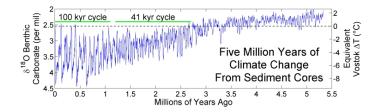
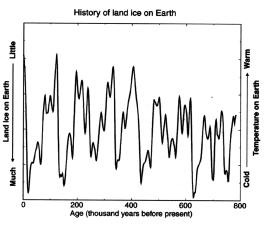
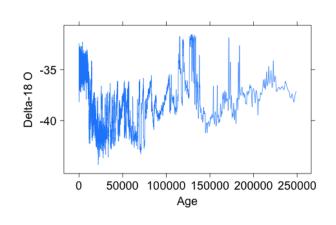

	To understand how we measure ancient temperature, you need to know about oxygen isotopes	
Pleistocene Climate		
Alan R. Rogers	 There are several types of oxygen atoms, called <i>isotopes</i> The common isotope ¹⁶O has atomic mass 16. A rare isotope ¹⁸O has atomic mass 18. 	
February 20, 2014	But what do these have to do with ancient temperatures?	
Oxygen isotopes measure temperature for two separate reasons	Clouds, rain, and oxygen isotopes	
 At any given time, precipitation in cold places has less ¹⁸O than that in warm places. In any given place, precipitation has less ¹⁸O when the earth is cold than when it is warm. The isotopes in <i>you</i> reflect those in the water you drink. We can measure oxygen isotope ratios in ancient fossils or ancient sediment. The colder it was, the lower the ratio of ¹⁸O to ¹⁶O. To understand these facts, we need to think about clouds and rain. 	 Each water molecule has a single oxygen atom. Water molecules with ¹⁶O evaporate more easily. In clouds, water molecules with ¹⁸O condense more easily into rain. Bottom line: Water with ¹⁸O evaporates more slowly but condenses faster. 	
Why ${}^{18}O/{}^{16}O$ is lower in cold climates at any given time	Rain that falls in warm places has more ${}^{18}O$ relative to ${}^{16}O$.	
 Most clouds form in the tropics, then travel toward the poles. Along the way, they lose water as rain. Water molecules with ¹⁸O rain out faster than those with ¹⁶O. Rain (or snow) that falls in cold climates has less ¹⁸O. 	0 -40 -20 0 20 Temperature (°C)	

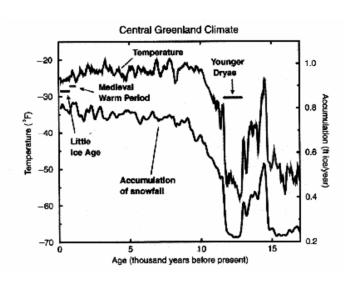

Ancient temperature and oxygen isotopes

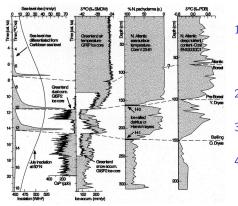
- ▶ Water with ¹⁶O evaporates faster than that with ¹⁸O.
- If atmosphere is warm, the water flows back into the ocean, so nothing changes.
- If atmosphere is cold, the water gets trapped as ice.
- ► Less and less ¹⁶O in ocean.
- ▶ Less and less ¹⁶O in ice deposited on land.



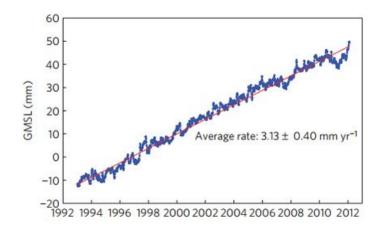
Global temperature during past 5 Myr

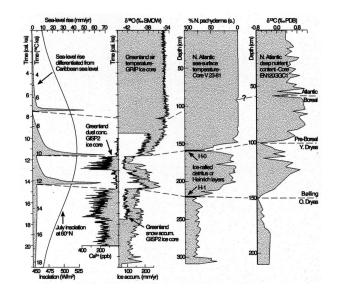


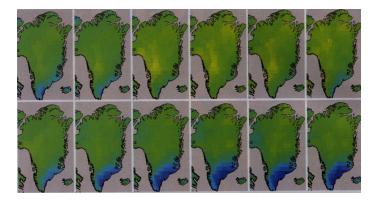

Global temperature during past 800,000 y

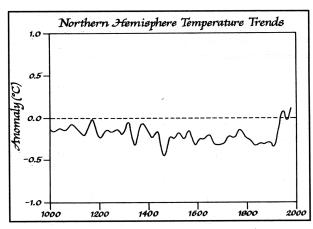

Major cold periods roughly 100ky apart.

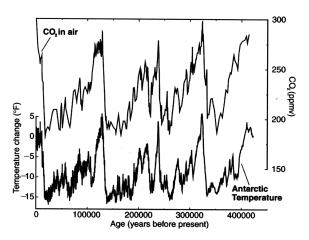
Greenland temperature over past 250,000 y



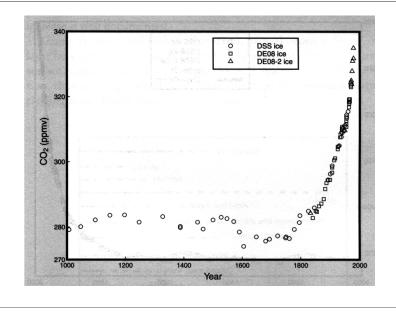

Changes in sea level can be sudden and catastrophic

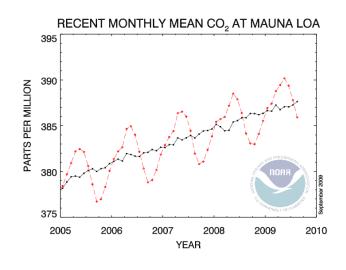

- warming caused sudden collapse of ice sheets at 14.2, 11.5, & 7.6 kyr
- 2. huge fleets of icebergs
- 3. sea level ↑ by 44, 25, & 21 feet
- 4. duration: < 290, 160, & 140 yrs





Greenland lost 38 cubic miles of ice during 2005




Northern Hemisphere temperature trends based on ice-core and tree-ring records, also instrument readings after c. 1750. This is a generalized compilation obtained from several statistically derived curves.

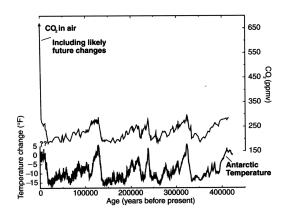
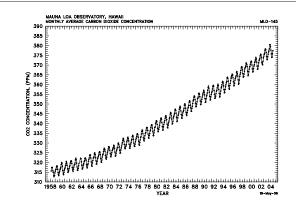


FIGURE II.I

The ice-isotopic history of temperature in central East Antarctica at Vostok, and the history of CO_2 from air bubbles in the Vostok core,



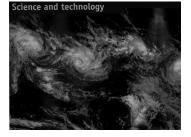
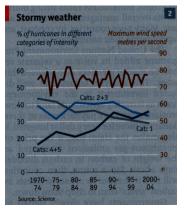
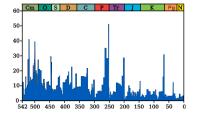


FIGURE 11.2

The history of temperature and CO_2 from Vostok, as in the previous figure, but with the scale changed to show what humans are likely to do to CO_2 within the next centuries. The question marks for future temperature pose some interesting questions for us.


Hurricanes


- Only in tropics, where water is warm.
- Speed up when passing over warm water.

Webster et al. (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment

Global warming: the worst case scenario

- In past 30 years, no increase in number of hurricanes
- Big increase in fraction in categories 4 & 5
- This idea still controversial.

- Numerous mass-extinction events in the earth history.
- Cretaceous/Eocene event caused by comet

Others caused by global warming.

How global warming causes extinctions (Peter Ward. 2007. Under a Green Sky)

- 1. Massive volcanism releases lots of CO2
- 2. Climate grows warm
- 3. Shuts down current that carries oxygen to deep ocean
- 4. Without oxygen, only anaerobic bacteria can live there
- 5. Anaerobic respiration releases a poison: hydrogen sulfide (rotten egg smell)
- 6. Hydrogen sulfide rises, killing oceanic life.
- 7. Invades atmosphere, killing land plants and animals.

Marine extinctions at end of Permian

Group	Genera extinct
Foraminifera	97%
Radiolaria (plankton)	99%
Sea anemones, corals, etc.	96%
Bryozoans	79%
Brachiopods	96%
Bivalves	59%
Snails	98%
Cephalopods	97%
Crinoids	98%
Blastoids	100%
Trilobites	100%
Eurypterids	100%
Ostracods	59%
Acanthodians	100%

Summary

- ▶ The Pleistocene was alternately cold and warm.
- During the cold (glacial) periods, sea level dropped because much of the earth's water was frozen on land.
- ▶ We live in a warm (interglacial) period.
- Climate change can be sudden.
- Carbon dioxide traps heat inside the atmosphere and raises the earth's temperature.
- The last hundred years have seen an enormous increase in atmospheric carbon dioxide.
- Hurricanes may be getting stronger: it is hard to tell.
- Global warming may cause mass extinction.

- During most recent mass extinction event, peak CO2 level was 800 ppm.
- We are now at nearly 400 ppm.
- But 800 was the *peak* level. The extinction may have started at a much lower level.
- We may be close to the critical level—there is no way to know.