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Exercise 1

Using Transposon Data to Infer
Phylogenetic Trees

Figure 1.1 shows six made-up sets of transposon data, each consisting of three transposons.
In this exercise, you will use each data set to infer a phylogenetic tree.

Begin by looking for transposons that are present in only two species. As explained in
the text and in lecture, such a pair must have a common ancestor not shared by the other
species. In other words, they occupy their own branch of the tree. To represent this fact,
write the letters that identify the two species on your paper, and draw lines connecting each
one with a dot, which represents their common ancestor.

Are there other transposons that unite just two species? If so, then create another branch
to indicate this fact. Then continue with the other transposons, dealing first with the smaller

Transposons
Species a b c

A • • •
B • • •
C • • ◦
D • ◦ ◦

(a)

Transposons
a b c
• • ◦
• • •
• • •
• ◦ ◦
(b)

Transposons
a b c
• ◦ ◦
• • •
• • •
• • ◦
(c)

Transposons
Species a b c

A • • ◦
B • • ◦
C • ◦ •
D • ◦ •

(d)

Transposons
a b c
• • ◦
• ◦ •
• • ◦
• ◦ •
(e)

Transposons
a b c
• • •
• ◦ ◦
• • ◦
• • •
(f)

Figure 1.1: Dummy sets of transposon data. Key: •,present; ◦,absent
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Figure 1.2: Tree implied by data set a

branches, until you have used all the transposons and have connected all the species. Using
data set a, you should end up with the tree shown in figure 1.2.

Build a tree using each data set (4 in all). Be sure to label them so that we can tell which
is which.
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Exercise 2

The isochron method of radiometric
dating

2.1 Introduction

Before doing this exercise, read the section on isochrons in the chapter named “Has there
been enough time?” in reference [3]. In the exercise, you will study data describing igneous
rock from southern Britain. Based on that data, you will estimate an isochron and then use
the isochron to estimate the age of the rock. The data (shown in table 2.1) involve isotopes
of rubidium (Rb) and strontium (Sr), rather than the uranium and lead isotopes discussed in
the reading assignment. Although the isotopes are different, the principle is the same. The
parent isotope (87Rb) decays into the daughter isotope (87Sr), with a half-life of 49.5 billion
years. Because of this long half-life, the rubidium-strontium method is often used with very
old rocks. The isochron is constructed from ratios of the parent and daughter isotopes to
(86Sr), a stable isotope.

2.2 Exercise

1. Plot each sample in Table 2.1 as a point on the graph paper provided in Fig. 2.1.

2. Using a ruler, draw a straight line through the points. Do all of the points fall on or
near the line? If not, you have plotted the points incorrectly.

Table 2.1: Rb-Sr isotope data from igneous rock at Stanner Hill, England. Source: [2]

Sample 87Rb/86Sr 87Sr/86Sr

P59 1.3 0.718
P91 9.1 0.797
P62 12.2 0.828
P97 17.6 0.882
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Figure 2.1: Isochron plot
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3. The straight line connecting the points is called the isochron. What can you conclude
from the fact that the points fall on a straight line?

4. What is the slope of the isochron? (For details, see the appendix below.)

5. Use the slope to figure out the age of the rock. To do this, multiply the half-life (49.5)
by the slope, and then divide by 0.69. This gives the age of the rock in billions of years.
(This calculation is only approximate. It works well here because our slope is small.)

Your report should include (a) your graph, (b) your calculation, and (c) a sentence telling
us the age of the rock.

Appendix: Calculating the slope of the isochron

This appendix is for students who do not know how to calculate the slope of a straight line.

1. Choose any two samples that fall on the straight line you have drawn. It doesn’t matter
much which samples you choose, but it is best to choose samples from opposite ends
of the straight line. Let us call these sample A and sample B.

2. Subtract the 87Sr/86Sr value for sample A from the corresponding value for sample B.
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3. Subtract the 87Rb/86Sr value for sample A from the corresponding value for sample B.

4. Divide the result from step 2 by the result from step 3. This is the slope of the isochron.
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Exercise 3

Sexual Dimorphism and Mating
Patterns of Primate Species

3.1 Introduction

When the average male of a species differs from the average female, the species is said to be
sexually dimorphic. Humans, for example, are sexually dimorphic with respect to body size,
men being on average about 10% taller than women. In this exercise you will analyze data
on sexual dimorphism in non-human primates.

Sexual dimorphism can be measured in a variety of ways. In the exercise below, you will
use the statistic

D = log10(average male weight) − log10(average female weight)

where log10 is the logarithm to base 10. For a detailed discussion of this statistic and others
like it, see section 3.3. If you are not interested in a detailed discussion, then just read the
following paragraph.

A 1-gram difference between males and females would be more significant among mice
than among elephants. It makes more sense to give equal weight to equal percentage differ-
ences. This is the function of the logarithms in the definition above of D. If males are 1%
larger than females, then D = 0.00995 for mice as well as elephants.

3.2 Exercise

Answer the questions below using the data in table 3.1. At the top of the page, write your
name and “Exercise 3.” Be sure also to number your answers.

1. In which species is sexual dimorphism most pronounced? In other words, which species
has the largest value of D?
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2. Fill in the graph in figure 3.1 (page 9). Plot each polygynous species as a plus sign
(+) and each monogamous species as a circle (◦). Species without sexual dimorphism
should fall on the 45◦ line. If males are larger than females, then the species will plot
above this line and the vertical distance above the line measures sexual dimorphism.
As an example, the point for the Talapoin Monkey (Miopithecus talapoin) is already
plotted for you.

3. In a sentence or two of prose, summarize the pattern that you see in the graph. How
do polygynous and monogamous primates differ?

3.3 Appendix: Details about Measuring sexual dimor-

phism

[This appendix is optional.]
How does one measure sexual dimorphism? To make this question concrete, let us take

two species:

Body Weight
Male Female

Species (kg) (kg)

Agile gibbon (Hylobates agilis) 5.82 5.5
Talapoin Monkey (Miopithecus talapoin) 1.4 1.1

Which species is most dimorphic? The answer to this question depends on how we measure
sexual dimorphism. One possibility is to use the difference between male and female character
values. Using this measure, the gibbon is most dimorphic since males of that species are
(on average) 0.32 kg larger than females whereas male talapoin monkeys are only 0.3 kg
larger than their females. This measure of dimorphism is unsatisfactory, however, because
it ignores the overall difference in size between the two species. Surely a 1 gram difference
is more important in comparisons among mice than in comparisons among elephants.

To incorporate the effect of overall body size, we must use a different measure of di-
morphism. One possibility is the ratio, R, of male to female size. For the gibbon in our
example,

R =
male weight

female weight
=

5.82

5.5
= 1.058

For the talapoin monkey, R = 1.27. Thus, male agile gibbons are only 5.8% larger than
females, but male talapoin monkeys are 27% larger. By this measure, the monkey is more
dimorphic than the gibbon. This seems a more natural measure of sexual dimorphism since
it automatically scales the result to body size.

There is one remaining problem, which arises when we try to make a graph of sexual
dimorphism against body size. If the horizontal axis of our graph were measured in (say)
kilograms, then two animals that differed by 1 gram would be separated by the same distance
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Table 3.1: Sizes and mating systems of primate species

Log10 Log10
Male Female

Mating weight weight
Species system∗ (kg) (kg)

Lemur mongoz P 0.26 0.26
Propithecus verreauxi P 0.57 0.54
Galago alleni P –1.22 –1.22
Tarsus bancanus P 0.08 0.04
Alouatta villosa P 0.87 0.76
Callicebus moloch M –0.17 –0.17
Ateles geoffroyi P 0.87 0.88
Cercopithecus aethiops P 0.65 0.56
Cercopithecus neglectus P 0.85 0.60
Cercopithecus ascanius P 0.96 0.81
Miopithecus talapoin P 0.15 0.04
Cercocebus albigena P 0.95 0.81
Macaca nemestrina P 1.00 0.85
Papio hamadryas P 1.26 0.97
Colobus badius P 1.02 0.85
Presbytis entellus P 1.18 1.02
Presbytis obscurus P 0.80 0.78
Presbytis senex P 0.93 0.89
Hylobates agilis M 0.76 0.74
Hylobates hoolock M 0.84 0.79
Hylobates lar M 0.76 0.72
Symphalangus syndactylus M 1.05 1.01
Pongo pygmaeus P 1.84 1.57
Pan troglodytes P 1.69 1.61
Gorilla gorilla P 2.20 1.97

∗P: polygynous; M: monogamous
Note: Data are from [1].
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Figure 3.1: Log male weight versus log female weight for primate species. Polygynous species are
indicated by plus signs and monogamous species by circles. The Talapoin Monkey (Miopithecus
talapoin) is already plotted for you.
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on our graph, whether they were mice or elephants. Yet as we argued above, a 1-gram
difference is more significant among small animals than among large ones. By plotting
dimorphism against raw body size, we would exaggerate differences among large animals
and obscure those among small ones.

To avoid this difficulty, we work with logarithms. (If you are not sure what a logarithm
is, see appendix A, page 16.) In the exercise above, you were asked to make a graph with
the logarithm of average female weight on the horizontal axis and the logarithm of average
male weight on the vertical axis. If the average male and female weights are equal, then
species will fall on a line that is drawn from the origin at an angle of 45◦. If males are larger
than females, then that species will plot above the 45◦ line. The vertical distance, D, from
the 45◦ line to a species’s point on the graph is equal to

D = log10(average male weight) − log10(average female weight)

For example, in the case of the agile gibbon, this is

Dgibbon = log10 5.82 − log10 5.5 = 0.765 − 0.740 = 0.025

In the case of the talapoin monkey, the vertical distance to the 45◦ degree line is

Dmonkey = log10 1.4 − log10 1.1 = 0.146 − 0.041 = 0.105

This new quantity, D, is another way to measure sexual dimorphism. Since it is based on
logarithms, it is automatically scaled to body size and will not obscure differences within
small species or exaggerate those within large ones.

We now have two measures of sexual dimorphism, R and D, both of which take body
size into account in a natural fashion. It turns out (trust me on this) that D = log10R. For
example, in the case of the gibbon,

Dgibbon = log10Rgibbon = log10 1.058 = 0.025

We can calculate D either as the log of the ratio of male and female sizes or as the difference
of the logs. The answer is the same in either case. The two measures of dimorphism, R and
D, will never disagree: if species A is more dimorphic than species B according to R, then it
is also more dimorphic according to D. Thus, both statistics provide the same information
and it does not matter much which we use. In this exercise you have been asked to use D
rather than R because this makes it easier to interpret the graph.
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Exercise 4

Prisoners’ Dilemma

Read this section and do the warm-up exercises before coming to class for this experiment.
Joe and Jack rob a grocery store and are arrested shortly thereafter. The evidence

against them is weak, however, so the police want to encourage confession. Each prisoner
is interrogated in a separate room. Each knows that if neither of them confess, then their
sentences will be light—6 months in jail. If just one confesses (implicating the other), then
the one who confesses will be released while the other will serve 10 years in jail. If both
confess, both will serve 8-year sentences.

The payoffs to Joe are as follows:

Jack
Mum Fink

Mum –0.5 –10
Joe

Fink 0 –8

4.1 Warm-up exercises

To be completed before you come to class for this experiment.

1. If Joe plays Fink and Jack plays Mum, Joe’s payoff is and Jack’s is .

2. If Jack and Joe both play Mum, the payoff to each is .

3. If Jack and Joe both play Fink, the payoff to each of .

4.2 Instructions

4.2.1 Game 1

1. Form groups of three.
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2. Within each group, one student will be the “interrogator” and will keep records. The
other two will be “prisoners.” Decide for yourselves who will play each role.

3. Each player will need a sheet of paper and should write numbers 1–15 on separate
lines. Game 1 will consist of 15 repetitions, and you will record your play for each
repetition on a separate line.

4. In the first repetition, each prisoner chooses between playing Fink or Mum and then
writes this choice on line 1. Cover your choice with another sheet of paper so that no
one can see.

5. After both prisoners have recorded their choices, each prisoner reveals his or her choice
to the other two. Together, the three decide on the payoff to each prisoner.

6. The interrogator keeps a tally of the number of times Mum and Fink are played during
each turn.

7. Repeat for lines 2–15. Play the game one round at a time—don’t fill in choices for
later rounds until you get to them.

8. When your group has finished, your interrogator should go to the board and write
down your group’s results in a column like this:

Group 1
Prisoner

Turn 1 2
1 F F
2 F M
...

...
...

15 M M

where “F” indicates Fink and “M” indicates Mum.

We will post the data on the class web site (http://www.anthro.utah.edu/~rogers/
courses.html).

4.3 Theory

(I will explain the game-theoretic analysis of this game in class. If you missed class, you
will need to get someone’s notes. Most of what I say in this lecture is covered in Ridley’s
chapter 3.)
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4.4 Assignment

In this exercise you will summarize the data from the Prisoner’s Dilemma experiment in a
form that is easy to understand. We will be discussing the results for the rest of the semester.
The data include (i) what each pair did on each round of the game, (ii) mean payoff to Fink
on each round, (iii) mean payoff to Mum on each round, and (iv) overall mean payoff on each
round. The exercise involves making two graphs and writing three paragraphs discussing
them. Space for the answers is provided here. Your answers to questions 5 and 6 should
be typed. The report is due at the first class following experiment 4. If you have trouble
understanding the assignment, consult section 4.4.1 below.

1. Calculate the relative frequency of Fink in each turn (for the class as a whole), and
plot these numbers on Graph 1.

Graph 1
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Relative
Frequency
of Finks
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Repetition
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No calculations are involved in the next three exercises. The values to be plotted are all
provided on the web page.

2. On graph 2, plot the average payoff to members of the class on each round. Label this
line “A” (for Average).

3. On the same graph, plot the average payoff to those who played Fink, and label this
line “F” (for Fink).

4. On the same graph, plot the average payoff to those who played Mum, and label this
line “M” (for Mum).

Graph 2
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Repetition

5. In class, I summarized the conventional game-theoretic analysis, which predicts the
outcome of a Prisoner’s Dilemma game that is repeated a fixed number of times. Use
the results from our in-class game to evaluate this theory. Under a new heading, write
a paragraph discussing the following issues: (a) What does the conventional theory
predict? (b) Did your class behave as predicted by the theory? (c) If not, then how
did the class’s responses differ? Did class-members co-operate with each other more or
less than the theory predicts? (d) As the class gained more experience with the game,
was there any tendency to converge toward the theoretical prediction?

6. What reasons can you think of that might account for the differences between the
results of the experiment and the results that the theory predicts?
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Hand in only the pages containing your answers—not the entire Prisoner’s Dilemma handout.
Please staple all the pages together.

4.4.1 More detail

The relative frequency of Finks is the number of Finks divided by the number of students
playing the game. Here is a partially worked example. Suppose that we had data like this:

Group
Turn 1 2 3 4

1 MM MF MF MM
2 FF FF MF MM

In the first round, 2 of the 8 players played F. The relative frequency of Fs is thus 2/8 = 0.25.
In the second round, it was 5/8 = 0.625. These are relative frequencies of Finks within the
class taken as a whole.

You do not need to calculate mean payoffs, since these values are provided on the web
site. Nonetheless, you may be curious about how these values are calculated. Here’s how:

To calculate the mean payoff, first calculate the payoff of each player using the payoff
matrix on page 11. With the toy data set above, the payoffs are:

Group
Round 1 2 3 4

1 –0.5 –0.5 –10 0 –10 0 –0.5 –0.5
2 –8 –8 –8 –8 –10 0 –0.5 –0.5

Next, average the payoffs from each row. For the first round, the average payoff is

(−0.5 − 0.5 − 10 + 0 − 10 + 0 − 0.5 − 0.5)/8 = −2.75

For the second, the average payoff is –5.375.
To calculate the average payoff for those who played Fink, use the same procedure but

include only the payoffs for those individuals that played Fink. In the first turn of the
example, the mean payoff to those who played Fink was

(0 + 0)/2 = 0

The mean payoff to those who played Mum was

(−0.5 − 0.5 − 10 − 10 − 0.5 − 0.5)/6 = −3.67
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Appendix A

What is a logarithm?

We all know that
102 = 100

This same fact can also be expressed by writing

log10 100 = 2

In words, this reads “the logarithm to base 10 of 100 equals 2.” Both equations mean the
same thing: if you raise 10 to the 2nd power you get 100.

Similarly, 103 = 1000, so log10 1000 = 3. Here are some other numbers and their logs:

x log10 x

1 0
10 1

100 2
1000 3

10000 4
1000000000000000000000 21

Notice the pattern. As x grows, log10 x grows too, but much more slowly.
Logarithms are useful when we are more interested in proportional differences than in

absolute ones. For example, a one-ounce difference is large if we are comparing mice but small
if we are comparing elephants. Thus, we would not want to use “ounces” as the horizontal
axis of a graph that included values for animals ranging in size from mouse to elephant. The
graph is easier to interpret if we use “log ounces” instead, because a proportional difference
of (say) 10% between mice occupies the same space on the graph as a 10% difference between
elephants. This is why logarithmic scales are used so often in illustrations.
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