# Superarchaic Admixture

Alan R. Rogers

September 28, 2021

# Early to middle Pleistocene of Eurasia



 $\sim$ 1.8 mya: *Homo erectus* evolves in Africa, spreads into Eurasia

 $\sim$ 550 kya: Late Acheulean appears in Europe.

 $\sim$ 430 kya: large-brained hominins at Sima de los Huesos

Similar fossils and tools occur earlier in Africa.

⇒ African invasion of Europe early in Middle Pleistocene.

What can genetics tell us about this period?

1/18

# Legofit: estimates deep population history in subdivided populations

- Unaffected by recent inbreeding or changes in population size.
- ► Sensitive only to the distant past.
- Estimates gene flow and the sizes and separation times of ancestral populations.
- ▶ New version is orders of magnitude faster.

#### Population network (now outdated)



X, Africa; Y, Europe; N, Neanderthal; D, Denisovan

3 / 18

# Gene genealogies and nucleotide site patterns



Gene genealogy within population network.

 $\begin{array}{c} \text{Mutation on red branch} \to \\ \textit{site pattern d.} \end{array}$ 

Blue branch  $\rightarrow xya$ .

0, ancestral allele; 1, derived (mutant) allele.

Data: frequencies of site patterns across autosomes

# Observed Site Pattern Frequencies (excl. Vindija)



(fraction of nucleotide sites exhibiting each pattern)

x, Africa; y, Europe; a, Altai Neanderthal; d, Denisovan.

Pattern xy is common because populations X and Y share ancestry.

Ditto ad.

Confidence intervals are so small they look like dots.

Goal: infer history from similar data, but including Vindija.

5 / 18

6 / 18

#### Estimation

- 1. Maximize composite likelihood, a function of sizes and separation times of populations, and rates of gene flow.
- 2. Old Legofit used simulations to estimate likelihood. New algorithm is deterministic.
- 3. Uncertainties by moving-blocks bootstrap.

#### In 2017, we fit model $\alpha$ to the data



X, Africa; Y, Europe; N, Neanderthal; D, Denisovan

7/18

#### Residual error from model $\alpha$



Red asterisks: fitted model. Blue circles: bootstrap replicates.

If model fit well, all points would be near 0.

Discrepancies show that something is missing from the model. What?

Ideas from the literature

- $\beta$  Gene flow from a "superarchaic" population into Denisovans (Prüfer et al 2014)
- $\gamma$  Gene flow from early modern humans into Neanderthals (Kuhlwilm et al 2016)

These improved the fit but were still unsatisfactory.

What else is missing?

9/18

#### Think back to what I said about the Middle Pleistocene



 $\sim$ 600 kya Eurasia invaded by large-brained hominins, who probably came from Africa.

Ancestors of Neanderthals and Denisovans: let's call them "neandersovans."

But Eurasia had been inhabited since  $\sim$ 2 my ago by "superarchaics."

Neandersovans would have met, and maybe interbred with, superarchaics. Suggests a fourth episode of admixture.

Model  $\alpha$ Model  $\alpha\beta$ Model  $\alpha\beta\gamma$ Model  $\alpha\beta\gamma\delta$ 

11 / 18

12 / 18



Key: \*, real data; o, bootstrap replicates.

## Model selection and model averaging

Model selection by **bepe**, the bootstrap estimate of predictive error (Efron & Tibshirani 1993). Prefer model with smallest bepe value. Avoids overfitting.

Model averaging by **booma**, bootstrap model averaging (Buckland, Burnham, and Augustin, 1997). Weight of *i*th model is fraction of bootstrap replicates in which that model is best. Parameter estimates are weighted averages of per-model estimates. Addresses identifiability problems.

13/18

## Evaluating the models

| Model                        | bepe                  | weight |
|------------------------------|-----------------------|--------|
| $\alpha$                     | $1.16 \times 10^{-6}$ | 0      |
| $\alpha\delta$               | $0.87 \times 10^{-6}$ | 0      |
| $\alpha\gamma$               | $0.62\times10^{-6}$   | 0      |
| $\alpha\gamma\delta$         | $0.44 \times 10^{-6}$ | 0      |
| $\alpha\beta$                | $0.18 	imes 10^{-6}$  | 0      |
| $lphaeta\gamma$              | $0.17 \times 10^{-6}$ | 0      |
| $\alpha\beta\delta$          | $0.15 	imes 10^{-6}$  | 0.16   |
| $\alpha \beta \gamma \delta$ | $0.13 	imes 10^{-6}$  | 0.84   |

Reject models with weight zero: their disadvantage is large compared with variation in repeated sampling.

Strong support for two episodes of superarchaic admixture ( $\beta$  and  $\delta$ ); qualified support for admixture ( $\gamma$ ) from early moderns into Neanderthals.

# Parameter estimates



Superarchaic population separated ~2 mya. It was large—between 20,000 and 50,000—or deeply subdivided.

neandersovan population  $(N_{ND})$  was tiny, and split early  $(T_{ND} > 700 \text{ kya})$  to form Neanderthals and Denisovans.

 $\sim$ 3% admixture into neandersovans from superarchaics.

....

# Summary

Superarchaics separated from other hominins  $\sim\!\!2$  mya. They may represent the earliest Eurasians. Their population was either large or deeply subdivided.

 ${\sim}750$  kya, neandersovans separated from an African population, expanded into Eurasia, endured a bottleneck, interbred with superarchaics, and then ( ${\sim}730$  kya) split into eastern and western subpopulations (Denisovans & Neanderthals).

# Acknowledgements

15 / 18

**Collaborators:** Nathan Harris, Alan Achenbach, Kiela Gwin, Mitchell Lokey, Daniel Tabin.

**Support:** NSF BCS 1638840; NSF BCS 1945782; Center for High Performance Computing, U. of Utah.

17/18