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Mismatch distributions are histograms showing the pattern of nucleotide (or restriction) site differences between 
pairs of individuals in a sample. They can be used to test hypotheses about the history of population size and 
subdivision (if selective neutrality is assumed) or about selection (if a constant population size is assumed). Previous 
work has assumed that mutations never strike the same site twice, an assumption that is called the model of infinite 
sites. Fortunately, the results are surprisingly robust even when this assumption is violated. We show here that (1) 
confidence regions inferred using the infinite-sites model differ little from those inferred using a model of finite 
sites with uniform site-specific mutation rates, and (2) even when site-specific mutation rates follow a gamma 
distribution, confidence regions are little changed until the gamma shape parameter falls well below its plausible 
range, to roughly 0.01. In addition, we evaluate and reject the proposition that mismatch waves are produced by 
pooling data from several subdivisions of a structured population. 

Introduction 

Mismatch distributions summarize information 
about genetic differences between pairs of subjects in a 
sample. They are built by counting the number of nu- 
cleotide (or restriction) site differences between each 
pair of subjects and using a histogram or scatter plot to 
display the relative frequencies of pairs that differ by 
zero sites, by one site, and so forth. 

Similar distributions are sometimes constructed in 
which the horizontal axis estimates the number of sub- 
stitutions per site rather than counting site differences. 
We use counts rather than estimated substitutions be- 
cause this simplifies our statistical problem. With intra- 
specific human data, the pairwise differences are so 
small that the difference between the two methods is not 
important. 

The open circles in figure 1 show a mismatch dis- 
tribution calculated from 77 Asian individuals using 
nucleotide sequences comprising 630 sites within the 
mitochondrial D-loop. The distribution shows that 
many pairs of subjects differ at 9 sites and that very 
few differ at 0 sites or at 15 sites. Formulas are avail- 
able for the expected value of such distributions under 
various hypotheses about history (Watterson 1975; Li 
1877; Rogers and Harpending 1992). Since these for- 
mulas assume that recombination does not occur, the 
methods described below are appropriate only for ge- 
netic systems where recombination is either absent or 
very rare. 

If our population were at mutation-drift equilib- 
rium but had the same mean pairwise difference, the 
expected mismatch distribution would look like the 
dashed line shown in figure 1. The two distributions 
are very different, yet this in itself would not justify 
rejecting the hypothesis of mutation-drift equilibrium. 
To do that, one must show not only that the empirical 
and theoretical distributions differ, but also that such 
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differences are rare in equilibrium populations. Togeth- 
er with several colleagues, we have developed methods 
to do this using computer simulation and have rejected 
the equilibrium hypothesis with various data sets (Har- 
pending et al. 1993; Harpending 1994; Sherry et al. 
1994; Rogers 1995). It is also possible, by fitting the 
theoretical curves to data, to estimate parameters de- 
scribing population history and to place confidence 
regions about these estimates (Sherry et al. 1994; Rog- 
ers 1995). There is no guarantee that these methods are 
optimal. Indeed, they probably make less efficient use 
of the data than would analogous methods based on the 
principle of maximum likelihood. These methods are 
useful because they are simple and fast, and because 
they avoid the numerical and statistical difficulties as- 
sociated with inferring trees. 

Mismatch waves such as that in figure1 can be 
produced either by an episode of population growth or 
by the sweep to fixation of a favored mitochondrial 
allele (Rogers and Harpending 1992; Rogers 1995, 
1996). Separating these hypotheses requires additional 
data. For example, one might use data from different 
loci. If the pattern reflects population growth, then all 
loci should look the same apart from sampling effects. 
If the pattern reflects selection, then unlinked loci 
should look different, since the selective histories of 
different loci are not identical. Elsewhere, we have ar- 
gued that human mismatch waves are likely to reflect 
population history rather than selection (Harpending et 
al 1993; Rogers 1995). Here, we remain agnostic on 
this issue. To simplify the exposition, we will continue 
to speak of a population expansion, but we emphasize 
that if the selection hypothesis is correct then our 
“population” refers to the number of carriers of a fa- 
vored mitochondrial allele. 

Mismatch analysis has employed several unreal- 
istic assumptions. First, much of this work assumes 
that the population mates at random-an assumption 
that is surely violated in any large widespread popu- 
lation. Several authors have shown that geographic 
population structure can have a major effect (Harpend- 
ing et al 1993; Marjoram and Donnelly 1994). None- 
theless, the random-mating results are still accurate 
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FIG. l.-Mismatch distribution of Asian sample. On the horizon- 
tal axis, i is the number of nucleotide site differences between pairs of 
individuals. Open circles show the relative frequencies of pairs with i 
differences. The solid line is the theoretical mismatch distribution fit 
using equations (2) and (3) of Rogers (1995). IT is the mean pairwise 
difference, S is the number of segregating sites, and MAE is the mean 
absolute error. The other symbols are defined in the text. 

provided that one interprets them as applying to effec- 
tive rather than actual population size (Rogers 1996). 

Previous methods are also unrealistic in assuming 
that no site can mutate more than once. This has been 
called the model of “infinite sites,” since it would hold 
if there were an infinity of sites, each with an infini- 
tesimal mutation rate (Kimura 1971). Since this as- 
sumption is patently unrealistic, Rogers (1992) studied 
the error it introduces into the theoretical mismatch dis- 
tribution. For intraspecific human data, this error turns 
out to be small. This provides some comfort, but not 
enough. Perhaps the error introduced into parameter 
estimates is much larger than that introduced into the 
theoretical mismatch distribution. Several authors have 
argued that this is the case (Bertorelle and Slatkin 
1995; Aris-Brosou and Excoffier 1996). Thus far, how- 
ever, only indirect evidence has been offered in support 
of this position. These authors show that two statis- 
tics-the mean pairwise difference and the number of 
segregating sites-are both sensitive to assumptions 
about the mutational process. No one has yet shown 
that the estimates provided by mismatch analysis are 
equally sensitive. We address that issue here. In addi- 
tion, we evaluate the hypothesis that waves in the mis- 
match distribution are produced by pooling data from 
several parts of a subdivided population (Bertorelle and 
Slatkin 1995). 

Methods 
Confidence Regions from Computer Simulations 

This paper uses a simple model of population his- 
tory, which assumes that the population has been con- 
stant in size except for an episode of growth (or decline) 
t generations before the present. No and N, denote the 
effective number of females in the population before and 
after the burst of growth. Although this model is un- 
realistically simple, it often provides a fair description 
of the mismatch distribution even when the true history 
is complex (Rogers and Harpending 1992; Rogers 
1996). We cannot estimate the parameters of this model 

1. 

2. 

3, 

4. 

Calculate the theoretical mismatch distribution frorr 
the history. 
Calculate the Mean Absolute Error (MAE) betweer 
the observed and theoretical mismatch distributions 
Call this the “observed MAE.” (The MAE is the 
mean absolute value of the differences between ob. 
served and theoretical mismatch distributions. The 
observed distribution is normalized so that it sums tc 
unity. The theoretical distribution is truncated so thal 
it equals zero beyond the last nonzero value of the 
observed distribution, and the final term is augment. 
ed so that the truncated theoretical distribution also: 
sums to unity.) 
Simulate 1,000 data sets using this same history 
These simulations use the coalescent algorithm de 
scribed in appendix A. (Each simulation assumes tha 
the population history has two epochs, the first o 
which has infinite duration, and that the populatior 
is not subdivided in either epoch.) 
For each simulated data set, calculate the MAE be. 
tween the simulated mismatch distribution and thf 
theoretical mismatch distribution. Call these “simu 
lated MAEs.” 

directly from genetic data and must content ourselves 
with estimating 

0, = 2uN, (1) 

8, = 2uN, (2) 

7 = 2ut (3) 

where u is the aggregate mutation rate over the region 
of DNA under study. Note that a pair of individuals 
whose last common maternal ancestor lived t genera- 
tions ago will on average be separated by 7 mutations. 
Thus, 7 measures time on a mutational scale. 

Previous papers introduced methods for estimating 
these parameters and for inferring confidence regions 
(Rogers 1995, 1996). A confidence region is the union 
of all parameter vectors (&,, 8i, 7) that cannot be rejected 
at some specified level of significance (Kendall and Stu- 
art 1979, p. 110). In constructing a confidence region, 
any statistical test may be used, provided only that it 
involves the data and parameters of interest. Some tests 
yield smaller confidence regions than others, but all 01 
them are valid. Confidence regions are generated by ap- 
plying some test to a large number of parameter vectors 
Those parameter vectors that are rejected at the 0.05 
significance level lie outside the 95% confidence region 
Those not rejected lie within. 

In previous papers (Rogers 1995, 1996), we triec 
to find a test that would make the confidence regions as 
small as possible. The resulting confidence regions were 
acceptably small but were not optimal. We introduce 
here a test that usually produces confidence regions nc 
larger than the old one yet is far simpler. 

The new test, like the old one, uses computer sim. 
ulations to evaluate a variety of population histories 
The following steps are performed for each history: 
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FIG. 2.-Gamma density functions. 

5. Reject the history at the 0.05 significance level if the 
observed MAE is greater than 95% of the simulated 
MAEs. 

Models of Mutation 

In human data, transversions are extremely rare. 
Thus, the simulation model assumes that all mutations 
are transitions. The number of mutations along each 
branch of a gene genealogy is a Poisson random variable 
with parameter ut, where u is the mutation rate and t is 
the length of the branch in generations. In mutational 
time, branch lengths equal 7 = 2ut and the Poisson dis- 
tribution has parameter 7/2. Since our algorithm speci- 
fies the intervals of the population history in mutational 
time, there is no need to specify a mutation rate. 

To relate the number of mutations to the number 
of substitutions observed in pairwise comparisons, 
something must be assumed both about the number of 
sites and also about the distribution of mutation rates 
across them. We compare three such assumptions: 

Infinite sites. As discussed above, this model as- 
sumes that every mutation occurs at a distinct site. 

Finite sites with uniform rates. This model takes 
the number of sites to be finite but assumes that all sites 
mutate at the same rate. 

Finite sites with gamma-distributed rates. The 
number of sites is finite, and the mutation rate at each 
site is drawn independently from a gamma distribution 
with density 

(4) 

Here, p is a scale parameter that need not be specified 
because it is absorbed by the mutational time scale (see 
appendix B). CY controls the distribution’s shape as 
shown in figure 2. When cx is near zero, the distribution 
is sharply L-shaped, with many sites having mutation 
rates near zero and a few having much higher rates. 
Consequently, the number of segregating sites tends to 
be low when 01 is small. Kocher and Wilson (199 1) es- 
timated that cx = 0.11 for the entire control region of 
the human mitochondrial genome, and Wakeley (1993) 
estimates that (Y = 0.47 for a subset of this region-the 
first hypervariable region. We will consider a large 
range that includes these values. We generate gamma 
random deviates using the algorithm of Ahrens and Di- 
eter (1974). 
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Sample 

Our sample comprises 77 Asian subjects. We se- 
quenced 630 nucleotides from both hypervariable 
regions of the mitochondrial control region (sites 
15981-16410 and 71-270 of the human reference se- 
quence [Anderson et al 198 11). Further details about the 
sample and about laboratory methods are published 
elsewhere (Jorde et al. 1995). The mismatch distribution 
of this sample is shown in figure 1. 

Results 
The Effect of Mutational Model on Confidence 
Regions 

As a standard for comparison, panel A of figure 3 
shows a confidence region calculated using the model 
of infinite sites. Each circle shows the result of a hy- 
pothesis test, open circles indicating rejected hypotheses 
and filled circles indicating hypotheses that could not be 
rejected. The open circles are thus outside of the con- 
fidence region, and the filled circles are within it. The 
confidence region rejects the hypothesis of no growth 
but not the hypotheses of lo-fold, lOO-fold, or 1 ,OOO- 
fold growth. It also indicates that the episode of growth 
occurred more than 2 but less than 14 units of muta- 
tional time ago and that the initial population had fewer 
than 10/(2u) females. 

We were interested to find out whether different 
mutational models would lead to different confidence 
regions. Accordingly, we estimated confidence regions 
from these same data under a variety of mutational mod- 
els, each assuming that the number of sites is 630 (as 
in the data) rather than infinite. The first two models- 
those of uniform rates and of gamma-distributed rates 
with (x = 0.9-led to confidence regions identical to that 
shown in panel A of figure 3. Differences arose only in 
the gamma-distributed model, and then only when 01 fell 
to 0.1. Panel B shows this confidence region. It is nearly 
identical to the infinite-sites confidence region, differing 
in the addition of a single filled circle. Even when (x = 
0.05-well below the published estimates of its value- 
the confidence region (shown in panel C) is still in fair 
agreement with that inferred under the model of infinite 
sites. This confidence region includes the same range of 
values of T and the same range for growth (0,&). It 
differs only in allowing &-, = 10, a value excluded by 
the infinite-sites confidence region. Only when (x falls 
to 0.01 do we see a substantial effect. The resulting con- 
fidence region (shown in panel D) is very broad, imply- 
ing that almost any parameter values are consistent with 
the data. 

This broad confidence region probably reflects the 
fact, shown several years ago by R. Lundstrom (unpub- 
lished manuscript), that if a few sites mutate very fast, 
then waves appear in the mismatch distribution even if 
there has been no change in population size. The as- 
sumption that (Y = 0.01 implies that most sites are in- 
variant, while a few mutate very fast. As the figure 
shows, the result is that the mismatch distribution con- 
tains little information about history. The question is, 
are such small values of (x plausible? 
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FIG. 3.-Confidence regions. Open circles indicate rejected hypotheses and are thus outside the confidence region. Closed circles indicate 
hypotheses that could not be rejected and are thus inside. Dots indicate hypotheses for which the algorithm failed to converge. Panel A: infinite 
sites; panels B-D: gamma-distributed mutations with CY equal to 0.1, 0.05, and 0.01, respectively. 

Testing Hypotheses About CY 

As discussed above, published estimates indicate 
that (x = 0.11 for the human mitochondrial control re- 
gion as a whole (Kocher and Wilson 1991) and 0.47 for 
the first hypervariable region (Wakeley 1993). However, 
no confidence interval is available for either estimate, 
and Wakeley’s paper shows that both estimates are bi- 
ased upward. Consequently, these results to not exclude 
the possibility that cx is small. 
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FIG. 4.-Quantiles of S under two models of history. In each 
panel, 1,000 data sets were simulated at each of several values of the 
gamma shape parameter Q, drawing a fresh set of gamma-distributed 
mutation rates for each simulation. The number S of segregating sites 
was calculated from each simulated data set. The solid line is the me- 
dian of S, the dashed lines enclose the central 50% of the distribution, 
and the dashed-and-dotted lines the central 95%. The dotted lines con- 
struct a confidence region for o. Panel A: Simulations use the popu- 
lation history suggested by the data. Panel B: Simulations assume a 
constant population size, with 0 = 31.62. 

We tested various hypotheses about o’s value by 
comparing the number S of segregating sites in simu- 
lations with the number (103) in our data. Panel A ol 
figure 4 shows the results from simulations in which the 
population history parameters (0,, or, 7) are set in ac 
cordance with the estimates in figure 1. If this popula. 
tion history is correct, then we can reject values of o 
outside the interval [0.9, 0.171. As we have seen, tht 
infinite-sites model provides an excellent approximatior 
to the confidence region when (Y is this large. 

But what if panel A is based on the wrong mode 
of population history? To investigate this possibility, wt 
ran a second series of simulations, which assumed i 
population at equilibrium with 8 equal to the observe< 
mean pairwise difference, n = 8.44. These simulation: 
are not shown since the simulated values of S were al 
ways much less than the observed value regardless o 
(Y’S value. To maximize our chances of accepting a smal 
value of (Y in an equilibrium model, we ran a third serie: 
of simulations with 8 equal to the largest value not re 
jetted by the confidence region in panel D of figure 3 
The results, shown in panel B of figure 4, reject value 
of (Y less than 0.115. No larger value of 8 is allowed b; 
the confidence region in panel D of figure 3, and smalle 
values would lead to even larger estimates of CL Con 
sequently, the equilibrium hypothesis implies that cx : 
0.1, which implies that the confidence region in pane 
A of figure 3 is correct, which in turn implies that WI 
are not at equilibrium. Thus, the equilibrium hypothesi 
leads to a contradiction and must be incorrect. 

We have not considered all population histories, bu 
those considered all imply that cx is large enough tc 
make the infinite-sites confidence region a fair approx 
imation to the true one. Although this does not guarantee 
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that the infinite-sites confidence region is correct, it does 
justify a reasonable level of confidence. 

This conclusion contradicts Bertorelle and Slatkin 
(1995) and Aris-Brosou and Excoffier (1996), who con- 
clude that mismatch analysis should be regarded with 
considerable skepticism. They support this position with 
analyses showing that two statistics-the mean pairwise 
difference and the number of segregating sites-are sen- 
sitive to mutational assumptions. We have no quarrel 
with this latter claim; it is consistent with our own sim- 
ulations. We disagree only with the additional claim that 
such results undermine the inferences of mismatch anal- 
ysis. These inferences are robust because confidence 
regions inferred by mismatch analysis are remarkably 
insensitive to mutational assumptions. The model of in- 
finite sites is patently false but nonetheless useful be- 
cause it usually provides an excellent approximation to 
the confidence region. 

Comparing n and S 

R. Hudson (personal communication) has suggest- 
ed a different method of evaluating the hypothesis that 
the pattern in these data was generated by a mutational 
process such as our gamma-distributed model. Hudson’s 
argument involves Tajima’s D (Tajima 1989), a statistic 
that is proportional to IT - S/A, where IT is the mean 
pairwise difference, S is the number of segregating sites, 
A = 2’~’ l/i 

r=l ’ and 12 is the number of DNA sequences 
sampled. Hudson’s point is that a mutational process that 
puts most mutations at a small number of sites should 
lead at equilibrium to positive values of D, yet in our 
data D = -2.03, which is not only negative but highly 
significant. And negative values are exactly what the 
hypothesis of population growth predicts. 

It is not hard to understand why gamma-distributed 
mutations should lead to positive values of D: Under 
this mutational process, most mutations occur at a small 
number of sites, so S should be very small. This reduces 
the negative component of D, leading to positive values 
of D itself. To illustrate this effect, we ran 1,000 simu- 
lations of equilibrium populations with gamma-distrib- 
uted mutations, each using 630 sites and 77 subjects and 
assuming that 8 = 10, (x = 0.1. Under the infinite-sites 
model, the mean values of 7~ and of S/A should both 
have been close to 10. In our simulations they were 7.5 
and 6.8, respectively. Since S/A is on average smaller 
than 7, this model generates positive values of D. 

To see why population growth leads to negative D, 
consider the most extreme form of population growth 
imaginable-that in which a population comprising just 
one individual grows suddenly to become infinite in 
size. This will give rise to a star phylogeny. If we sam- 
ple n individuals from this population t generations after 
the episode of explosive growth, the expected values of 
IT and of S under the infinite sites model will be E[T] 
= 2ut and E[S] = nut. Thus, E[S]/E[n] = n/2, or 38.5, 
with a sample of 77. Under an equilibrium model, this 
same ratio equals A, or 4.91, with a sample of 77. A 
history of growth thus inflates S relative to 7~ and would 
generate a negative value of Tajima’s D. 

50 100 

Site Differences 

FIG. 5.-Test of the Excoffier-Bertorelle-Slatkin central-limit hv- 
pothesis. Mismatch distributions of samples from two simulated pop- 
ulations, each of aggregate size 8 = 10, and each divided into 50 
groups each exchangmg 0.1 migrants 
island model of population structure. 

Per generation according to the 

Clearly, the relationship between T and S in our 
data is not as predicted by -the hypothesis of gamma- 
distributed mutations at equilibrium. It is, however, con- 
sistent with a model of gamma-distributed rates with 
population growth. For example, in 1,000 simulations 
with (e,, 8i, 7) 2 (1, 100, 8) and (Y = 0.1, the means 
5 = 7.7 and S/A = 15.0 imply a negative D. Thus, 
models of population growth have no difficulty in ac- 
counting for strongly negative values of D. We see no 
way, however, to account for such values under any 
equilibrium model, even one with an uneven distribution 
of mutation rates across sites. 

Do the Mismatch Waves Reflect the Central-Limit 
Theorem? 

Bertorelle and Slatkin (1995, p. 891) cite L. Ex- 
coffier, who suggested that mismatch waves result not 
from any historical event but from the simple process 
of pooling data from different parts of a subdivided pop- 
ulation. These authors suggest that unimodal waves oc- 
cur because of the central-limit theorem. 

We are unable to understand how the central-limit 
theorem applies. This theorem describes the result of 
averaging independent random variables, but no random 
variables are averaged here. When random variables are 
averaged, the resulting distribution is a convolution of 
the distributions of the original random variables. But a 
pooled mismatch distribution does not convolve the dis- 
tributions of its subdivisions; it averages them (along 
with the between-group distributions) (Rogers 1995). 
The relevance of the central-limit theorem is therefore 
unclear. 

Nonetheless, we ran simulations in order to test this 
hypothesis, using the geographically structured coales- 
cent algorithm described in appendix A. The results are 
in figure 5, where each panel shows the mismatch dis- 
tribution of a simulated population with an aggregate 
size of 0 = 10 containing 50 subdivisions that exchange 
migrants according to the island model of population 
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structure. If the central-limit theorem applied here, both parameters are constant. Within epoch i, the population 
distributions should be bell-shaped. They are not. We is described by four parameters: 
ran a dozen similar simulations, none of which gener- 
ated a bell-shaped mismatch distribution. We find no 

ei = 2UNi, where Ni is the effective female population 

support for the proposition that mismatch waves are 
size during epoch i; 

caused by pooling data from subdivided populations. Mi = the number of migrants per generation between 
each pair of groups during epoch i; 

Ti = 2Uti, where ti is the length of epoch i in genera- 
tions and Ti is its length in mutational time; 

Ki = the number of subdivisions during epoch i. 

Discussion and Conclusions 

Mismatch analysis has been criticized for its reli- 
ance on the model of infinite sites. The number of seg- 
regating sites in our data is indeed smaller than this 
model would imply. Nonetheless, it is large enough to 
ensure that this model will yield an excellent approxi- 
mation to the confidence region of (0,, Or, 7). Mismatch 
analysis leads to essentially the same confidence region 
under a wide range of assumptions about the mutational 
process. Because of this insensitivity, it is useful even 
when the mutational process is poorly understood. 

These findings echo earlier work showing that in 
comparisons within the human species, the mean pair- 
wise difference is little affected by gamma-distributed 
mutation rates until (x falls below 0.1 (Rogers 1992). 
The present results show that this insensitivity applies 
not only to the mean but also to confidence regions 
about parameters describing population history. 

These results were obtained by studying a single 
data set and may not apply elsewhere. In particular, the 
mutational model may become more important when 
longer spans of time are considered. It would be nec- 
essary to repeat much of this analysis before analyzing 
data from a species with great mitochondrial diversity. 

Mismatch analysis has also been criticized for 
pooling data from various parts of subdivided popula- 
tions. We investigate and reject the hypothesis that this 
pooling generates the waves commonly seen in mis- 
match distributions. 
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APPENDIX A 

Simulations Using the Coalescent Algorithm 

This section describes a geographically structured Y 

coalescent algorithm similar to that of Hudson (1990). where 7 = 2ut and y = 2ug. Equation (5) follows fron 
Our implementation was introduced by Rogers (1996), the observation that, by definition, the hazard h in mu 
and the following description is modified only slightly tational time obeys hT = h*t. 
from Rogers’s. The algorithm first sets Q = n, R = KL(n/KJ2, ant 

The algorithm breaks the population history into an then sets h using these values together with the param 
arbitrary number of “epochs,” within each of which all eters of the final epoch, L. It then enters a loop that ii 

h*t = 2ug 2ut [QA4 + (R - Q)/2] 
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executed repeatedly. We describe the steps of this loop 
briefly before describing each step in detail. 

Overview of Coalescent Loop 

1. Find the time of the next event, changing epochs and 
recalculating h as necessary. 

2. Determine whether the next event is a migration or 
a coalescent event. 

3. Carry out the next event. 

These steps are repeated until Q = 1. Mutations are then 
added along each branch. 

Step I: Let Ti denote the amount of time that we 
have already traveled (backward) into epoch i. To find 
the time of the next event, draw a random number x 
from an exponential distribution whose parameter equals 
unity. In a constant world, the time of the next event 
would be Ti + x/h. If this time lies within epoch i (i.e., 
if Ti + x/h < Ti), then we have found the time of the 
next event. Otherwise, change epochs as follows: 

a. Subtract the portion of x that is “used up” by epoch 
i, i.e., subtract h’(Ti - Ti) from the value of X. 

b. Reset population history parameters to those of epoch 
i - 1 and set Ti to zero. If Ki_1 < Ki, join groups at 
random to diminish the number of groups. If K,_, > 
Ki, increase the number of groups, but allocate no 
individuals to the new groups. Individuals will enter 
the new groups only through migration. (The as- 
sumption for Ki_1 > Ki implies that, in forward time, 
the number of groups has decreased because some 
groups have died out. Other assumptions are possible 
and the present one was chosen only for computa- 
tional convenience.) 

c. Reset R and h. Subtract 1 from the value of i. 

This process repeats until Ti + x/h < 7i. 
Step 2: Once the time of the next event has been 

established, step 2 classifies the event as either a migra- 
tion or a coalescent event. Equation (5) implies that the 
event is a migration with probability 

QMi 
PM = QA4i + (R - Q)/2’ 

Thus, step 2 calls the next event a migration with prob- 
ability PM and a coalescent event with probability 1 - 
P M- 

Step 3: If the next event is a migration, then move 
a random individual into a new, randomly chosen group. 
Then reset R and h. 

Otherwise, we have a coalescent event and the pro- 
cedure is as follows. First choose a group at random, 
weighting each group by the number of pairs of indi- 
viduals within it. Then choose a random pair of indi- 
viduals from within the chosen group, replace the two 
individuals with a single individual (their common an- 
cestor), reduce Q by 1, and reset R and h. 

Finally, mutations are added to the gene genealogy 
using one of the models discussed above. The number 
of mutations along a branch of length 7 (in mutational 
time) is a Poisson random variable with mean 7/2. Under 
the model of infinite sites, the number of mutations 

equals the number of substitutions. Under either of the 
finite-site models, the number of substitutions depends 
also on how mutations are allocated to sites. 

To execute this algorithm, it is necessary to specify 
the sample size n and the parameters (0i, Mi, Ti, and Ki) 
that describe the population’s history. There is no need 
to specify the mutation rate, the number of individuals 
in the population, or the number of generations in each 
epoch. 

APPENDIX B 
Generating a Vector of Gamma Deviates that 
Sums to Unity 

The mutational time scale requires that the sum of 
mutation rates across sites equal unity so that there will 
on average be one mutation per unit of mutational time. 
To accomplish this goal, we first define y = X/Z, where 
x obeys the density in equation (4) and z is an arbitrary 
scale parameter. The variable y is also gamma-distrib- 
uted, with density ya-le--y/r(a). We first use this density 
to generate a vector (yl, y2, . . . , yK). These variates are 
each equal to X/Z. To satisfy the constraint imposed by 
the mutational time scale, we set z = l/ci yi. In other 
words, we set xi = yi/Xi yi. This provides a vector of 
gamma-distributed mutation rates that sums to unity, as 
required. 
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