		Crohn's disease	
Crohn's Disease Alan R. Rogers March 11, 2018		- Inflammation of bowel. - Most common in northern Europe and Ashkenazi Jews. - 35,000 deaths in 2010. - No cure - Siblings of patients have $30 \times$ normal risk. - 70 genes involved.	
	1/22		2/22
IBD5 haplotype		OCTN1 gene w/i IBD5 haplotype	
- LD across 250 kb —a region including 5 genes. - Frequency 40% in Europe; $<5 \%$ in Africa \& Asia. - Why would a deleterious allele be so common?		- Ergothioneine: an antioxidant synthesized by fungi and present in most plants and animals. - OCTN1 encodes a protein that transports ergothioneine. - Allele 503F \uparrow transport. - Associated w/ Crohn's disease-but why?	
	3/22		4/22

Ergothioneine was rare in Neolithic diet

Table 1. Ergothioneine Content of Various Foods (Data from Ey et al. (2007)).

Food	Ergothioneine (mg/kg wet weight)
Oyster mushrooms	118.91
Garlic	3.11
Pork	1.68
Beef	1.33
Chicken	1.15
Portabella mushrooms	0.93
Wheat bran	0.84
Broccoli	0.24
Onion	0.23
Spinach	0.11
Milk	<0.01
Lentils	<0.01
Green peas	<0.01
Wheat flour (refined)	<0.01
Barley flour (refined)	<0.01

So what? Why think that ergothioneine is important?

- Function poorly understood.
- Antioxidant.
- Protects against neurotoxins.
- OCTN1 is highly conserved in vertebrates but has no known function apart from transporting ergothioneine.

Hypothesis: 503F allele is a beneficial adaptation to low dietary ergothioneine but is linked to a deleterious mutation causing Crohn's disease. (Huff et al, 2012)

Map of 503F allele at OCTN1

(A) age of earliest Neolithic; (B) frequency of 503F allele.

How adaptation can cause disease

Disease-causing allele hitchhikes to relatively high frequency

Additional disease-causing alleles are introduced through recombination and increase in frequency via hitchhiking

Time

Deleterious hitchhikers may be far away if selection is strong

Common neutral mutations

Common favorable mutations

- Increase rapidly in frequency
- Little time for recombination.
- Sit on long stretches of original chromosome.

DNA sequences from region of human lactase gene

Haplotype bifurcation diagram: no selection

Horizontal axis: position on chromosome.

Simultaneous plot of LD and allele frequency

- "core haplotype." Diameter $=$ frequency.

Purple lines: haplotypes linked to core. Thickness = frequency

Bifurcations: recombination
Drift: lines diminish rapidly in thickness

Haplotype bifurcation diagram: no selection

Small - means core haplotype is

 rare.No evidence of selection

Horizontal axis: position on chromosome.

Haplotype bifurcation diagram: selection

Horizontal axis: position on chromosome.

Relatively common haplotype
Purple line stays thick: long-range LD.

Implies selection.

Bifurcation diagram for 503F allele

Selection

Date of selective sweep
 Testing the hitch-hiking hypothesis

Extent of LD around 503F indicates that selective sweep began 12,550 y ago (95% confidence interval: 7,750-19,025).

Wheat was domesticated 10,600 y ago, barley 9,500 y ago.
Selective sweep began during early Neolithic.
Huff et al (2012)

If Crohn's disease is caused by a hitch-hiker, then some 503F haplotypes may lack the disease.

Two linked genes (IRF1 and IL5) are plausible candidates for Crohn's disease.

Crohn's disease caused by hitch-hiker at IRF1 or IL5
Gray: recombination separates 503F from IRF1 and IL5. No assoc. btw 503F \& Crohn's.

Blue: no recombination between 503F, IRF1, and IL5.
Assoc. btw 503F \& Crohn's.

Summary

Crohn's disease is the maladaptive consequence of adaptive evolution in response to Neolithic diet.

