Nuclear DNA and the History of Population Size

Alan R. Rogers

September 10, 2021

Advantages and disadvantages of the nuclear genome

- ► Huge amounts of data.
- Recombination complicates things.

Nuclear genes recombine

Useful data began to appear in about 2000.

Crossovers shuffle DNA

Gamete in gamete may differ from either parental chromosome; if so, it's a recombinant chromosome.

Each chromosome has many gene genealogies, which vary in length.

Chromosome sharing by my mother and daughter

Gene trees at two loci

- TMRCA: time of the most recent common ancestor
- Gene trees vary in length across the genome.
- ▶ Mutation (•) is more likely on a deep gene tree.

TMRCA varies along the chromosome

Chromosome

- ► Circles: nucleotide sites that differ (are heterozygous) in a single diploid sample.
- ▶ Heterozygous sites are denser where gene tree is deep.
- ightharpoonup Population size ightharpoonup length of MRCA segments and genetic variation within segments.
- ▶ The "PSMC" method (Li & Durbin 2011) uses this pattern to estimate population history.

PSMC is accurate from 30 ky to 3 my ago.

PSMC estimates from autosomes

PSMC estimates from autosomes

↑ 2 mya (origin of *Homo*); ↑ 200 kya (origin of modern humans); ↑ 20 kya (beginning of Holocene).

Eurasian/African split 150 kya.

African bottleneck short and shallow.

PSMC estimates from X chromosomes

Once again: simulated gene genealogy of a sample of size 50 from a population of constant size

To estimate the *recent* history of population size, you need larger samples.

4 □ → 4 ∰ → 4 분 → 4 분 → 11 / 22

MSMC: using multiple genomes

MSMC: using multiple genomes

MSMC: limitations

Population

size

Gene

genealogy

- can only deal with 4 diploid genomes
- data must be "phased": we need to know which nucleotides lie together along individual chromosomes
- phasing errors cause bias, especially during the last 10,000 years.

14/22

Population size 0 9 18 Mutational time before present Gene genealogy Mutational time before present

Site frequency spectrum

*i*th bar: number of sites at which derived allele is present in *i* copies.

Population growth or selection: an excess of rare derived alleles.

Site frequency spectrum

Mutational time before present

Site frequency spectrum

In nuclear DNA, there are millions of trees, most with no mutations, a few with one mutation.

It's still true that most mutations are singletons if the population has grown.

The spectrum is useful with nuclear as well as mitochondrial DNA.

□ > < □ > < ≧ > < ≧ > < ≧ > < 16/2

Copies of derived allele

Site

frequency

spectrum

- uses site frequency spectrum
- no need for phased data
- can deal with samples of hundreds of individuals

50

Very recent population growth is tough

Copies of derived allele

SMC++: combines PSMC and spectrum (Terhorst, Kamm, & Song 2017)

Separation times (Terhorst, Kamm, & Song 2017)

Summary

- ▶ Human population has varied in size over past 3 my.
- ▶ Bottleneck 60 kya, around the time Eurasians left Africa.
- ▶ Bottleneck during last ice age, 20 kya.
- ► African bottleneck was shorter and shallower.
- Eurasian/African split 110 kya.
- ► European/Asian split 50 kya.

22/22