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It is now easy to scan the entire human genome
for evidence of natural selection. One class of
methods involves linkage disequilibrium (LD),
which tends to be inflated in the neighborhood
of ongoing selective sweeps. There is no ques-
tion that these methods work. Yet it is inter-
esting that they do, for we have known for forty
years that selection on a single site cannot gener-
ate LD. This result is due to Felsenstein [2], who
studied a measure of LD that is seldom used with
data. It seems worth exploring the behavior of
other measures.

I will suppose that, at one locus, selection fa-
vors allele A over its alternative a. At a linked
locus, alleles B and b are neutral. In this system,
there are four types of gamete, and I will use the
following notation for their relative frequencies:

Gamete type AB Ab aB ab
Frequency x1 x2 x3 x4

Alleles A and B have frequencies pA = x1 + x2
and pB = x1 + x3.

Because A is favored, selection will tend to in-
crease the frequencies of gametes that carry it
(A-gametes) and to decrease those of a-gametes.
Graphically, it will increase the size of the circle
on the left side of Figure 1 and to decrease that of
the other circle. Within the class of A-gametes,
however, selection has no effect on the frequency
of allele B. This follows from the fact that B
and b are neutral. In the figure, the shaded area
of each circle represents the fraction of gametes
that carry B. If selection were the only force in-
volved, the left circle would grow and the right
one would shrink, but the shaded fraction of each
circle would remain constant. In the real world,
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Figure 1: The circles represent the numbers of
A-bearing and a-bearing gametes within a pop-
ulation. The shading indicates the relative fre-
quency of B within each of these categories. Be-
cause the two shaded fractions are unequal, the
diagram illustrates linkage disequilibrium.

these shaded fractions change because of genetic
drift and recombination. But they are not af-
fected by selection, provided that selection acts
only on locus A.

Let us invent some notation to describe the
parts of this system that selection do not change.
First, the frequency of allele B is pB|A =
x1/(x1 + x2) among A-gametes, but is pB|a =
x3/(x3+x4) among a-gametes. Since these quan-
tities are not affected by selection, neither is their
difference, d = pB|A−pB|a. This statistic was in-
troduced by Nei and Li [4] and has been studied
by Devlin and Risch [1]. Graphically, d is the
difference between in size between the shaded
fractions of the two circles in Fig. 1. If these
fractions are equal, then the system is at linkage
equilibrium and d = 0. If the shaded fractions
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are unequal, we have LD and d 6= 0. Thus, d is
a measure of LD.

It is useful to write d in terms of gamete fre-
quencies:

d =
x1

x1 + x2
− x3

x3 + x4

=
x1x4 − x2x3

(x1 + x2)(x3 + x4)

=
D

pA(1− pA)
(1)

where D = x1x4−x2x3 is a conventional measure
of LD [3]. Rearranging,

D = dHA/2 (2)

where HA = 2pA(1−pA) is the heterozygosity at
locus A.

Equation 2 shows that D is a product of two
factors, of which one (d) is unaffected by selec-
tion and the other is simply the heterozygosity
at locus A. Selection on locus A affects linkage
disequilibrium only in the rather uninteresting
sense that it changes the heterozygosity of the
locus under selection. If one were really inter-
ested in this effect, it would make more sense to
study HA directly. Why then does D help us
detect selective sweeps?

The answer has more to do with initial con-
ditions than with selection. When allele A first
arises by mutation, it will exist on a single chro-
mosome, and that chromosome will carry either
a single copy of B or a single copy of b. At this
early stage, pB|A is either 1 or 0. Meanwhile,
the frequency of B among a-gametes equals its
frequency in the population as a whole. Thus, d
is equal either to 1− pB or to −pB. Either way,
there is every chance that this initial d will be
far from 0. Over time, it decays towards 0 under
the influence of recombination.

This process is illustrated for a selective sweep
in Fig. 2. During the sweep, D rises to a peak
when pA ≈ 1/2 and then declines to 0. This re-
flects the fact (shown in Eqn. 2) that D is propor-
tional to the heterozygosity of locus A. D cannot
be large unless pA is near 1/2. Fig. 2 shows that
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Figure 2: Selective sweep of allele A, which has
a selective advantage (s = 0.02). Recombination
rate is r = 0.001, and the haploid population size
is 2N = 50, 000.

D can be large when pA is near 1/2, but this
does not mean that it must be large. This is il-
lustrated in Fig. 3, which tracks the history of a
neutral allele that happened to drift to fixation.
For this lucky neutral allele, evolution is much
slower. It does not reach a frequency near 1/2
until about 30,000 generations have elapsed. By
that time there is little LD left, so D remains
near 0. We get a different view of this process
from d. Its value tends to remain high through-
out the selective sweep, but is near 0 during most
of the history of the lucky neutral allele.

These examples show how LD can be useful in
detecting selection. We find cases of selection by
searching for alleles whose frequencies are near
1/2, and which are in strong LD with surround-
ing loci. Population geneticists are currently ex-
ploring different ways to do this. The different
approaches mainly involve different measures of
LD. To my knowledge, no one has yet used d.
I suspect however that it may prove useful be-
cause, as Fig. 2 shows, its value tends to remain
high throughout a sweep, whereas that of D is
only high briefly.

This advantage will be useful mainly in large
populations. In small ones, drift within the
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Figure 3: A neutral allele drifting to fixation.
Parameters as in Figure 2, except that s = 0.

classes of A-gametes and a-gametes causes d to
bounce around a lot when pA is very rare or very
common. This effect is shown in Fig. 4 for a pop-
ulation in which 2N = 5000. In populations this
small, d varies wildly except when pA is near 1/2.

Regardless of how you measure it, LD decays
gradually under the influence of recombination.
This gradual decay is more obvious for d than
for D, because d is insensitive to the value of pA.
The rate of this decay is the same for a selected
allele as for a neutral one. It takes far less time,
however, for an allele to reach fixation if it is
being urged along by natural selection. Selected
alleles are young alleles, and young alleles can-
not have experienced much recombination. They
retain their initial large values of d and are thus
surrounded by blocks of LD.
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Figure 4: Selective sweep in a small population.
Parameters as in Fig. 2, except that the haploid
population size is 2N = 5000.
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