Hemochromatosis: A European Polymorphism

John McCullough Kathleen Heath

Anthropology 423/.4234/6234 Genes, Health and History

5 March 2018

Iron overload disease – too much iron in system

- Iron overload disease too much iron in system
- Two basic causes
- Genetic several loci
- Environmental

- Iron overload disease too much iron in system
- Two basic causes
- Genetic several loci
- Environmental
- Occasionally "lethal" esp. in males

- Iron overload disease too much iron in system
- Two basic causes
- Genetic several loci
- Environmental
- Occasionally "lethal" esp. in males
- Variable geographic distribution polymorphic!

- Iron overload disease increased iron in system
- Two basic causes
- Genetic several loci
- Environmental
- Occasionally "lethal" esp. in males
- Variable geographic distribution polymorphic!
- Gift from Darwin?

Hemochromatosis in Europe

How Does Evolution Work?

Hardy-Weinberg Violations

- Mutation
- Selection natural or sexual
- Migration in or out
- Drift several mechanisms
- What Happened?

Cheddar Man Burial 9100 BP - Mesolithic

Cheddar Man Skull

FIG. 2.-CHEDDAR MAN NORMA FACIALIS.

Cheddar Man Reconstruction

New Cheddar Man

East African Progenitors

Cheddar & Britain First What Happened?

Agriculture

Cropping of Grains

Small Settlements

Pastoralism, Especially Cattle in North

Agriculture: Man's Greatest Mistake

- Shift in foods from high meat to low meat and high cereal crops
- Monocropping
- Impoverishment of food diversity in North
- Famine (1 year in 3 in Medieval Period)
- Reduced nutritional value in foods
- By Iron Age, larger settlements form
- What was the effect on health? On genetics?

HFE and Agriculture Link?

- Reduced Meat Intake Seasonal??
- Thus reduced red meat iron intake
- Increased grain intake
- Whole grains -> incr. phytate capture

• Result is reduced iron intake.

Skeletal Evidence? H & G to Agriculture

- Stature change?
- Porotic hyperostosis?
- Cribra orbitalia? (Data from Wittwer-Backofen and Tomo 2008)
- Early Neolithic is LinearBandKeramik Culture
- Late Neolithic is Corded Ware (Schnurkeramik) and Bell Beaker (Glockenbecherkeramik) Cultures

Skeletal Evidence – Stature (cm) Central Europe

•	Males		Females	
•	Ν	Stature	Ν	Stature
• E. Upper Paleo	10	174.7	5	161.3
• L. Upper Paleo	29	171.8	14	156.7
 Mesolithic 	124	167.2	104	155.9
• Neolithic (All)	127	166.7	128	154.7
• E. Neolithic	12	165.2	31	155.5
• L. Neolithic	9	163.6	9	157.1

Skeletal Evidence Paleopathology

- Porotic hyperostosis
- Cribra orbitalia
- Dental hypoplasia

• Data from Wittwer-Backofen and Tomo 2008

Cribra Orbitalia

Cribra Orbitalia

Mesolithic E. Neolithic

- N % N %
- Subadults 6 0.0 55 60.0
- Adults 193 0.0 38 23.7

Cribra cranii – Porotic hyperostosis

Cribra Crania (Porotic Hyperostosis)							
	Ν	%	Ν	%			
– Subadults	6	0.0	52	3.9			
– Adults	46	6.5	38	15.8			

Transverse Dental Hypoplasia

Transverse Dental Hypoplasia

Transverse Dental Hypoplasia

- Mesolithic E. Neolithic
- N % N %
- Subadults 16 25.0 86 52.3
- Adults 62 45.5 44 63.6

Porotic Hyperostosis Causes?

- Anemia by dietary deficiency
- Iron
- Ascorbic acid (Vit-C)
- Blood losses
- Parasites
- Hemoglobin dyscrasias

- A deficiency of red blood cells or hemoglobin on the surface of existing RBC's.
- Can also include hemoglobin dyscrasias.
- Major causes of anemia:
 - Inadequate iron intake (diet)
 - Excessive blood loss
 - Excessive RBC destruction (hemolysis)
 - Deficient or inadequate RBC production (hematopoesis)

- Many forms of anemia (diagnoses):
 - Pernicious anemia inability to absorb Vit B-12
 - Hemolytic anemia from breakdown of RBC's
 - Megaloblastic anemia inhibition of DNA synthesis during hematopoesis – usually from lack of Vit B-12
 - Dietary iron deficiency

- Blood loss:
 - Hemorrhage
 - Menstruation
 - Pregnancy, childbirth
 - Warfare
 - Bar fights, etc.
 - Serious accidents

- Red Blood Cell Destruction (Hemolysis):
 - Malarial hemolysis, other blood parasites
 - Genetic basis for hemolysis
 - G-6-PD (Favism)
 - Beta thalassemia
 - Other Hemoglobinopathies Hb-S, Hb-E, etc
 - Bacterial hemolysis
 - Steptococcus
 - Staphylococcus
 - Enterococcus

- Inadequate Red Blood Cell Production:
 - Inadequate iron intake
 - Inadequate Vitamin C (Ascorbic acid) intake
 - Inadequate Vitamin B-12 (Cobalamin) intake
 - Inadequate Folic Acid (Folate) intake

How to Deal with Anemia?

- Niche Construction Theory (Laland & Brown, various):
 - Ecologically-stable organisms are "adapted"
 - When environment changes, culture or behavior responds first
 - If culture does not respond, genetic system must respond

Man's Greatest Mistake

- Adoption of agriculture breaks human adaptation
- Result is anemia
- In Europe, culture does not respond (evidence of skeletons)
- Genetic system must respond how?

Man's Greatest Mistake Agriculture

- Adoption of agriculture breaks 800,000 years of human economic activity in Europe
- Cereal crops containing phytates are adopted
 - Wheat
 - Barley
 - Rye
 - Oats
- Hunting, fishing reduced or suspended, less game eaten
- Domestic stock are eaten, partially on a seasonal basis
- Dairying is adopted early on.

Anemia – How come in Neolithic?

- Naugler phytates?
- This presentation dairying as well?
- Cold, wet North European climate?
- Reduced iron consumption from other domesticated foods?
- Some combination?

Anemia – How come in Neolithic?

- Naugler phytate hypothesis
 - Phytates on seed coat or "skin"
 - Lock up minerals in diet, including iron

Hunting Diet

- Red Deer
- Moose
- Elk
- Seal
- Clams, cockles
- Salmon

• Hazelnuts

Horticultural Diet

- Whole wheat bread
- White bread
- Oatmeal
- Beef
- Goat
- Sheep
- Hazelnuts

- Whole milk
- Buttermilk
- Yogurt
- Ricotta cheese
- Mozzarella cheese
- Cottage cheese
- Butter

- HFE or HHC (Hereditary hemochromatosis) OMIM 235200
- 6p21.3; 6p22.2, autosomal "recessive"
- Increases absorption of iron in the lower intestine
- In extreme cases, leads to organ failure due to iron deposition in cells

Inherited as an autosomal partial recessive Located on short arm of 6th chromosome Mutation (C282Y) allows increased intake of iron Cotrolling gene for interraction of transferrin and transferrin receptor?

Hemochromatosis Chromosome 6

Three major mutated alleles:

- C282Y most common in Northern Europe
- S63C older, more widely, evenly dispersed

H65D – less common, less known

- C282Y allele found primarily in Northwest Europe and along coastline
- Found in same geographical areas as LP

HFE Mutations

- Variable % of C282Y homozygotes present with pathology
- C282Y homozygotes almost always have higher iron levels than "wt" homozygotes
- C282Y/wt heterozygotes have slightly elevated iron but do not present clinically
- H63D homozygotes not associated with HFE
- Double heterozygotes may present clinical symptoms

- Iron-retention disease
- Too much iron enters body
- No major release of iron except by bleeding
- Lethal in a small number of cases
 - Homozygous state
 - Double heterozygous state
- Affects men more than women

Clinical Hemochromatosis

- Clinical symptoms:
 - Headaches
 - Joint pain
 - Bone pain
- Alcoholism is an accelerative factor
- Symptoms and sequelae appear in mid- to late life, especially in women; earlier in men?

- Dangerous sequelae:
 - Hepatomegaly and cirrhosis of liver
 - Arthritis due to iron build-up in joints
 - Cardiomyopathy
 - Testicular failure and hypogonadism
 - Bronzing of face, other body parts
 - Splenomegaly
 - Diabetes (Pancreatic islet cell failure)

HH Interactions

- Diagnosis:
 - Elevated serum ferritin, (usually] an intracellular protein that stores and retrieves iron)
 - Liver biopsy or MRI to assess cellular iron
 - Genetic analysis or familial history
 - Presence of sequelae (above)

Transferrin

- Plasma iron transport protein
- Produced in liver
- Found in plasma, bile
- On chromosome 3q21

Transferrin Saturation

Fin A.1 Non-facting commitmanefamin estimation in man and

Serum Ferritin

- Forms nanocage for iron storage
- Found in hepatocytes (liver), macrophages (immune system), most other cells
- 2 subunits
 - Ferritin L-subunit 9q13.3-q13.4
 - Ferritin H-subunit 11q12-q13

Serum Ferritin Levels

- Found primarily in persons of NW European ancestry
 - Celtic
 - Scandinavian
 - Coastal populations
- Found in same geographical areas as LP are they correlated?

Lactase Persistence

- Mammals feed young milk
- Lactose a disaccharide
- Glucose
- Galactose
- Lactase enzyme
- Lactose intolerance

Lactose Tolerance

Graph – LP Phenotype and HFE r = 0.788 (p<.001)

- Are the HFE allele and lactase persistence related in other ways?
 - Linked on same chromosome?
 - Common history?

Linked? No

- LP (OMIM 223100/601806) at 2q21.3
- HFE (OMIM 235200/613609) at 6p22.2

- Common History Mutation Age?
 - LP (C/T(-13910)) mutation age:
 - 5-10,000 ya Bersaglieri et al 2004
 - 5-12,000 ya Enattah et al 2007
 - Second mutation event 1400 to 3000 ya
 - HFE mutation age:
 - ~4140 yrs ago (138 gens) Toomajian et al 2003
 - ~1950 yrs ago (60-70 gens) Milman and Pedersen 2003
 - <6000 yrs ago Distante et al 2004</p>

Age of Dairying?

- Poland 7500 ya
- Anatolia 8000 ya
- England 6000 ya
Age of Dairying? Curd/Whey Sieves – LBK Culture

Cold Moisture as a Driver

- Cold/Moist Adaptation Increase metabolism
- Increase metabolism thyroxine
- Thyroxine production iron required

Cold Moisture?

Vit \boldsymbol{B}_{12} and Anemia

- Cobalamin req for RBC production
- Dietary inadequacy at times
- Loss from parasite Diphyllobothrium spp.
- Common in Europe 5 million in 1970

A Rider on Another Sweep?

• Other loci closely-linked to 6p22.2, 6p21.3 include:

HLA-A, HLA-B – 6p21.3 HLA-C – 6p21.33 BMP6 – 6p24-p23 Tumor Necrosis Factor 6p21.3 Transient Neonatal Diabetes Mellitus I – 6p22.1, 6p24.2 Histone Gene Cluster 1 - 6p22.2 Gluten Sensitivity (HLA-DQ) – 6p21.32

Genetic Drift?

- Irish, British Atlantic Modal Haplotype?
- R1b1a Y-chromosome
- Yamnaya Culture Ukraine & Russia
- To Ireland With Love
- Indo-European languages spread

Yamnaya – Bronze Age Intrusion

Atlantic Modal Hyplotype – R1b

Culture as Adaptation? Alcohol!

Other Genetic Changes from Agriculture?

- Lactase Persistence
- Hemochromatosis
- Skin color
- Hair color
- PKU Phenylketonuria?
- Others?

A Balanced Meal!

Vampire and friend should share their meals!

