any additional calculations.)

Exercise 3.7. In Buri’s experiment, how many
generations would it take before Ht = 0.1? (Assume
2N = 18.)

Exercise 3.8. Now rearrange equation 3.1 so
that t is on the left side, and everything else is on
the right. (Hint: The right side will be an algebraic
expression involving the symbols H0, Ht, and 2N .
There will be logarithms.) Use your answer to this
question to check your answer to the preceding one.

Exercise 3.9. Suppose that a catastrophe re-
duces diploid population size from 1024 to 2. There-
after, the population doubles every generation until
it reaches its original size. What fraction of the
original heterozygosity still remains? To do this
precisely, you would want to ask whether the species
had separate sexes. We haven’t taught you how to
do this, so please assume that these organisms have
monoecious sexual reproduction and mate at ran-
dom. Then the theory we have taught in class works
all the way down to N = 2. Feel free to do this ei-
ther by hand or in Python.
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3.2 Mutation and drift

Gillespie shows that, under the “infinite alleles”
model of mutation, heterozygosity (H) evolves un-
der the combined effects of mutation and genetic
drift toward an equilbrium value,

Ĥ =
θ

1 + θ
(3.2)

where θ = 4Nu.

Exercise 3.10. At autosomal loci, the muta-
tion rate per gene is often around u = 10−6 per gen-
eration. Let us suppose this is so for Buri’s flies.
Assuming once again that the effective population
size is 2Ne = 18, calculate the equilibrium heterozy-
gosity in Buri’s experiment. This value represents
the expected heterozygosity within each bottle in the
long run—after many generations of simulaneous
mutation and drift. At this equilibrium, how many
of the 16 flies in each bottle would be likely to be
heterozygous? Round your answer to the nearest
integer.

Exercise 3.11. Solve Eqn. 3.2 algebraically for
θ as a function of Ĥ.

The model of infinite alleles, which underlies
Eqn. 3.2, is plausible model for protein-coding loci,
which may contain thousands of nucleotide sites.
The number of possible alleles is so large that we
get a good approximation by taking that number to
be infinite. This approximation works poorly, how-
ever, for individual nucleotide sites. These have at
most 4 alleles—A, T, G, and C. If there are k possi-
ble alleles, and each allele mutates with equal prob-
ability to each of the other alleles, then Eqn. 3.2
becomes

Ĥ =
θ

1 + θk/(k − 1)
(3.3)

This model is also unrealistic, however, because it
is seldom true that each allele mutates with equal
probability to each other allele. Typically, the most
common type of mutation is the “transition,” which
toggles the nucleotide back and forth either between
A and G or between C and T. In human mitochon-
drial DNA, for example, the vast majority of mu-
tations are of this type. When this is so, we get a
reasonable approximation by assuming that k = 2
in Eqn. 3.3. Let us call this the “symmetric bial-
lelic” model of mutation, because it implies that
each polymorphic site has 2 alleles, each of which
mutates to the other at the same rate. For this
model,

Ĥ =
θ

1 + 2θ

Exercise 3.12. What is the largest value that
Ĥ can take in the model of infinite sites?

Exercise 3.13. What is the largest value that
Ĥ can take in the symmetric biallelic model?

Exercise 3.14. Suppose that random pairs
of mitochondria differ on average at 0.5% of nu-
cleotide sites, that the population is at mutation-
drift equilibrium, that the mutation rate is u =
2 × 10−7 per nucleotide per generation, and that
the symmetric biallelic model of mutation applies.
What does this imply about the effective number of
females? (Hint, we can use Eqn. 3.3, provided that
we interpret the number, 2N , of gene copies in the
population as the effective number of females.)

Exercise 3.15. Suppose that the average indi-
vidual is heterozygous at 1/3 of protein-coding loci,
that the population is at mutation-drift equilibrium,
that the mutation rate is u = 10−6 per locus per gen-
eration, and that the infinite alleles model of muta-
tion applies. What does this imply about N?



Homework 4

Gene Genealogies

In the following exercises, assume that the popu-
lation size is constant and that the genetic variation
under study is selectively neutral. Each exercise is
worth 10 points.

The exercises below are all based on material in
Lecture Notes on Gene Genealogies (LNGG). Those
in section 4.1 are based on chapter 4 of LNGG,
whereas those in section 4.2 are based on chapter 5.
There is one exception to this: exercise 4.5 is based
on chapter 5.

4.1 Gene genealogies without
mutation

Exercise 4.1. Figure 4.1 (on page 11) shows a
made-up gene genealogy of 6 DNA sequences. The
branches are labeled with capital letters. (a) Which
sequences would carry the derived allele if a muta-
tion occurred on branch H? (b) On branch B? (c)
On branch G?

For the exercises in section 4.1, assume that
2N = 5000.

Exercise 4.2. What is the expected duration in
generations of coalescent intervals with (a) 2 lines
of descent, (b) 10 lines of descent, and (c) 1000
lines of descent?

Exercise 4.3. In an interval with 2 lines of
descent, what are the mean, the variance and the
standard deviation of the interval’s duration? Hint:
the duration of the interval is an exponentially-
distributed random variable. This distribution is
discussed in JEPr.

For exercises 4.4 and 4.5, assume that you have
a sample consisting of K = 3 gene copies chosen at
random from a population of size 2N = 5000.

Exercise 4.4. What is the expected depth of
the gene genealogy? In other words, the expected

age in generations of the last common ancestor?

Exercise 4.5. What is the expected total
branch length the gene genealogy? In other words,
the expected sum of the lengths of all branches
throughout the genealogy? (This problem is based
on material in section 5.1 of Lecture Notes on Gene
Genealogies.)

4.2 Gene genealogies with mu-
tation

Exercise 4.6. Suppose that θ = 10, indicating
either that the population is very large or the muta-
tion rate is high. How many mutations should occur
on average in coalescent intervals with (a) 2 lines of
descent, (b) 10 lines of descent, and (c) 1000 lines
of descent?

Exercise 4.7. (a) Draw a gene tree with 4 tips.
What are (b) the expected lengths of each interval
(assuming the population consists of N diploid in-
dividuals), (c) the expected depth of the tree, and
(d) the expected total tree length (i.e. the sum of
all branch lengths)? (Hint: your answers will be in
terms of the unknown quantity N .)

Exercise 4.8. How many mutations would you
expect to see on such a tree, assuming a mutation
rate of u = 1/1000 and a haploid population size of
2N = 5000?

Exercise 4.9. Now suppose that you doubled
the sample size from 4 to 8. Don’t draw the tree.
Just calculate the expected number of mutations.
How much did the number of mutations increase?

Exercise 4.10. What is the ratio between the
expected value of S in a sample of 10 DNA se-
quences and the expected value in a sample of 20?

10
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1 --A-

|-B--

2 --C- |

|-----D-----

3 ---E----- |

|-----------

4 ----F----- |

|----G-----

5 --H- |

|--I--

6 --J-

Figure 4.1: A genealogy with labeled branches. The samples are numbered (1–6) and the branches are
labeled (A–J).

seq01 AATATGGCAC CTCCCAACCC TCTAGCATAT ACCACTTACA

seq02 .......T.. .C......TG C......C.. ..........

seq03 ..C....... .......... .......... ..........

seq04 .......T.. .C......TG C......... G.........

seq05 .......... .......... .......... ..........

seq06 .....A.... ........T. C......... G....C....

seq07 ..C....T.. .C......TG C......... G.........

seq08 .....A.T.. TC......TG C......... G.........

seq09 .......... .......... C......... ..........

seq10 .G...A.... ........T. C......C.. .T....C..G

Table 4.1: Data set A. Periods indicate sites that
are identical to seq01.

seq01 TGCCACTCCA ATCTCTCGCC AGATGGCATG CCTTATCGCG

seq02 .......... G......... .A.C...GCA T.........

seq03 .......... G......A.. .A.C...GC. T....C....

seq04 C..TG..T.. .C.....A.. G......C.. TT.C......

seq05 CA.TG..T.. .C....TA.. G......CC. TT.C......

seq06 C...G..... CC..T..A.A ....AA.C.. TT..G.....

seq07 CA.TG..... CC..TC.A.A ...CA..CC. TT...C....

seq08 CA.TG...T. GCT....A.. G..C..TC.. T.......T.

seq09 CA.TG..... GC.C..T... ...CA..C.A T.........

seq10 CA.TG...T. .C.....A.. G..C...C.. T....C....

Table 4.2: Data set B

Exercise 4.11. Use data set A to calculate π,
the mean number of nucleotide site differences per
sequence and per site between pairs of sequences.

In calculating π (the number of pairwise differ-
ences), data set B poses a new problem: two of the
sites (11 and 27) have more than two nucleotides.
This will not cause a problem if you do the calcula-
tion the laborious way, by counting the differences
between each pair of sequences. But if you use the
easier site-by-site method described in the text, you
need to know how to deal with such sites.

Consider site 11, which has 4 As, 4 Gs, and 2
Cs. We are interested only in the pairs that have
different nucleotides. In other words, we are only
interested in pairs of type AG, AC, or GC. The
number of AG pairs is 4 × 4 = 16. This follows
because each of the 4 As can combine with each
of the 4 Gs. Similarly the number of AC pairs is
4× 2 = 8, and the number of GC pairs is 4× 2 = 8.
This site therefore contributes 16 + 8 + 8 = 32 to
our count of differences.

At site 27, we have 1 A, 2 Gs, and 7 Cs. This
gives 1 × 2 = 2 AGs, 1 × 7 = 7 ACs, and 2 × 7 =
14 GCs, so the total contribution from site 27 is
2 + 7 + 14 = 23.

Exercise 4.12. Use data set B to calculate π,
the mean number of nucleotide site differences per
sequence and per site between pairs of sequences.

Exercise 4.13. Calculate the number S of seg-
regating sites from data set A.

Exercise 4.14. Calculate the number S of seg-
regating sites from data set B.

Exercise 4.15. Estimate θ (per sequence and
per site) from the value of π you got from data set A.
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Table 4.3: Values of
∑K−1
k=1 1/k for various values of

K

K
∑K−1
k=1 1/k K

∑K−1
k=1 1/k

2 1.0000 12 3.0199
3 1.5000 13 3.1032
4 1.8333 14 3.1801
5 2.0833 15 3.2516
6 2.2833 16 3.3182
7 2.4500 17 3.3807
8 2.5929 18 3.4396
9 2.7179 19 3.4951

10 2.8290 20 3.5477
11 2.9290 21 3.5977

Exercise 4.16. Estimate θ (per sequence and
per site) from the value of π you got from data set B.

Exercise 4.17. Estimate θ from the value of
S you got from data set A. (Hint: Use table 4.3.)

Exercise 4.18. Estimate θ from the value of
S you got from data set B.

Exercise 4.19. What can you infer from the
similarity (or the dissimilarity) of the two estimates
of θ you got from data set A. (Hint: Remember
that it is only reasonable to compare values in the
same units. Don’t compare differences per site with
differences per sequence.)

Exercise 4.20. What can you infer from the
similarity (or the dissimilarity) of the two estimates
of θ you got from data set B.

Exercise 4.21. Calculate the folded site fre-
quency spectrum for data set A.

Exercise 4.22. Calculate the folded site fre-
quency spectrum for data set B.

Exercise 4.23. Use the θ̂S for data set A to
calculate the theoretical folded spectrum for neutral
loci in a population of constant size. (You will want

the value of θ̂S per sequence, not per site.) How well
do the observed and theoretical spectra match?

Exercise 4.24. Use the θ̂S for data set B to
calculate the theoretical folded spectrum. (You will

want the value of θ̂S per sequence, not per site.)
How well do the observed and theoretical spectra
match?

Exercise 4.25. Sketch a gene genealogy for a
sample of 10 sequences taken from a population that

grew suddenly from a small size to a very large size
6 units of mutational time ago.

Exercise 4.26. Looking back from the present
to the time of the population expansion, the number
of new mutations on a single line of descent will be 3
on average, but not in every case. What probability
distribution would best describe the variation in the
number of mutations among independent lines of
descent?

Exercise 4.27. Sketch the distribution of
pairwise differences (i.e. the mismatch distribution)
that you would expect to see in this sample. Assume
that the infinite sites model is a good approximation
here. In other words, don’t worry about multiple
hits. Be sure to label the X axis in a way that indi-
cates the mode of the distribution.

Exercise 4.28. In sequence data from the con-
trol region of human mitochondrial DNA, gene di-
versity (π) is often around 0.01 for European and
Asian samples and around 0.02 for African ones.
What does this imply about the numerical values of
θ = 4Nu in Europe and Africa?

The parameter θ can be estimated either from

θ̂π = π or from θ̂S = S
/K−1∑

k=1

1/k,

where π is the mean pairwise difference per se-
quence, S is the number of segregating sites and
K is the number of gene copies in the sample. In a
population of constant size, these statistics are of-
ten similar in size. In a population whose size has
changed, they can be dramatically different.

The reason involves the effect of population
growth on the site frequency spectrum. As ex-
plained in section 7.7 of Rogers [9], we see an excess
of singleton sites in populations that have expanded
in size at some time since the last common ancestor
of the gene genealogy. To understand how popu-
lation growth affects θ̂π and θ̂S , we need to think
about how these statistics are affected by singleton
sites.

Exercise 4.29. What does a singleton site con-
tribute to the value of θ̂π in a sample of K gene
copies?

Exercise 4.30. What does a singleton site con-
tribute to the value of θ̂S in a sample of K gene
copies?

Exercise 4.31. Make a table with three
columns: the first for the number, K of gene copies
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in the sample, the second for the effect of a single-
ton site on θ̂S and the third for the effect on θ̂π.
Consider K values of 2, 3, 4, 10, and 100. For
what values of K does a singleton site have a larger
effect on θ̂S than on θ̂π?

Exercise 4.32. In a population that has ex-
panded dramatically in size, it is usually true that
θ̂S > θ̂π. Why?



Homework 5

Mismatch Distribution and
Spectrum

Each exercise is worth 10 points.

Exercise 5.1. Describe in words the expected
mismatch distribution of a population that experi-
enced a major episode of growth 8 units of muta-
tional time ago, but was otherwise constant in size.
(Hint: a pair of gene copies that has been separated
for 8 units of mutational time will on average differ
by 8 mutations.)

Exercise 5.2. How should the unfolded site
frequency spectrum of this expanded population dif-
fer from that of a population with a long history of
constant size?

Here is a set of 10 DNA sequences, each with 10
sites:

seq0 AAAATAAAAA

seq1 ....A....T

seq2 TTT.A...T.

seq3 .TT.AT...T

seq4 ...TA...T.

seq5 ...T.T.TTT

seq6 TT..A.....

seq7 ....A.....

seq8 .T..A.....

seq9 ......T.T.

Exercise 5.3. Use these data to calculate a
mismatch distribution. (Remember that the first en-
try of the mismatch distribution is the number of
pairs of sequences that differ at 0 nucleotide sites.)

Exercise 5.4. To check your mismatch dis-
tribution, make sure that the sum of the counts in
the mismatch distribution is equal to the number of
pairs of individuals in the data, i.e. to K(K−1)/2,
where K is the number of sequences.

Exercise 5.5. As a second check, calculate
π, the mean pairwise difference, from the mismatch
distribution as follows:

π =

(
K(K − 1)

2

)−1∑
i

iFi

where Fi is the number of pairs of sequences that
differ by i nucleotide sites and K is the number of
sequences.

Exercise 5.6. Calculate π once again using the
easy method described in my chapter on Descriptive
Statistics for DNA Sequences. Make sure that the
two ways of calculating π give the same answer.

Tables A and B contain two additional sets of
data, each with 20 sequences and 50 sites. For your
convenience, we have also given you the mismatch
distribution of each dataset. The first entry in the
mismatch distribution is the number of pairs of se-
quences in the data that differ by 0 sites; the second
entry counts the pairs that differ by 1 site, and so
on.

These data sets were generated by computer
simulations. For one data set, the simulation as-
sumed a history of constant population size. For
the other, the simulation assumed that the popula-
tion experienced an episode of sudden growth but
was constant in size before and after this episode.
For the expanded population, the population his-
tory parameters were: θ0 = 1, θ1 = 1000, and
τ = 5. For the stationary population, there is only
one population history parameter: θ = 5.98.

Your job is to figure out which data set came
from which population.

Exercise 5.7. Plot the mismatch distribution
of data set A. Do not calculate the distribution

14
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yourself. The numbers are provided for you below
the data set.

Exercise 5.8. Repeat exercise 5.7 using data
set B.

Exercise 5.9. Calculate the folded observed
site-frequency spectrum of data set A.

Exercise 5.10. Calculate the folded observed
site-frequency spectrum of data set B.

The next few exercises will ask you to calcu-
late the folded spectrum that is expected under
the hypothesis of neutrality and constant popula-
tion size—the “theoretical” folded spectrum. Here’s
how to calculate the expected values: Let si repre-
sent the ith entry of the empirical spectrum in a
sample of K DNA sequences. Its expected value is

E[si] = θ/i+ θ/(K − i)

for positive integers i that are less than K/2.
If the number of sequences is even, then the

spectrum has an additional term at which i = K/2.
For that term,

E[si] = θ/i

This issue arises with the present data sets, both of
which have an even number of sequences.

To calculate numerical values, replace θ in these
expressions with its estimate,

θ̂S =
S∑K−1

i=1 1/i

where S is the number of segregating sites. In
our two data sets, K = 20, so the sum in the
denominator is

∑19
i=1 1/i = 3.5477. We mention

this merely to save you the trouble of calculating
it. With Python, however, the calculation is easy:
sum([1/i for i in range(1,20)]).

Exercise 5.11. Calculate the folded theoreti-
cal site-frequency spectrum of data set A—the spec-
trum expected under selective neutrality and con-
stant population size.

Exercise 5.12. Calculate the folded theoreti-
cal site-frequency spectrum of data set B—the spec-
trum expected under selective neutrality and con-
stant population size.

Exercise 5.13. Plot the observed and theoret-
ical spectra for data set A.

Exercise 5.14. Plot the observed and theoret-
ical spectra for data set B.

Exercise 5.15. Use these results to figure out
which data set came from an expanded population
and which came from a stationary population.

Table 5.1: Polymorphic Sites from Data Set A

% 0123456789 0123456789 0123456789 0

seq0 TAAAAATATA ATAAAAAATA AAAAAAAAAA A

seq1 A.T....... ........A. ......T... .

seq2 A...T..... ...T....A. ......T... .

seq3 A......... .....T.TA. ......T... .

seq4 A.....AT.. ........A. ......TTT. .

seq5 A.....A... .A......A. .T....TT.. .

seq6 AT........ ........A. ......T..T .

seq7 A.....A... ........A. ....T.T... .

seq8 A.....A.A. ........A. ......T... .

seq9 A.....A... ....T...A. .....TT... .

seq10 A.....A... ........A. T.....T... T

seq11 ...T..A... ..T...T.A. ..T...T... .

seq12 A.....A... ........A. ......T... .

seq13 A.....A... ........A. ......T... .

seq14 A.....A... ........A. ......T..T T

seq15 A.....A.A. .A......AT .......T.. .

seq16 A.....A.AT TA......A. ......T... .

seq17 A.....A.A. .A...TT.A. ...TT...T. .

seq18 A.....A.A. .A...T..A. .......... .

seq19 A....TA.A. .A......A. .......... .

In addition to the 31 polymorphic sites, there are
19 fixed sites.
Mismatch dist: 1 4 11 27 33 33 28 26 12 6 6 3
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Table 5.2: Polymorphic Sites from Data Set B

% 0123456789 0123456789

seq0 ATAAAATAAA TAAAATAAAA

seq1 .......... A.........

seq2 .......... A.........

seq3 .......... A.........

seq4 .......... AT..T.....

seq5 T.T.TT..TT A.T.....T.

seq6 T.T.TT..TT A.T.....T.

seq7 .A....AT.T A....A....

seq8 .A....AT.T A....A....

seq9 .A....AT.T A....A....

seq10 .A....AT.T A....A....

seq11 .A....AT.T A....A....

seq12 .A....AT.T A....A....

seq13 .A....AT.T A..T.A.T.T

seq14 .A.T.....T A....A....

seq15 .A.T.....T A....A....

seq16 .A.T.....T A....A....

seq17 .A.T.....T A....AT...

seq18 .A.T.....T A....AT...

seq19 .A.T.....T A....AT...

In addition to the 20 polymorphic sites, there are
30 fixed sites.
Mismatch dist: 25 12 3 25 27 30 15 12 9 3 9 18 0 0
2



Homework 6

Neutral Theory

Each exercise is worth 10 points.

To estimate separation times from genetic data,
we rely on the “molecular clock.” If, at some lo-
cus, two species differ by 0.01 (presumably neutral)
nucleotide substitutions per site, and if neutral sub-
stitutions occur at a rate of ρ per generation, then
we estimate the separation time as 0.01/2ρ.

Exercise 6.1. Why is there a “2” in the de-
nominator of this expression?

To make such estimates, we must first estimate
the rate, ρ, of neutral evolution. Such rates are esti-
mated from the number of nucleotide substitutions
that accumulate between DNA sequences separated
for a known amount of time. Unfortunately, neither
the number of substitutions nor the separation time
is often known exactly, and this can add both un-
certainty and bias to the molecular clock.

In the calculation just described, the number
of nucleotide substitutions cannot be observed di-
rectly. What we do observe is the number of nu-
cleotide differences. The problem is that when a
substitution occurs at a nucleotide site that has
previously mutated, it does not increase the num-
ber of site differences. The uncorrected number of
site differences therefore underestimates the num-
ber of substitutions, a phenomenon known as sat-
uration. This effect is insignificant in very recent
comparisons but increases with age. It is exacer-
bated when nucleotide sites vary in rate, because
rates at rapidly-evolving sites may be underesti-
mated. In modern phylogenetic studies, these prob-
lems are addressed by fitting models of the sub-
stitution process [7, sec. 3.2–3.4]. If the model is
appropriate, saturation adds noise but not bias to
the molecular clock. Fortunately, estimates of dates
are relatively insensitive to this component of the
model: we get approximately the same answer from
many different models [11, p. 143].

6.1 The Jukes-Cantor model
of nucleotide substitution

Neutral theory predicts that substitutional changes
will accumulate at a constant rate. Yet because
of saturation, we cannot measure substitutional
changes directly. What we do measure is the frac-
tion, p, of sites that differ between each pair of se-
quences. We need a way to convert this into an
estimate of the mean number, K, of substitutional
changes per site. This requires some model of the
substitutional process. A variety of such models
have been introduced, but we will use only the sim-
plest, which was introduced by Jukes and Cantor
[5] in 1969.

Their model assumes that when a site mutates,
it is equally likely to end up in any of the other three
states. Under this assumption, Jukes and Cantor [5]
show that

K = −3

4
ln

(
1− 4

3
p

)
(6.1)

This formula allows us to estimate K (the number
of subsitutional changes per site) from p (the frac-
tion of sites that differ). If the neutral theory is
correct, then E[K] = 2ut, where u is the neutral
mutation rate, and t is the time since the last com-
mon ancestor of the two DNA sequences.

For example, consider the difference between hu-
mans and chimpanzees. We differ at about 35×106

of the 3 × 109 nucleotide sites in our (haploid)
genomes—a fraction p = 0.01167. Plugging this
into Eqn. 6.1 gives K = 0.01177 substitutions per
site. There is hardly any difference between our
estimates of K and p, indicating that not much sat-
uration has occurred. In cases such as this, there
is no compelling reason to correct for saturation at
all.

When p is small, geneticists often use it as an ap-
proximation for K. This makes sense, provided that

17
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the error involved in the approximation is small.
How small is it in the chimpanzee-human compar-
ison? Consider the relative error, which is defined
as

relerr =
|p−K|
K

where || indicates the absolute value. For the
chimpanzee–human data, this gives relerr =
|0.01167 − 0.01177|/0.01177 ≈ 0.008. This means
that when we use p instead of K, we make an error
that is less than 1% as large as the correct answer,
K.

Exercise 6.2. Calculate the relative error for
a variety of values of p in order to decide when it
is and is not necessary to correct for saturation.

Exercise 6.3. Fossils suggest that humans and
chimpanzees last shared ancestor around t = 6×106

years ago. The neutral theory implies that K = 2ut,
where u is the neutral substitution rate. Use the
chimpanzee-human data to estimate u. How does
the estimate compare to the typical mammalian
rate, approximately 10−8 per site per year? What
might account for the difference?

6.1.1 Deriving the Jukes-Cantor for-
mula

Although we are interested in the process of mu-
tation, we will focus here on an imaginary process
of “perturbation.” In each time unit, a site is per-
turbed with probability λ. After a perturbation the
site is equally likely to be in any of the four states
(A, T, G, and C). If it is perturbed, it ends up in a
different state with probability 3/4. Consequently,
mutations occur with probability u = (3/4)λ.

This formulation of the problem provides an
enormous simplification: once a site has been per-
turbed, there is no further change in the probabil-
ities of states A, T, G, and C. These probabilities
are the same, no matter whether the site has been
perturbed once, twice, or a thousand times. This
makes the process far easier to study. Yet once we
have derived a result, we can easily re-express it in
terms of mutations rather than perturbations. All
we’ll need to do is replace λ in our formula with the
equivalent value (4/3)u.

Suppose that we compare homologous sites in
two DNA sequences that have been separated for t
units of time. Because the rate of perturbation is
constant, the number of perturbations along the the
two branches that separate our DNA sequences is a

Poisson random variable with mean 2λt. The prob-
ability that neither sequence has been perturbed is
given by the zero term of the Poisson distribution:
e−2λt. In this case, they are obviously identical. If
there has been at least one perturbation, then the
perturbed sequences are equally likely to be in any
of the four states, and the two sites are identical
with probability 1/4. The probability, q, of identity
is therefore

q = e−2λt + (1− e−2λt)/4

=
1

4
+

3

4
e−2λt

Let us now re-express this result in terms of
things we can measure. First substitute (4/3)u = λ,
so that our formula is in terms of mutations rather
than perturbations:

q =
1

4
+

3

4
e−(8/3)ut

Next, re-express the formula in terms of the prob-
ability, p = 1 − q, that two homologous sites will
differ:

p =
3

4
− 3

4
e−(8/3)ut

Finally, substitute K = 2ut, the expected number
of nucleotide site changes along the path that sep-
arates the two sites:

p =
3

4
− 3

4
e−(4/3)K

After solving this equation for K, we end up with
Eqn. 6.1.

6.2 Other models of substitu-
tion

Some nucleotide site changes (A↔G and C↔T)
are especially common. These common changes
are called “transitions,” and the others are called
“transversions.” In mitochondrial DNA, transitions
seem to be at least 30 times as common as transver-
tions. With such data, the Jukes-Cantor model is
clearly inappropriate, and various alternatives are
often used.

One alternative is especially simple. If transi-
tions are sufficiently common, relative to transver-
sions, it may be reasonable to assume that all mu-
tations are transitions. In such a model, some sites
toggle back and forth between A and T, while oth-
ers toggle between C and G. Either way, we can use
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Table 6.1: Nucleotide sequence differences between
complete mitochondrial genomes. Source: [2].

BN Rat Mouse Human
Brown Norway Rat — 4897 2897
Mouse — 5050
Human —

a variant of the Jukes-Cantor model in which the
number of states is two rather than four.

Exercise 6.4. Derive a formula, analogous to
Eqn. 6.1, in which the number of states is two rather
than four. (Hint: repeat the steps in section 6.1.1.
Your derivation should assume that, after a pertur-
bation, the site is equally likely to be in either of the
two states.)

Exercise 6.5. Use the 2-state model to esti-
mate K from the chimpanzee-human data.

6.3 Rodent mitochondrial
DNA sequences

Table 6.1 shows the number of nucleotide site differ-
ences between the complete mitochondrial genomes
of mouse, rat, and humans. These genomes are of
slightly different sizes: about 16,300 bp for mouse
and rat, and 16,569 bp for human.

Exercise 6.6. Use the data in table 6.1 to esti-
mate the fraction (p) of site differences between each
pair of species. To do this you will need to know the
total number of sites in the mitochondrial genome.
These numbers are about 16,300 bp for mouse and
rat, and 16,569 bp for human. We can take the
smaller of these two numbers as the effective size in
our comparisons, because this is the largest number
of sites we could conceivably align. Then (a) use
the Jukes-Cantor formula to estimate K for each
pair of species. (b) Because rats and mice are close
relatives, we expect the rat-human number to equal
the mouse-human number. How well do your results
conform to this expectation?



Homework 7

Selection

Many of the exercises in this homework have
several components, which are given letters: a, b,
and so on. Each component of each exercise is worth
10 points. Several of the exercises ask you to make
graphs. Feel free to use any method you please.
There is nothing wrong with a pencil and graph
paper. And if you don’t have graph paper, try this:

For emergency graph paper, take out one
sheet of ruled paper, turn it on its side,
and place it beneath another sheet of ruled
paper. If these two sheets have a light-
colored backing—often provided by the
rest of the pad or notebook—the vertical
lines on the lower sheet are almost certain
to show through well enough, combining
with the horizontal lines on the top sheet
to form a grid on which plotting is reason-
ably easy.

Tukey [10, p. 43]:

7.1 How selection changes al-
lele frequencies

Exercise 7.1. At a biallelic locus, suppose that
genotypes A1A1, A1A2, and A2A2 have relative fit-
nesses 1, 1.02, and 1.03 and that the frequency
of A1 is p = 0.1. (a) What is the population’s
mean relative fitness? (b) What are the “marginal”
or allele-specific relative fitnesses of A1 and A2?
(c) What is the expected frequency of A1 in the fol-
lowing generation?

Exercise 7.2. At a biallelic locus, suppose that
p = 0.2, s = 0.05, and h = 0.1. Here, p is the
relative frequency of allele A1, and the relative fit-
nesses of genotypes A1A1, A1A2, and A2A2 are 1,
1− hs, and 1− s. Assume that the population is at
Hardy-Weinberg equilibrium. (a) What is the pop-
ulation’s mean relative fitness? (b) What are the

“marginal” or allele-specific relative fitnesses of A1

and A2? (c) What is the expected frequency of A1

in the following generation?

Exercise 7.3. Repeat exercise 7.2, assuming
that p = 0.5, s = 0.01, and h = −0.3.

Exercise 7.4. Suppose that genotypes A1A1,
A1A2, and A2A2 have relative fitnesses 1, 1 − hs,
and 1− s, and that their absolute fitnesses are 1.3,
1, and 0.9. (a) What are s and h? (b) Plot ∆sp
against p. (c) Where are the equilibria? Which are
stable? Which are unstable? Hints: use Gillespie’s
Eqns. 3.2 and 3.3.

Exercise 7.5. Repeat exercise 7.4, assuming
that genotypes A1A1, A1A2, and A2A2 have abso-
lute fitnesses 1.3, 1, and 1.2.

Exercise 7.6. Repeat exercise 7.4, assuming
that genotypes A1A1, A1A2, and A2A2 have abso-
lute fitnesses 0.9, 1, and 0.8.

Exercise 7.7. Suppose that genotypes A1A1,
A1A2, and A2A2 have fitnesses 1, 1.15, and 1.2.
The population is infinite and mates at random.
What is the frequency of allele A1 at the stable equi-
librium? (No calculation is needed.)

Exercise 7.8. Suppose that genotypes A1A1,
A1A2, and A2A2 have fitnesses 1, 1.5, and 1. The
population is infinite and mates at random. What is
the frequency of allele A1 at the stable equilibrium?
(No calculation is needed.)

Exercise 7.9. Suppose that genotypes A1A1,
A1A2, and A2A2 have fitnesses 1, 0.5, and 1.5. The
population is infinite and mates at random. What
is the frequency of allele A1 at the two stable equi-
libria? (No calculation is needed.)

Exercise 7.10. Use Gillespie’s Eqn. 3.4 to
graph p̂ as a function of h for −1 < h < 2. Your
vertical axis should extend only from 0 to 1, be-
cause values outside this range are not legitimate
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allele frequencies. Locate the regions of the graph
that correspond to (a) overdominance, (b) incom-
plete dominance, and (c) underdominance. In mak-
ing these determinations, assume that s > 0. For
each of these regions, discuss the outcome of natural
selection.

Exercise 7.11. Gillespie’s equation 3.9 doesn’t
work if h = 0, i.e. if allele A2 is completely re-
cessive. Derive a formula for this case. Hints:
(i) equation 3.6 still works; (ii) equation 3.8 sim-
plifies to ∆sp = pq2s/(1 − q2s) ≈ pq2s; (iii) it is
still true that ∆p = ∆sp+ ∆up.

Exercise 7.12. White flowers (genotype rr)
are recessive to red (RR and Rr) in an outbreed-
ing plant species. In a large random sample,
you count 200 white-flowered plants and 800 red-
flowered plants. One generation later, you count
250 white and 750 red plants. To study these data,
use the following notation for fitnesses and geno-
typic frequencies:

G’type RR Rr rr
Fitness wRR = 1 wRr = 1 wrr = 1− s
Freq PRR = p2 PRr = 2pq Prr = q2

This says that p is the frequency of allele R, q =
1−p is that of allele r, and the genotype frequencies
are at Hardy-Weinberg equilibrium. Furthermore,
relative fitness is 1 for both of the genotypes (RR
and Rr) that produce red flowers. It equals 1−s for
the genotype (rr) that produces white flowers. To
study the change between generations, we’ll use the
displayed equation at the top of Gillespie’s p. 62. In
the current notation, this equation becomes

p′ =
p2wRR + pqwRr

w̄
(7.1)

where w̄ = p2wRR + 2pqwRr + q2wrr is the mean
allele frequency. Answer the following questions:
(a) What’s the frequency, p, of allele R in the first
generation? (b) What’s the frequency, p′, of allele
R in the second generation? (c) If this change was
caused by selection, then what was the coefficient
(s) of selection? This calculation is sensitive to
numerical error: use at least 3 digits of precision
throughout.

Exercise 7.13. Repeat exercise 7.12, this
time assuming that the fraction of white flowers was
100/1000 in the first generation and 95/1000 in the
second.

This calculation is sensitive to numerical error:
use at least 3 digits of precision throughout.

7.2 Selection and drift

In these problems, we’ll follow the notation in Gille-
spie’s section 3.9, which assumes that A1 is the
“wild type” allele, A2 is the mutant allele, and geno-
types A1A1, A1A2, and A2A2 have relative fitnesses
1, 1 + s/2, and 1 + s. (This notation differs from
Kimura’s, which Jon presented in lecture.)

Exercise 7.14. Do we expect more adaptive
evolution (fixations of advantageous mutations) in
large or in small populations? Why?

Exercise 7.15. For a deleterious mutation
with s = −0.001, what is the probability of fix-
ation in a population of size (a) Ne = 10, 000,
(b) Ne = 1000, and (c) Ne = 100. Hint: In Python,
Gillespie’s equation 3.22 is

# Prob of fixation of a new mutation.

def pfix(N, s):

return (1-exp(-s))/(1-exp(-2*N*s))

Exercise 7.16. Suppose that for the deleteri-
ous alleles of the preceding problem, the mutation
rate is u = 2.2× 10−9 per year. What is the rate of
substitution of such alleles per million years?

Exercise 7.17. Problem 7.15 was about dele-
terious mutations. Repeat it for advantageous mu-
tations with s = 0.001. (Hint: Use the pfix Python
function defined above.)

Exercise 7.18. Repeat problem 7.16 for ad-
vantageous mutations with s = 0.001, still assuming
that u = 2.2× 10−9.

On p. 93, Gillespie shows that if s� 1� 2Nes,
and Ne ≈ N , then the probability of fixation of a
newly-arisen advantageous mutant allele is approx-
imately

π1(1/2N) ≈ s (7.2)

In other words, the probability of fixation for a new
adaptive mutation is approximately twice the selec-
tive advantage of a heterozygote.

Exercise 7.19. Repeat exercise 7.17, this time
using the approximation in Eqn. 7.2. For each pop-
ulation size, calculate the relative error of the ap-
proximation,

relerr =

∣∣∣∣s− π1(1/2N)

π1(1/2N)

∣∣∣∣
where π1(1/2N) is the value given by Kimura’s for-
mula, and the vertical bars indicate the absolute
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value.1 Based on these relative errors, in which
cases does the approximation work well, and in
which does it work poorly?

1For example, the absolute value of −3 is written |−3|
and equals 3.



Homework 8

Two Loci

Exercise 8.1. Consider the following data set:

Haplotype: AB Ab aB ab
Count: 30 70 50 20

Use these data to answer the following ques-
tions: (a) What are the relative frequen-
cies (x1, x2, x3, x4) of the four gamete types
(AB,Ab, aB, ab)? (b) What are the frequencies
pA and pB of alleles A and B? (c) What is D?
(d) What is the squared correlation, r2, between
loci? (Don’t confuse this r with the recombination
rate, which is also often called r. See Gillespie’s
p. 105.)

Exercise 8.2. Answer the same questions with
these data:

Haplotype: AB Ab aB ab
Count: 80 30 10 45

Exercise 8.3. Answer the same questions as
before, using the data below, and defining x1, x2,
x3, and x4 to represent the relative frequencies of
AG, AC, TG, and TC.

Locus Locus
1 2
A G
A G
A C
T G
T G
T G
T G
T G
T C
T C

Exercise 8.4. Answer the same questions as
before, using the data below, and defining x1, x2,
x3, and x4 to represent the relative frequencies of
AG, AC, TG, and TC.

Locus Locus
1 2
A G
A C
A C
A C
T G
T G
T G
T G
T G
T C

Exercise 8.5. Suppose the recombination rate
is c = 1/2 and that D = 0.2 in generation 0. What
would D be after (a) 1 generation, and (b) 3 gener-
ations? (Hint: in last displayed equation on p. 104,
Gillespie’s r is my c.)

Exercise 8.6. Suppose the recombination rate
is c = 1/1000 and that D = 0.3 in generation 0.
What would D be after (a) 1 generation, and (b) 100
generations?

Exercise 8.7. D can be defined in several
ways, including

D = x1 − pApB
= x1x4 − x2x3

Prove that these are equivalent. (Hint: Start by
writing pA and pB in terms of the xis. Don’t forget
that

∑
xi = 1.)

Exercise 8.8. D can be defined in several
ways, including

D = x1 − pApB
−D = x2 − pA(1− pB)

Prove that these are equivalent. (Hint: remember
that x1, x2, x3, and x4 are the frequencies of ga-
metes AB, Ab, aB, and ab.)

23
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Exercise 8.9. Suppose that, in generation 1,
half the gametes are A1B2 and the other half are
A2B1. What are the values of (a) the four gamete
frequencies (x1, x2, x3, x4) and (b) the coefficient,
D, of linkage disequilibrium?

Exercise 8.10. Now assume that selection op-
erates at the gamete stage, that alleles B1 and B2

are neutral, that allele A1 has fitness 1 + s rela-
tive to A2. What are (a) the four gametic fitnesses,
(w1, w2, w3, w4), and (b) the mean gametic fitness,
w̄. In calculating the mean, use the gametic rela-
tive frequencies (x1, x2, x3, x4) that you calculated
in problem 8.9. Your answers will be functions of a
single unknown value, s.

We have assumed that selection operates in the
gamete stage. As explained in lecture, this model
implies that the expected gamete frequencies in the
following generation are

x′1 = w1(x1 − cD)/w̄

x′2 = w2(x2 + cD)/w̄

x′3 = w3(x3 + cD)/w̄

x′4 = w4(x4 − cD)/w̄

where w̄ =
∑
i xiwi is the mean fitness.

Exercise 8.11. Assume that the recombina-
tion rate is c = 1/4, and take the other values
(wi, w̄, xi, D) from your answers to problems 8.9
and 8.10. What are the expected values of the
four gamete frequencies in the following generation?
Your answers will be functions of a single unknown
value, s.

Exercise 8.12. Soon after a selective sweep
has finished, (a) what would you expect of nucleotide
diversity at nearby loci? More diversity, less diver-
sity, or about the same amount as before the sweep?
(b) Is this effect larger or smaller in regions of low
recombination?

If two sites are 1 centimorgan (cM) apart on
a chromosome, then the rate of recombination be-
tween them is c = 1/100. (This is the definition.)
How does this relate to physical distance along the
chromosome? In general, 1 cM is about a million
base pairs—a “megabase”—for humans. In the ex-
ercise below, you will use this generalization to cal-
culate the probability λ of recombination between
two adjacent nucleotides.

As a first approximation, you might suppose
that

c = λk

where k is the physical distance between the two
sites—the number of nucleotides between them.
Our rule of thumb says that c = 0.01 when k = 106.
Thus,

λ = 0.01/106 = 10−8

The rate of recombination between adjacent nu-
cleotides is about 10−8.

But this calculation is only approximate. To see
why, consider sites A and B below.

Before

--A-------------------B

--a-------------------b

After

--A---\ /-----\ /-----B

X X

--a---/ \-----/ \-----b

In the “Before” picture, we see two chromosomes,
one with the AB haplotype, the other with ab. In
the “After” picture, two cross-overs have happened,
yet we still have the same two haplotypes. There
were cross-overs but no recombination. This hap-
pens whenever the number of cross-overs between
two loci is even. The probability (c) of recombi-
nation is the probability that the number of cross-
overs is odd.

In 1919, JBS Haldane calculated the probability
of an odd number of crossovers. His answer, now
known as “Haldane’s mapping function,” is

c = (1− e−2λk)/2

provided that cross-overs occur at a constant rate
along the chromosome.

Exercise 8.13. Our rule of thumb (a centi-
morgan is a megabase) says that c = 1/100 when
k = 106. Substitute these values into Haldane’s for-
mula above, and solve for λ. How does your result
compare to the approximate one (λ = 10−8) that we
got above?

Exercise 8.14. Let’s try extrapolating in the
other direction. Suppose that two sites are sepa-
rated by 50 megabases ( 5× 107 bases). Estimate c,
assuming that λ = 10−8, and using (a) the approxi-
mate formula, and (b) Haldane’s mapping function.
Finally, (c) comment of the accuracy of the approx-
imation in this case.

Exercise 8.15. Make a graph. The horizontal
axis represents λk and should run from 0 to 0.5.
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On this graph, plot (a) the approximate formula
c ≈ λk, and (b) Haldane’s mapping function, as de-
fined above. The vertical difference between the two
lines shows the error involved in the approximate
formula. (c) Over what range of λk is the approx-
imation satisfactory? (d) Translate this range into
units of base pairs (i.e. k), assuming that λ = 10−8.

On p. 110, Gillespie shows that a selective sweep
removes variation at all sites such that (roughly)
that c/s < 0.1, where c is the recombination rate
with the selected site. (This applies both upstream
and downstream from the selected site.)

Exercise 8.16. How large is the affected region
of the chromosome if λ = 10−8 and s = 0.001?

Exercise 8.17. How large is the affected region
of the chromosome if λ = 10−8 and s = 0.1?

Exercise 8.18. In Europeans, the allele for
lactase persistence sits on a region of LD that ex-
tends for a megabase. The persistence allele is still
polymorphic, but let us suppose that it sweeps to fix-
ation, removing most of the variation from this en-
tire megabase-sized region. Based on your answer
to the previous question, how strong would this se-
lection need to be?

Exercise 8.19. Identify and describe one re-
combination event in table 8.1. (Don’t use any of
the events described in the answered questions in the
back.)

Exercise 8.20. Identify and describe another
recombination event in table 8.1. (Don’t use any
of the events described in the answered questions in
the back.)
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Table 8.1: DNA sequences near the human lactase gene, typed in a European sample. Columns are
nucleotide sites. Top row (the reference sequence) shows common state at each site. Capital “A” is the
lactase persistence allele. Dots indicate identity with top row.

1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1
aaggaggcga cattccgctt caggcattcc tatctaaaca gaccaacgta Agggtacaat gcctaaccca gacgtttcaa ctctggctgt tattcctcga t

01 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
02 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
03 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
04 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
05 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
06 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
07 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
08 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
09 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
10 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
11 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
12 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
13 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
14 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
15 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
16 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
17 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
18 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
19 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
20 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
21 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
22 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
23 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
24 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
25 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
26 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .
27 .......... .......... .......... ...t...... .......... .......... .......... .......... .......... .......... .
28 .......... .......... .......... ...t...... .......... .......... .......... .......... .......... .......... .
29 .......... .......... .......... .......... .......... .......... .....c.... .......... .......... .......... .
30 .......... .......... .......... .......... .......... .......... ....g..... .......... .......... .......... .
31 gg.a.ca.ag .g.gt..... .......... .......... .......... .......... .......... .......... .......... .......... .
32 .......... .......... .......... .......... .......... G......... .......... .......... .......... .......... .
33 .......... .......... .......... .......... .......... G......... .......... .......... .......... .......... .
34 .......... .......... .......... .......... .......... G......... .......... .......... .......... .......... .
35 .......... .......... .......... .......... .......... G......... .......... .......... .......... .......... .
36 .......... .......... .......... .......... .......... G......... .......... .......... .......... .......... .
37 .......... .......... .......... .......... .......... G..a.gt... ..t....... ..gac.c.tg tct.....a. .gc..t.t.. c
38 .......... ..c.....cc gga....gat ..at..gg.. c.....tc.g Gaaa.g..cc ttt...tg.. ....c...t. t......... .g.....t.. .
39 ....g....g ..c.....cc gga....gat ..at..gg.. c.....tc.g Gaaa.g..cc ttt...tg.. ....c...t. t......... .g.....t.. .
40 gg.a..at.g t.c.t..tcc ...agtag.t .cat..g... ..t..ttccg G..a.gt... ..t....... ..gac.c.tg tct....... .......... .
41 .......... ..c.t..tcc ...agtag.t .cat..g... ..t.gttccg G..a.gt... ..t....... ..gac.c.tg tct.....a. .gc..t.t.. c
42 .......... ..c.t..tcc ...agtag.t .cat..g... ..t.gttccg G..a.gt... ..t....... ..gac.c.tg tct.....a. .gc..t.t.. c
43 ..aa..at.g t.c.t..tcc ...agtag.t .cat..g... ..t.g.tc.g G..a.gt... ..t....... ..gac.c.tg tct....... .g...t.t.. c
44 ..aa..at.g t.c.t..tcc ...agtag.t .cat..g... ..t..ttc.g G..acgt... ..t....... ..gac.c.tg tct.....a. .gc..t.t.. c
45 ..aa..at.g t.c.t..tcc ...agtag.t .cat..g... ..t.gttc.g G..a.gt... ..t....... ..gac.c.tg tct.....a. .gc..t.t.. c
46 ....g....g ..c.....cc gga....gat ..at..gg.. c.....tc.g Gaaa.g..cc ttt...tg.. ....cg.gt. t..ctata.c cg.c..ctcg .
47 gg.a..at.g t.c.t..tcc ...agtag.t .cat..g... ..t.gttccg G..a.gt... ..t....... ..gac.c.tg tct.....a. .gc..t.t.. c
48 gg.a..at.g t.c.t..tcc ...agtag.t .cat..g... ..t.gttccg G..a.gt... ..t....... ..gac.c.tg tct.....a. .gc..t.t.. c
49 gg.a..at.g t.c.t..tcc ...agtag.t .cat..g... ..t.gttccg G..a.gt... ..t....... ..gac.c.tg tct.....a. .gc..t.t.. c
50 .........g ..c..tatcc gga....g.t c.atcgg.tc .g.tg.tc.g G..a.g.g.. ..tg....gg t...cg.gt. t..ctata.c cg.c..ctcg .
51 gg.a.ca.ag .g.gtta.cc gga....g.t ..atcgg.tc .g.tg.tc.g G..a.g.g.. ..tg....gg t...cg.gt. t..ct...a. .gc..t.t.. c
52 gg.a.ca.ag .g.gtta.cc gga....g.t ..atc.g.tc .g.tg.tc.g G..a.g.g.. ..tg....gg t...cg.gt. t..ctata.c cg.c..ctcg .
53 gg.a.ca.ag .g.gtta.cc gga....g.t ..atcgg.tc .g.tg.tc.g G..a.g.g.. ..tg....gg t...cg.gt. t..ctata.c cg.c..ctcg .
54 gg.a.ca.ag .g.gtta.cc gga....g.t ..atcgg.tc .g.tg.tc.g G..a.g.g.. ..tg....gg t...cg.gt. t..ctata.c cg.c..ctcg .
55 gg.a.ca.ag .g.gtta.cc gga....g.t ..atcgg.tc .g.tg.tc.g G..a.g.g.. ..tg....gg t...cg.gt. t..ctata.c cg.c..ctcg .
56 gg.a.ca.ag .g.gtta.cc gga....g.t ..atcgg.tc .g.tg.tc.g G..a.g.g.. ..tg....gg t...cg.gt. t..ctata.c cg.c..ctcg .
57 gg.a.ca.ag .g.gtta.cc gga....g.t ..atcgg.tc .g.tg.tc.g G..a.g.g.. ..tg....gg tg..cg.gt. t..ctata.c cg.c..ctcg .
58 gg.a.ca.ag .g.gtta.cc gga....g.t ..atcgg.tc .g.tg.tc.g G..a.g.g.. ..tg....gg t...cg.gt. t..ctata.c cg.ca.ctcg .
59 gg.a.ca.ag .g.gtta.cc gga....g.t c.atcgg.tc .g.tg.tc.g G..a.g.g.. ..tg....gg t...cg.gt. t..ctata.c cg.c..ctcg .
60 gg.a.ca.ag .g.gtta.cc gga....g.t ..atcgg.tc .g.tg.tc.g G..a.g.g.. ..tg....gg tg..cg.gt. t..ctata.c cg.c..ctcg .

1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1



Homework 9

Inbreeding

Each exercise is worth 10 points.

Exercise 9.1. Find p and F for a sample with
genotype frequencies 100, 200, and 200 of genotypes
A1A1, A1A2, and A2A2, respectively.

Exercise 9.2. Find p and F for a sample with
genotype frequencies 200, 100, and 200 of genotypes
A1A1, A1A2, and A2A2, respectively.

Exercise 9.3. At a bi-allelic locus, alleles A1

and A2 have frequencies p = 1/4 and and q = 3/4.
Relative to the current generation, F is 1/2. What
is the frequency of genotype A1A1?

Exercise 9.4. At a bi-allelic locus, alleles A1

and A2 have frequencies p = q = 1/2. Relative
to the current generation, F is 1/4. What is the
frequency of genotype A1A1?

Exercise 9.5. What is the coefficient of kinship
of half-siblings?

Exercise 9.6. What is the coefficient of kinship
of full cousins?

Exercise 9.7. Figure 9.1 shows the genealogy
of George Darwin, one of Charles Darwin’s sons.
What is his inbreeding coefficient?

Exercise 9.8. Suppose that (a) we are study-
ing a locus with two alleles, A1 and A2, (b) the fre-
quency of allele A1 is p = 0.4, and (c) the coefficient
of kinship between two individuals is 1/8. What are
the probabilities that their offspring will be (1) an
A1A1 homozygote, (2) an A1A2 heterozygote, and
(3) an A2A2 homozygote?

Exercise 9.9. Suppose that (a) we are study-
ing a locus with two alleles, A1 and A2, (b) the
frequency of allele A1 is p = 0.1, and (c) the co-
efficient of kinship between two individuals is 1/16.
What are the probabilities that their offspring will
be (1) an A1A1 homozygote, (2) an A1A2 heterozy-
gote, and (3) an A2A2 homozygote?

...................................................................................
...........
.....
...........
...........
.....

................................................................................................................................................................................................................................................................................................................ .....................
......

..........................................................................................................................................................................................................................................................................................................
......

...........................

...................................................................................
...........
.....
...........
...........
.....

...................................................................................
...........
.....
...........
...........
.....

...................................................................................
...........
.....
...........
...........
.....

................................................................................................................................................................................... ................
...........

........................................................................................................................................................................
...........

...........................

Josiah Wedgewood Sarah Wedgewood

Susannah Wedgewood Josiah Wedgewood II

Charles Darwin Emma Wedgewood

George Darwin

Figure 9.1: Genealogy of George Darwin

Exercise 9.10. This exercise is the same as
the last one, except that this time you are not given
numerical values for the various parameters. This
time, you know only that (a) the frequency of al-
lele A1 is p, and (b) the coefficient of kinship be-
tween two individuals is f . What are the proba-
bilities that their offspring will be (1) an A1A1 ho-
mozygote? (2) an A1A2 heterozygote? (3) an A2A2

homozygote? Your answers should be formulas, not
numbers.
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Homework 10

Population Structure

FST can be expressed in terms of gene diversity:

FST =
HT −HS

HT
(10.1)

in terms of homozygosity (Gillespie’s formula 5.3,
p. 132):

FST =
GS −GT
1−GT

(10.2)

or in terms of the variance V between allele frequen-
cies of subdivisions:

FST = V/pq (10.3)

Exercise 10.1. Verify algebraically that for-
mulas 10.1 and 10.2 are equivalent. (Hint: Use the
facts that GS = 1−HS and GT = 1−HT . This just
says that every genotype is either a homozygote or
a heterozygote, so homozygosity and heterozygosity
must sum to 1.)

Exercise 10.2. Verify that formulas 10.1
and 10.3 are equivalent. (Hint: Use Wahlund’s for-
mula, which was explained in the lecture on popula-
tion structure. Or consult Gillespie’s discussion of
FST .)

In 1978, Sewall Wright published a chapter on
variation among human populations. He included
a table of allele frequencies at six loci, from which
I have extracted data on a two biallelic loci. (I also
left out several of his populations and changed his
racial labels to geographic ones.) The table below
shows the frequencies of the P 1 allele at the P locus
and the Fy allele at the Duffy locus:

Population P 1 Fy
African 0.734 0.037
European 0.496 0.436
Australian 0.330 1.000
Asian 0.259 0.901
Average 0.455 0.593

Exercise 10.3. What is FST at the P locus?

Exercise 10.4. What is FST at the Duffy lo-
cus?

Exercise 10.5. What is the average of the
two FST estimates? How does your estimate com-
pare with the value of 0.12, which has been found in
many other studies of genetic differences between
continental human populations?

Exercise 10.6. Suppose that (1) a population
is divided into several groups, within which mating
is random, (2) the frequency of allele A is p̄ = 1/4
in the population as a whole, and (3) FST = 1/3.
What is the expected frequency within the population
as a whole of genotypes AA, Aa, and aa?

Exercise 10.7. Suppose that (1) a population
is divided into several groups, within which mating
is random, (2) the frequency of allele A is p̄ = 1/2
in the population as a whole, and (3) FST = 1/10.
What is the expected frequency within the population
as a whole of genotypes AA, Aa, and aa?

Sewall Wright showed that at equilibrium be-
tween migration and genetic drift,

E[FST ] =
1

4Nm+ 1

where N is the diploid effective size of each sub-
population. The result is based on Wright’s “Is-
land Model” of population structure, which assumes
there is an infinite number of sub-populations, and
that in each generation a fraction m of each sub-
population consists of immigrants sampled from the
population as a whole. This model is unrealistic
for several reasons, among them being the infinite
number of sub-populations and the equal rate of
exchange between each pair of sub-populations. In
the question below, ignore these discrepancies.

Exercise 10.8. Among continental human
populations, estimates of FST are usually close to

28
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1/9. Assume that this represents an equilibrium be-
tween migration and genetic drift under the Island
Model of population structure. What does this im-
ply about the number Nm of migrants between pairs
of populations in each generation?



Homework 11

Admixture

Exercise 11.1. The table below summarizes
a comparison among four haploid genomes: one
European, one African, one Neanderthal, and one
chimpanzee. “0” represents the ancestral allele and
“1” the derived (i.e. mutant) allele. Each column
refers to a different pattern in which these alleles
may occur at an individual nucleotide site. The bot-
tom row shows the number of nucleotide sites that
have each pattern.

Nucleotide
Site Pattern

xy yn xn
African (X) 1 0 1
European (Y) 1 1 0
Neanderthal (N) 0 1 1
Chimpanzee (C) 0 0 0

303,340 103,612 95,347

Explain why, in the absence of gene flow from the
Neanderthal population into modern humans, we
expect site patterns yn and xn to be approximately
equal in frequency.
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Homework 12

Quantitative Characters

Table 12.1: Quinoa seed weights. Each column
refers to a different seed weight, each row to the
sample of seeds from a different inbred line of
quinoa. The entries give the number of seeds of
each weight observed in each line

weight: 2 mg 3 mg 4 mg 5 mg 6 mg

line 1 3 32 38 22 5
line 2 1 19 24 43 13
line 3 6 23 41 26 4
line 4 12 38 35 13 2
Sum 22 112 138 104 24

You are studying the quantitative genetics of
seed weight in quinoa (Chenopodium quinoa), an
extremely nutritious non-cereal grain of the Andes.
The seeds have very high protein content, with a
good balance of the essential amino acids. Accord-
ing to Wikipedia, “quinoa is being considered a pos-
sible crop in NASA’s Controlled Ecological Life-
support System for long-duration manned space-
flights.” You grow four inbred lines under uniform
conditions in the same field and weigh 100 randomly
chosen seeds from each line. The table summarizes
your data. You want to know how much heritable
variation for seed weight there is.

Several of the exercises below will ask you to es-
timate the mean and variance. These are estimated
as

X̄ = S1/N (12.1)

V =
S2 − S2

1/N

N − 1
(12.2)

where N is the number of observations, S1 is the
sum of the observed values, and S2 is the sum of
squares of observed values. With ordinary (un-

grouped) data,

S1 =

N∑
i=1

xi, and

S2 =

N∑
i=1

x2i

Here, xi is the value of the ith observation, and
the sums run across all N items in the data set.
Our data, however, are grouped, so we can take a
shortcut. Let x represent one of the values that
the data may take. In table 12.1, for example, x
takes the values 2, 3, 4, 5, and 6. The number
of observations with value x is written as nx. For
example, in the data for line 1, n2 = 3, n3 = 32,
and n4 = 38. With such data,

N =
∑
x

nx,

S1 =
∑
x

xnx, and

S2 =
∑
x

x2nx

Now the sums run across the 5 values that data
items may take rather than the 100 items in each
data set. Use whichever method you prefer in cal-
culating N , S1, and S2. Then use equations 12.1
and 12.2 to estimate the mean and variance.

Exercise 12.1. Calculate the mean and vari-
ance of seed weight for line 1.

Exercise 12.2. Calculate the mean and vari-
ance of seed weight for line 2.

Exercise 12.3. Calculate the mean and vari-
ance of seed weight for line 3.

Exercise 12.4. Calculate the mean and vari-
ance of seed weight for line 4.
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Exercise 12.5. Calculate the mean and vari-
ance of seed weight for all lines taken together. By
the way, this variance estimates VP , the total phe-
notypic variance.

Exercise 12.6. Calculate the variance of the
four line means. Because the sample from each
line is pretty large, this variance is influenced only
slightly by environmental effects. It is almost pure
genetic variance. We will take it as an estimate of
VG.

Exercise 12.7. Calculate the mean of the four
within-line variances. This is an estimate of the
variance within lines. Because the lines are inbred,
there is no genetic variation within them, and the
variance you calculate here estimates the environ-
mental component of variance, VE.

Exercise 12.8. In exercises 12.6 and 12.7,
you estimated the genetic component of variance,
VG, and the environmental component, VE. The
sum of these should equal the phenotypic variance,
VP , which you estimated in question 12.5. Does it?

Exercise 12.9. What fraction of the pheno-
typic variance (VP ) is accounted for by VG? In
other words, what is VG/VP ?

Exercise 12.10. What kind of heritability es-
timate did you calculate in exercise 12.9? Narrow-
sense or broad-sense?

Encouraged that you have heritable variation for
seed weight, you outcross the plants and apply a
selection differential (S) of 1 mg to the seeds, after
harvesting them in bulk from all of the plants in
your field. After four generations, the mean seed
weight has increased by 0.2 mg.

Exercise 12.11. What is the mean seed weight
now? What is the realized (narrow-sense) heritabil-
ity? Why does it differ from your previous estimate
(question 12.9)?

Exercise 12.12. Approximately, what is the
additive genetic variance (VA) of seed weight in your
study population? What is the dominance variance,
VD? (Assume there is no other form non-additive
genetic variance besides the dominance variance).
Why are you disappointed?

You decide to test your new estimate of the
narrow-sense heritability by estimating the regres-
sion of offspring seed weights on parental seed
weights. This is a lot of work, but you are obsessed.
You record the weights of seeds chosen randomly
from the population, then grow them individually

Table 12.2: Data from Pearson and Lee [8]: the
correlation between mothers and daughters and the
phenotypic variance.

Stature Span Cubit
Mother-daughter corr. 0.507 0.452 0.421
Phenotypic var. (in2) 6.26 8.27 0.784

in pots and cross-fertilize them. When their seeds
are fully mature, you weigh samples of seeds from
each plant. This allows you to plot the weights of
offspring seeds against the average weights of their
parents (when they were seeds).

Exercise 12.13. If you were to plot offspring
values against midparent values and fit a linear re-
gression to these data, what numerical value would
you expect the slope to have?

What if you had selected on a whole-plant ba-
sis, rather than on an individual-seed basis? You
worked at the level of individual seeds because the
seeds are highly variable (differing by more than a
factor of three, from smallest to largest). But most
of that variation is environmental, so of course the
seed-to-seed heritability is low. If you averaged all
the seeds on each plant, then the mean seed weights
of (adult) plants would undoubtedly be more her-
itable (i.e., show a much larger value of h2) than
the weights of individual seeds. This suggests that
you might make more progress (per generation) in
your quest to increase seed weights, if you selected
on the mean seed weights of whole plants, rather
than on the weights of individual seeds. But maybe
not!

Exercise 12.14. Why might this approach be
just as slow as the approach you took? Hint: The
rate of evolution depends on the absolute amount of
additive genetic variation for the trait, not just on
h2!

In 1903, Pearson and Lee [8] published the re-
sults of what was then the most extensive study
ever of the inheritance of human physical charac-
teristics. These data occupy a distinguished posi-
tion in the history of population genetics, since they
were the basis of R.A. Fisher’s 1918 famous demon-
stration that Mendelian inheritance could account
for variation in continuous characters. Pearson and
Lee collected data on stature, span (distance be-
tween fingertips of outstretched arms), and cubit
(fore-arm length), from about 1100 families. Some
of these data are shown in table 12.2.

Exercise 12.15. Use the data of Pearson and
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Lee to estimate the heritability of stature. (Hint:
use Gillespie’s table 6.2.)

Exercise 12.16. Use the data of Pearson and
Lee to estimate the heritability of span. (Hint: use
Gillespie’s table 6.2.)

Exercise 12.17. Use the data of Pearson and
Lee to estimate the heritability of cubit. (Hint: use
Gillespie’s table 6.2.)

Exercise 12.18. Over the past 100 years, the
stature of young women in most developed coun-
tries has increased about 0.157 inches per decade.
This is called the “secular trend” in stature. This
trend probably reflects changes in diet and/or pub-
lic health. But let us consider the possibility that
it was caused by natural selection. What selection
gradient (β) does this hypothesis imply? You’ll need
to convert the change per decade into change per
generation. For this purpose, assume that a human
generation is 28 years.

Exercise 12.19. The average bill depth of
Geospiza fortis (Darwin’s medium ground finch) in-
creased by 0.5 mm in one generation (1976 to 1978)
in the population on Isla Daphne Major that has
been studied by Peter and Rosemary Grant and
their students and colleagues since the early 1970s.
The phenotypic standard deviation of this trait is
around 1 mm, and its heritability has been estimated
(from the correlations among relatives) to be around
h2 = 0.8.

Given these numbers, what was the selection
gradient (β) during the drought of 1977? (The
drought was caused by a severe El Niño event that
forced the birds to feed on large, hard seeds that they
otherwise wouldn’t eat.)



Appendix A

Answers

Answer 1.2. 1/4

Answer 1.4. 1/2

Answer 1.6. There are 6 ways to choose 2
out of 4:

(
4
2

)
= 4!

2!×2! = 24/[2 × 2] = 6. They
are: HHTT, HTHT, HTTH, THHT, THTH, and
TTHH.

Answer 1.8. 6× 1/24 = 6/16 = 3/8

Answer 1.10. 1/6 + 1/6 = 1/3.

Answer 1.12. 1/2× 2/5 = 1/5

Answer 1.14. There are two ways to answer
this question. The first is algebraic: point out that
X is a binomial distribution with parameters N = 3
and p = 1/2. This implies that X can take values
0, 1, 2, and 3; it takes value x with probability
Px =

(
3
x

)
/8. The second way to answer the question

is to write the answer in tabular form:

x Px
0 1/8
1 3/8
2 3/8
3 1/8

Answer 1.16. The hard way to answer this
question is to evaluate V [X] = E[X2] − E[X]2, or
some similar expression. The easy way is to point
out that, because X is binomial with N = 3 and
p = 1/2, the the variance is V [X] = Np(1 − p) =
3/4.

Answer 1.18. Freq. of rainy: 100/200 = 1/2

Answer 1.20. Freq. of rainy given sad:
70/80 = 7/8

Answer 1.22. E[Y ] = 2p and V [Y ] = 2p(1 −
p). There are two simple ways to get these results:

1. The question implies that Y is binomial with
N = 2 and probability parameter p. Conse-
quently, E[Y ] = 2p and V [Y ] = 2p(1− p).

2. The question says that Y is a sum of two inde-
pendent values, each of which is a Bernoulli
random variable with mean p and variance
p(1 − p). Therefore, E[Y ] = 2p and V [Y ] =
2p(1− p).

There are also harder ways, which involve deriving
the properties of the Binomial or Bernoulli distri-
butions.

Answer 1.24. Because X is binomial with
N = 2 and probability parameter p = 0.8, its mean
is E[X] = 2p = 1.6.

Answer 1.26. Answer not provided.
Answer 1.28. Pr one death: 0.61e−0.61

Answer 1.30. Pr 2 deaths: 0.612e−0.61/2! =
0.101

Answer 1.32. Pr 1 child: 2e−2 = 0.27.
Answer 1.34. This is exactly like Fig. 2 of

JEPr, which presents the following probability dis-
tribution:

Event Prob
RR 1/6
RG 1/3
GR 1/3
GG 1/6

where “R” and “G” stand for “red” and “green”,
“RG” means “1st ball red and 2nd green,” and so
on. For the current question, we translate “R” and
“G” into into “1” and “0,” and we define X and
Y to equal the values of ball 1 and ball 2. The
probability distribution becomes

X Y Pr(X,Y )
1 1 1/6
1 0 1/3
0 1 1/3
0 0 1/6

Answer 1.36. E[X2] = E[Y 2] = 1/2, so
V [X] = E[X2]−E[X]2 = 1/2− 1/4 = 1/4. V [Y ] is
also =1/4.
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Answer 1.38.
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Answer 1.40. The probability distribution of
X and Y is shown on the right side of the figure in
the answer to exercise 1.38. For reference, it looks
like this:

X Y Pr
1 1 0
1 0 1/N
0 1 1/N
0 0 (N − 2)/N

Using this distribution,

E[Y ] = 1× 0

+ 0× 1/N

+ 1× 1/N

+ 0× (N − 2)/N

= 1/N

This is also E[Y 2], because Y takes only the values 0
and 1, and Y 2 = Y . Thus, V [Y ] = E[Y 2]−E[Y ]2 =
1/N − 1/N2 = (1/N)(1 − 1/N). An alternative
answer: these results follow because Y is a Bernoulli
random variable with parameter p = 1/N .

Answer 1.42. 2/5 or 0.4
Answer 1.44. normal
Answer 1.46. binomial
Answer 2.2. PCD = 15/100 = 0.15
Answer 2.4. By gene counting, pC =

175/200 = 0.875. By the formula, pC = 0.8 +
0.15/2 = 0.875.

Answer 2.6. There is more than one correct
answer. One approach begins with the observation
that the frequency of A1 is the same as the probabil-
ity that a random gene copy chosen from a random
individual is allele A1. Let us calculate this proba-
bility.

With probability P11, we choose genotype A1A1.
In this case, we get allele A1 with probability 1.

With probability P12, our individual is A1A2, and
we then get A1 with probability 1/2. If we choose
A2A2, we cannot possibly get A1. Thus, the prob-
ability of A1 is

(P11 × 1) + (P12 × 1/2) + (P22 × 0) = P11 + P12/2

Answer 2.8. For allele C, p = 0.15 + 0.5/2 =
0.4. For T, q = 1− p = 0.6

Answer 2.10. Hobs = 0.5.
Answer 2.12. Using (2.2), F = (P11 −

p2)/pq = (1/3−1/4)/(1/4) = 1/3. Using (2.3), F =
−(P12−2pq)/2pq = −(1/3−1/2)/(1/2) = 1/3. Us-
ing (2.4), F = (P22− q2)/pq = (1/3− 1/4)/(1/4) =
1/3.

Answer 2.14. P11 = 0.726027, P12 =
0.260274, P22 = 0.013699, p1 = 0.856164, and
F = −0.056762.

Answer 3.2.

1

2
×
(

1− 1

10

)
=

9

20
= 0.45

Answer 3.4. 2N = 17.93.
Answer 3.6. Same as above. We start with

formulas like this:

H9 = H0(1− 1/26)9

H18 = H9(1− 1/10)9

Substituting H9 into the second equation gives

H18 = H0(1− 1/26)9(1− 1/10)9

You can multiply in any order, so the answer to the
second problem is the same as that of the first.

Answer 3.8.

t =
ln(Ht/H0)

ln(1− 1/2N)

Answer 3.10. 4Nu = 36 × 10−6, and the
expected heterozygosity is 4Nu/(1 + 4Nu), or
0.000036. The expected number of heterozygous
flies is 16 times this number, or 0.00058, which
rounds to 0. You would probably see no heterozy-
gous flies.

Answer 3.12. Heterozygosity is maximal when
θ → ∞. For the model of infinite sites, this gives
max Ĥ = 1.

Answer 3.14. The calculation is based on
Eqn. 3.3, because we are using the symmetric bial-
lelic model of mutation. The question tells us that
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k = 2 and Ĥ = 0.005. Eqn 3.3 becomes 0.005 =
θ/(1 + 2θ), or θ = 0.00505. And since θ = 4Nu,
where u = 2× 10−7, we have 2N = 12626.

Answer 4.2. For an interval with i lines
of descent, the expected duration in generations
is 4N/[i(i − 1)]. For our problem, 2N = 5000.
The expected duration is therefore. (a) 5000 for
2 lines of descent, (b) 1000/9 ≈ 111 for 10, and
(c) 10000/(1000×999) = 10/999 ≈ 0.01 for 1000.

Answer 4.4. We have 2 coalescent intervals,
one with 3 lines of descent and the other with 2. The
expected duration of the one with 3 lines of descent
is 5000/3 and the expected duration of the other
is 5000 generations. The expected depth of the
tree is the sum of these, 5000 + 5000/3 = 20000/3.
The easy way to get this answer is with the formula
4N(1 − 1/K), where K = 3 is the number of gene
copies in the modern sample. This gives the same
answer, 10000× 2/3 = 20000/3.

Answer 4.6. For an interval with i lines
of descent, the expected length in generations is
4N/[i(i − 1)], and the total branch length within
the interval is i times this value, or 4N/(i−1). The
expected number of mutations is u times the total
branch length, or θ/(i − 1), where θ = 4Nu. For
our problem, θ = 10. The expected numbers of mu-
tations are therefore (a) 10/1 = 10 for 2 lines of de-
scent, (b) 10/9 = 1.11 for 10, and (c) 10/999 = 0.01
for 1000.

Answer 4.8. 18.3

Answer 4.10. 0.797

Answer 4.12. Mean pairwise diff: π = 11.69
per sequence, and π = 0.29 per site.

Answer 4.14. S = 30 per sequence or 0.75 per
site

Answer 4.16. θ̂π = 11.69 per sequence or 0.29
per site.

Answer 4.18. θ̂S = 30/2.83 = 10.6 per se-
quence or 0.75/2.83 = 0.265 per site.

Answer 4.20. In per-site units, we need to
compare θ̂π = 0.29 and θ̂S = 0.265. These numbers
don’t differ too much, so there is no obvious reason
to reject the model of neutral DNA in a randomly
mating population of constant size.

Answer 4.22. Table A.1 presents data set B
again, with an extra row at the top showing the
minor allele counts: Tabulating the counts gives

Minor Number
allele of
count sites

1 9
2 9
3 6
4 5
5 1

Answer 4.24. The expected numbers are θ̂(1+

1/9) = 11.78 for singletons, θ̂(1/2 + 1/8) = 6.63

for doubletons, θ̂(1/3 + 1/7) = 5.05 for tripletons,

θ̂(1/4+1/6) = 4.41 for quadrupletons, and θ̂×1/5 =
2.12 for quintupletons.

Answer 4.26. Poisson with mean 3.
Answer 4.28. θ = 0.01 for Europe and Asia;

0.0204 for Africa.
Answer 4.30. Each segregating site (whether

a singleton or not) increments the value of

S by 1. Consequently, it increments θ̂S by(∑K−1
k=1 1/k

)−1
.

Answer 4.32. Many segregating sites will be
singletons, which add more to θ̂S than to θ̂π.

Answer 5.2. The expanded population should
have an excess of sites in which the derived allele is
present in only one copy: an excess of singletons.

Answer 5.4. The sum of the mismatch distri-
bution is 45, which is also equal to 10× 9/2.

Answer 5.6.

π =

( site 0︷ ︸︸ ︷
2× 8 +

site 1︷ ︸︸ ︷
4× 6 +

site 2︷ ︸︸ ︷
2× 8 +

site 3︷ ︸︸ ︷
2× 8 +

site 4︷ ︸︸ ︷
3× 7

+

site 5︷ ︸︸ ︷
2× 8 +

site 6︷ ︸︸ ︷
1× 9 +

site 7︷ ︸︸ ︷
1× 9 +

site 8︷ ︸︸ ︷
4× 6

+

site 9︷ ︸︸ ︷
3× 7

)
/45 = 172/45 = 3.82

Answer 5.8.
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The vertical axis (Fi) is the fraction of pairs of DNA
sequences that differ by the number of sites shown
on the horizontal axis.
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Table A.1: Data set B with counts of minor allele at top

35 43 22 23112123 2 42 4311142 14 213 1 <-counts

seq01 TGCCACTCCA ATCTCTCGCC AGATGGCATG CCTTATCGCG

seq02 .......... G......... .A.C...GCA T.........

seq03 .......... G......A.. .A.C...GC. T....C....

seq04 C..TG..T.. .C.....A.. G......C.. TT.C......

seq05 CA.TG..T.. .C....TA.. G......CC. TT.C......

seq06 C...G..... CC..T..A.A ....AA.C.. TT..G.....

seq07 CA.TG..... CC..TC.A.A ...CA..CC. TT...C....

seq08 CA.TG...T. GCT....A.. G..C..TC.. T.......T.

seq09 CA.TG..... GC.C..T... ...CA..C.A T.........

seq10 CA.TG...T. .C.....A.. G..C...C.. T....C....

Answer 5.10. For the 20 polymorphic sites,
the frequencies of the “minor allele” (the rarer of
the two at each site) are 2, 7, 2, 6, 2, 2, 7, 7, 2, 5,
1, 1, 2, 1, 1, 7, 3, 1, 2, and 1. The folded observed
spectrum is

Minor
allele Observed
count spectrum

1 6
2 7
3 1
4 0
5 1
6 1
7 4
8 0
9 0

10 0

Answer 5.12. To estimate θ, note that S =
20, so θ̂ = 20/

∑K−1
i=1 1/i = 5.63739. The expected

folded spectrum is

Data set B
Minor
allele Expected
count spectrum

1 5.93410
2 3.13188
3 2.21074
4 1.76169
5 1.50330
6 1.34224
7 1.23899
8 1.17446
9 1.13887

10 0.56374

Answer 5.14.

No.
of

sites

1 5 10

Minor allele count

Spectrum B

◦
◦

◦
◦
◦ ◦

◦

◦ ◦ ◦

..............................................................................................................................................................................................................................................................................................................................................................................................................

The graph shows the observed spectrum as open
circles and the expected one as a solid line.

Answer 6.2. The values below indicate that
relative error is small when p is less than about

0.1.
p relerr

0.30 0.22
0.20 0.14
0.10 0.07
0.08 0.05
0.06 0.04
0.05 0.03

Answer 6.4. As with the Jukes-Cantor model,
we begin with

q = e−2λt + (1− e−2λt)/2

=
1

2
+

1

2
e−2λt

When at least one perturbation has occurred, the
sites are identical with probability 1/2. This ac-
counts for the value “1/2” that appears above. Now
substitute 2u = λ (because only half of perturba-
tions are mutations), p = 1− q, and K = 2ut:

p =
1

2
− 1

2
e−2K
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Solving for K gives

K = −1

2
loge(1− 2p)

which is analogous to Eqn 6.1. This was introduced
in 1919 and is called “Haldane’s mapping function”
[3]. It has often been used to make linkage maps of
chromosomes.

Answer 6.6. (a) For the three species, Jukes-
Cantor yields the following estimates of K:

K estimates
BN Rat Mouse Human

Brown Norway Rat — 0.38 0.20
Mouse — 0.40
Human —

(b) The mouse-human distance is much larger
than the rat-human distance. (We hope students
will contemplate the causes of this difference, but
grades will not be based on this issue.)

Answer 7.2. (a) The mean relative fitness is
w̄ = 1 − 2pqhs − q2s = 0.966. (b) The marginal
fitness of A1 is w1 = p + q(1 − hs) = 0.996. That
of A2 is w2 = p(1 − hs) + q(1 − s) = 0.959. (c) In
the following generation, the expected frequency A1

is p′ = (p2w11 + pqw12)/w̄, as shown on Gillespie’s
p. 62. This gives 0.2061.

Answer 7.4. (a) Gillespie makes his fitnesses
relative to that of genotype A1A1. To obtain
these relative fitnesses, divide each absolute fitness
by W11. This gives relative fitnesses w11 = 1,
w12 = 0.769, and w22 = 0.692. In Gillespie’s fitness
scheme, w12 = 1−hs, and w22 = 1−s. This implies
that s = 1 − w22 = 0.308, and h = (1 − w12)/s =
0.75.

(b) Gillespie’s Eqns. 3.2–3.3 express ∆sp in
terms of p, q = 1− p, s, h, and w̄ = 1− pqhs− q2s.
Note that q and w̄ depend on p and must therefore
be recalculated for each value of p that you graph.
I did these calculations using a Python script. Here
are a few of the results in tabular form:

p ∆sp
0.0000 0.0000
0.0417 0.0047
0.0833 0.0095
· · · · · ·

0.9167 0.0170
0.9583 0.0090
1.0000 0.0000

The graph of these results looks like this:
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(c) Equilibria occur where ∆sp = 0. As the
graph shows, the only such points are at p = 0 and
p = 1. Only the second of these is stable. This
is because ∆sp > 0 whenever 0 < p < 1. Conse-
quently, p always moves toward the equilibrium at
p = 1 but away from the one at p = 0.

Answer 7.6. (a) Gillespie makes his fitnesses
relative to that of genotype A1A1. To obtain
these relative fitnesses, divide each absolute fitness
by W11. This gives relative fitnesses w11 = 1,
w12 = 1.111, and w22 = 0.889. In Gillespie’s fitness
scheme, w12 = 1−hs, and w22 = 1−s. This implies
that s = 1−w22 = 0.111, and h = (1−w12)/s = −1.

(b) Gillespie’s Eqns. 3.2–3.3 express ∆sp in
terms of p, q = 1− p, s, h, and w̄ = 1− pqhs− q2s.
Note that q and w̄ depend on p and must therefore
be recalculated for each value of p that you graph.
I did these calculations using a Python script. Here
are a few of the results in tabular form:

p ∆sp
0.0000 0.0000
0.0417 0.0092
0.0833 0.0162
· · · · · ·

0.9167 –0.0063
0.9583 –0.0039
1.0000 –0.0000

The graph of these results looks like this:
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(c) Equilibria occur where ∆sp = 0. There are
three such points: at p = 0, at p = 1, and at
p = 2/3. ∆sp is positive to the left of the interme-
diate equilibrium but negative to the right. Conse-
quently, the intermediate equilibrium is stable and
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the two extreme equilibria are unstable.

Answer 7.8. No calculation is required. Be-
cause the two homozygotes have equal fitness and
the heterozygote is superior, the stable equilibrium
frequency of A1 is 1/2.

Answer 7.10. p̂, the equilibrium value of p, is
equal to (h− 1)/(2h− 1) (see Gillespie’s Eqn. 3.4).
Here are a few values and then the graph:

h p̂
–1.0000 0.6667
–0.8421 0.6863
–0.6842 0.7111

· · · · · ·
1.6842 0.2889
1.8421 0.3137
2.0000 0.3333
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(a) Overdominance occurs when h < 0 and gen-
erates a stable equilibrium within the interval (0, 1).
(b) Incomplete dominance occurs when 0 < h < 1.
In this case, selection is directional, and there are
no internal equilibria. (c) Underdominance occurs
when h > 1 and generates an unstable internal equi-
librium. The only stable equilibria are at p = 0 and
p = 1.

Answer 7.12. (a) In the first generation, the
frequency of white flowers is Prr = 200/1000 = 0.2.
At Hardy-Weinberg equilibrium, this frequency is
q2, where q is the frequency of allele r. This im-
plies that q =

√
0.2 = 0.447. The frequency of

allele R is therefore p = 1 − q = 0.553. (b) In
the 2nd generation, Prr = 250/1000 = 0.25, so
q′ =

√
0.25 = 0.5, and p′ = 1 − q′ = 0.5. (c) Be-

cause wRR = wRr = 1, Eqn. 7.1 simplifies to
p′ = p/(1 − q2s), or s = (1 − p/p′)/q2. With our
data, this is s = (1− 0.553/0.5)/0.2 = −0.53.

Answer 7.14. Because the number of new ad-
vantageous mutants is proportional to population
size, but the fixation probability for such mutants
is essentially independent of population size. The
rate of adaptive evolution is thus proportional to

population size.
Some students may want to answer this ques-

tion more formally, so here is the formal version:
let u represent the mutation rate for advantageous
alleles whose fitness in heterozygotes is 1 + s/2, rel-
ative to that of the wild-type allele. The number of
such mutations in the population as a whole is 2Nu,
and each of them has probability s of ultimate fix-
ation. For this category of adaptive mutations, the
expected number fixed per generation is therefore
2Nus, an increasing function of population size.

Answer 7.16. The substitution rate per mil-
lion years is 106 × 2Nu times the answers from the
preceding question. (a) 9.07× 10−11 if N = 10000;
or (b) 6.89 × 10−4 if N = 1000; or (c) 1.99 × 10−3

if N = 100.
Answer 7.18. The substitution rate per mil-

lion years is 106 × 2Nu times the results from the
pfix function (Gillespie’s Eqn. 3.22) defined above.
(a) 0.044 if N = 10000; or (b) 0.0051 if N = 1000;
or (c) 0.0024 if N = 100.

Answer 8.2. (a) The gamete frequencies are
x1 = 80/165 = 0.485, x2 = 30/165 = 0.182, x3 =
10/165 = 0.061, and x4 = 45/165 = 0.273. (b) The
allele frequencies at the two loci are pA = x1 +x2 =
0.667, and pB = x1 + x3 = 0.545. (c) D = x1x4 −
x2x3 = 0.121. (d) r2 = D2/[pA(1 − pA)pG(1 −
pG)] = 0.267.

Answer 8.4. (a) x1 = 0.1, x2 = 0.3, x3 =
0.5, and x4 = 0.1. (b) pA = x1 + x2 = 0.4, and
pG = x1 + x3 = 0.6. (c) D = x1x4 − x2x3 = −0.14.
(d) r2 = D2/[pA(1− pA)pG(1− pG)] = 0.3403.

Answer 8.6. (a) After 1 generation, D =
0.2997. (b) After 100 generations, D = 0.2714.

Answer 8.8. One approach is to add the two
expressions on the right side. If both equations are
correct, then this sum should equal D − D = 0.
Summing the two equations gives

D −D = x1 − pApB + x2 − pA(1− pB)

= x1 + x2 − pA(pB + 1− pB)

= x1 + x2 − pA
= pA − pA
= 0

The two expressions sum to zero, so the two equa-
tions are equivalent.

Answer 8.10. The gametic fitnesses are
(w1, w2, w3, w4) = (1 + s, 1 + s, 1, 1), and mean fit-
ness is w̄ =

∑
i wixi = 1 + s/2.

Answer 8.12. (a) Diversity should be lower at
nearby loci. (b) This effect is larger in regions of
low recombination.
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Answer 8.14. (a) The approximate formula
gives c = 10−8 × 5 × 107 = 0.5. (b) Haldane’s
mapping function gives c = (1 − exp(2 × 10−8 ×
5×107))/2 = 0.316. (c) The approximation is poor
when the distance between loci is large.

Answer 8.16. We are looking for sites such
that c/s < 0.1, or c < 0.1s, where c is the re-
combination rate between the site in question and
the selected site. For this problem, s = 0.001, so
c < 10−4. We established above that when c less
than 0.1 or so, it is approximately equal to λk,
where λ = 10−8, and k is the distance between the
sites in base pairs. Our largest c value is much
smaller than 0.1, so we can use this approximate
formula. Using this formula, c = 10−8k < 10−4,
so k < 10, 000. Variance is removed from a re-
gion twice this size, because the region extends for
10,000 bases each way from the selected site. The
size of the affected region is therefore 20,000 bases,
or 20 kb.

Answer 8.18. s = 0.05.
Answer 8.20. There are many possible an-

swers. Here are a few examples. (a) Sites 1–12
in sequences 41–42. (b) Sites 1–15 in sequence 31.
(c) Sites 38-42 in sequences 40–49, excluding se-
quence 46.

Answer 9.2. The data tell us that P11 =
200/500 = 0.4, and P12 = 100/500 = 0.2, so the fre-
quencies of alleles A1 and A2 are p = P11 +P12/2 =
0.5, and q = 1− p = 0.5. To calculate F , we might
work with the formula for any of the three genotype
frequencies. Let’s use P12 = 2pq(1−F ). Rearrang-
ing this gives F = 1− P12/2pq, which works out to
equal 0.6.

Answer 9.4. P11 = 0.313
Answer 9.6. 1/16
Answer 9.8. P11 = 0.19, P12 = 0.42, and

P22 = 0.39.
Answer 9.10. P11 = p2 + pqf , P12 = 2pq(1 −

f), and P22 = q2 + pqf .
Answer 10.2. We will work with equa-

tion 10.1, which is a function of HS and HT . Let
us begin with the formula for HS :

HS =
∑

ci2pi(1− pi)

= 2
∑

cipi − 2
∑

cip
2
i

= 2p− 2
∑

cip
2
i

The sum here is a weighted average over subpopu-
lations, so think of it as an expectation, and use
the hint mentioned in the text of this question:∑
cip

2
i = V + p2, where V is the variance of the

pi. This gives

HS = 2p− 2p2 − 2V = 2p(1− p)− 2V (A.1)

By definition, HT = 2p(1 − p). Substitute this,
along with equation A.1, into equation 10.1, and
you will get

FST = (HT −HS)/HT

=
2p(1− p)− 2p(1− p) + 2V

2p(1− p)
= V/p(1− p)

Answer 10.4. The question only asks for FST ,
but I’m providing more detail: HS = 0.185367,
HT = 0.482516, and FST = 0.615832.

Answer 10.6. PAA = 0.125, PAa = 0.25, and
Paa = 0.625,

Answer 10.8. It implies that Nm = 2.
Answer 12.2. Line 2: X̄ = 4.48; V = 0.959.
Answer 12.4. Line 4: X̄ = 3.55; V = 0.876.
Answer 12.6. Variance between lines:

0.1454.
Answer 12.8. Between plus within: 0.1454 +

0.8998 = 1.04520. In question 12.5, I got VP =
1.002, which is pretty close.

Answer 12.10. Broad-sense heritability.
Answer 12.12. VA = h2VP = 0.05 × 1.002 =

0.0501. The dominance variance is VD = VG−VA =
0.1454− 0.0501 = 0.0953. Most of the genetic vari-
ance seems to be dominance variance. This is disap-
pointing because selection responds only to additive
variance.

Answer 12.14. The response to selection is
R = h2S, as shown in Gillespie’s Eqn. 6.11. If you
made h2 larger while keeping S the same, the re-
sponse would be larger. But this might be hard to
do, because if each plant is represented by its aver-
age seed weight, differences among plants will prob-
ably be small. For this reason, it might be necessary
to reduce S in order to make selection feasible.

Answer 12.16. The correlation between par-
ent and offspring is h2/2. Thus, we estimate h2 as
twice the observed correlation. For span, this gives
h2 = 0.904.

Answer 12.18. The change per generation is
0.157 × 28/10 = 0.4396 in. If this represents a re-
sponse to selection, then it should equal VAβ. The
next step is to convert our estimate that h2 ≈ 1
into an estimate of VA. We know that h2 = VA/VP
(Gillespie’s Eqn. 6.4), and we know that VP = 6.26
(table 12.2 of this homework). This implies that
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VA ≈ 6.26 and that the selection gradient is β ≈
0.4396/6.26 = 0.07. In words, this says that an
extra inch of stature implies nearly a 10% increase
in fitness—very strong selection. It seems implausi-
ble that small differences in stature could have such
large effects on fitness. It is more likely that the ob-
served trend reflects changes in the environment.
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