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A B S T R A C T

Accurate, spatially explicit quantification of vegetation structure in drylands can improve our understanding of 
the important role that these critical ecosystems play in the Earth system. In semiarid woodland settings, remote 
sensing of vegetation structure is challenging due to low tree height, cover, and greenness as well as limited 
spatial and temporal availability of airborne lidar data. These limitations have hindered the development of 
remote sensing applications in globally widespread and ecologically important dryland systems. In this study, we 
implement a U-Net convolutional neural network capable of predicting per-pixel, lidar-derived vegetation height 
in piñon-juniper woodlands using widely available, high-resolution aerial imagery. We used this imagery and 
modeled canopy height data to construct random forest models for predicting tree density, canopy cover, and live 
aboveground biomass. Trained and validated on a field dataset that spanned diverse portions of the vast range of 
piñon-juniper woodlands in the southwestern US, our models demonstrated high performance according to both 
variance explained (R2

density = 0.45; R2
cover = 0.80; R2

biomass = 0.61) and predictive error (%RMSEdensity = 57; % 
RMSEcover = 19; %RMSEbiomass = 42). A comparative analysis revealed that, while performance was somewhat 
lower than models driven solely by airborne lidar, they vastly exceeded that of models driven by aerial imagery 
alone or a combination of Landsat, topography, and climate data. Although the structural predictive maps 
featured some artifacts from illumination and perspective differences inherent to aerial imagery, this workflow 
represents a viable pathway for spatially exhaustive and temporally consistent vegetation structure mapping in 
piñon-juniper and other dry woodland ecosystems.

1. Introduction

Mapping vegetation structure over space and time is critical to un-
derstanding the important roles that terrestrial ecosystems play in the 
Earth system (Harris et al., 2021; Pettorelli et al., 2018; Senf, 2022). 
Remote sensing plays a key role in this process, providing a robust, 
objective, and diverse array of datasets from which vegetation structure 
can be derived through various analytical means (Mitchell et al., 2017). 
However, tradeoffs in remote sensing platforms and sensors have pre-
vented the development of a singular, one-size-fits-all solution for the 
spatially explicit estimation of vegetation structure (Dalla Mura et al., 
2015; De Sy et al., 2012; Lefsky and Cohen, 2003). For example, data 
collected from airborne platforms often provide higher spatial resolution 
than data collected from satellites. Conversely, satellite data typically 
supply higher temporal resolution and product consistency. To further 
complicate matters, the types and importance of tradeoffs vary by 

ecosystem. For example, in a tropical forest, satellite optical imagery 
may be unable to accurately map vegetation structure due to persistent 
cloud cover and saturation of the relationship between vegetation 
indices and biomass (Hilker et al., 2012; Mutanga et al., 2023). In these 
ecosystems, airborne or satellite lidar may provide the best solution for 
mapping vegetation structure (Asner et al., 2012; Dubayah et al., 2022). 
Conversely, in a temperate grassland, satellite-based proxies of vegeta-
tion greenness may exceed lidar’s ability to map cover or biomass, given 
the challenges associated with distinguishing grasses from the ground 
surface in a point cloud or waveform (Reinermann et al., 2020; Roberts 
et al., 2019; Shendryk, 2022). Thus, there remains a need to examine the 
relative strengths and weaknesses of different remote sensing-based 
approaches to vegetation structure mapping in an ecosystem-specific 
manner.

One class of ecosystems that warrants a dedicated and thoughtful 
investigation of remote sensing tradeoffs is that of dry woodland 
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environments (Campos et al., 2018; David et al., 2022; Yang et al., 
2012). Dryland ecosystems have received increasing attention in recent 
years for the critical role that they play in the global carbon cycle 
(Hanan et al., 2021; Lal, 2019; Reed et al., 2025). Though lower in 
biomass than their more mesic counterparts, dryland ecosystems are 
highly responsive to changes in climate and, as a result, play a sub-
stantive role in driving interannual variability in global carbon uptake 
(Ahlström et al., 2015; Gherardi and Sala, 2019; Poulter et al., 2014). 
Furthermore, with projected expansion to their extent, drylands are 
poised to comprise a growing portion of the global landmass, enhancing 
their ecological importance in a changing climate (Huang et al., 2016). 
The largest dry woodland ecosystem in the United States is piñon-juni-
per (PJ) woodlands (Miller et al., 2019). Spanning 10 states and 
featuring a geographic range larger than one quarter of the contiguous 
US, PJ woodlands have a complex ecological and management history 
(Romme et al., 2009). Mapping vegetation structure in PJ and other 
similar woodlands comes with a novel set of remote sensing challenges 
due to the vegetation’s relatively short stature, low cover, and low 
photosynthetic activity (Smith et al., 2019). Thus, remote sensing ap-
proaches suitable for other tree-dominated ecosystems may not be 
appropriate in these semiarid woodlands.

Ideally, global multispectral satellite imaging (e.g., Landsat, 
Sentinel-2) would provide the foundation of vegetation structure map-
ping, given their global reach, forest stand-scale spatial resolution, and 
high temporal resolution. These sensors have shown some promise in 
dry woodland settings, with varying degrees of success mapping tree 
structural variables such as tree density (e.g., Humagain et al., 2017), 
canopy cover (e.g., Reinhardt et al., 2020), and biomass (e.g., Gizachew 
et al., 2016). However, the accuracy of models derived from satellite 
imagery alone tends to be considerably lower than woodland structural 
models driven by airborne lidar data, given lidar’s capacity to charac-
terize structure in three dimensions (Campbell et al., 2023; Krofcheck 
et al., 2016; Sankey et al., 2013; Wu et al., 2016). The primary limitation 
to operational vegetation mapping using airborne lidar is its lack of 
spatiotemporal availability. This could potentially be overcome with 
satellite lidar programs such as the Global Ecosystem Dynamics Inves-
tigation (GEDI; Dubayah et al., 2020); however, recent evidence has 
pointed towards limited success of utilizing GEDI data in short-stature, 
low-cover woodlands (Campbell et al., 2024; Li et al., 2023).

Several studies have demonstrated the potential utility of high- 
resolution aerial or satellite imagery for mapping woodland structure 
(e.g., Davies et al., 2010; Hulet et al., 2014). Textural information 
contained within the imagery and the ability to distinguish tree canopies 
from background materials have facilitated the accurate prediction of 
tree density, canopy cover, and biomass across forest types (Basu et al., 
2015; Falkowski et al., 2017; Hogland et al., 2018). Although aerial 
imagery suffers some of the same spatiotemporal limitations as oppor-
tunistically collected airborne lidar, as well as challenges associated 
with spectral and radiometric resolutions (Maxwell et al., 2017), oper-
ational programs such as the US National Agricultural Inventory Pro-
gram (NAIP) may offer a contiguous US-wide basis for vegetation 
structure mapping. Increasing availability of high-resolution satellite 
imagery from commercial vendors also offers an additional opportunity 
(Ahmad et al., 2021). However, in the absence of three-dimensional 
structural data, high-resolution imagery may still fall short of airborne 
lidar’s accuracy in woodland ecosystems.

The relatively recent proliferation of convolutional neural networks 
(CNNs) in the realm of ecological remote sensing may enable the 
development of a vegetation structure mapping workflow that simul-
taneously leverages the benefits of high-resolution imagery and airborne 
lidar (Kattenborn et al., 2021). Recent efforts have demonstrated the 
successful, per-pixel estimation of canopy height using CNNs and other 
deep learning models trained with height data from lidar and satellite or 
aerial imagery (Chang et al., 2025; Malambo and Popescu, 2023; Tolan 
et al., 2024; Wagner et al., 2024). Applying this modeling framework to 
NAIP imagery in a dry woodland setting could potentially yield accurate 

and timely predictions of vegetation structure in these critical 
ecosystems.

The objectives of this research were as follows: 

1. To introduce and describe a robust analytical framework for map-
ping vegetation structure in an ecologically diverse and geographi-
cally expansive dry woodland ecosystem.

2. To test the extent to which a U-Net CNN, trained on lidar-derived 
canopy height (response variable) and high-resolution aerial imag-
ery (predictor data) can accurately predict vegetation height in this 
woodland environment.

3. To evaluate the degree to which tree density, canopy cover, and live 
aboveground biomass can be accurately predicted using a suite of 
imagery-derived predictor variables (including predicted canopy 
height) using a random forest model.

4. To compare our new modeling framework to vegetation structure 
random forest models driven by alternate sets of predictor variables, 
including: (1) high-resolution aerial imagery without predicted 
canopy height data; (2) moderate resolution satellite imagery, 
topography, and climate data; and (3) airborne lidar data.

2. Methods

2.1. Methods Summary

We strategically selected 100 sites, each 3x3km, to capture ecolog-
ical variability throughout the range of PJ woodlands in the Western US. 
Within each site, we acquired NAIP imagery and airborne lidar data 
from the United States Geological Survey (USGS). We split the sites into 
training (n = 60), validation (n = 20), and testing (n = 20) groups. We 
trained and validated a U-Net CNN model to predict lidar-derived can-
opy height using NAIP image data at 0.6 m spatial resolution, evaluating 
the performance using the test data. We used the CNN and NAIP imagery 
to generate canopy height models (CHMs) for 18 sites containing a total 
of 180 field plots, each 30x30m, within which we collected tree struc-
ture data. We used random forests to model tree density, canopy cover, 
and live aboveground biomass using a suite of NAIP- and CHM-derived 
predictor variables, with performance evaluated using a leave one site 
out cross-validation procedure. We tested the extent to which a quantile- 
based bias correction procedure could improve the ability to predict 
extreme values. To assess the comparative strengths and weaknesses of 
these tree structural predictive models, we generated three other sets of 
models: (1) using NAIP data alone (i.e., without the CNN-derived CHM); 
(2) using Landsat, topography, and climate data; and (3) using airborne 
lidar data. Finally, we used our NAIP + CHM random forest model to 
map biomass throughout our 18 field sites and evaluated the spatial 
dimensions of the resulting maps.

2.2. Study area

Our study spanned the extent of PJ woodlands in the Western US 
(Fig. 1). Our analysis focused on two different sets of sites. The larger set 
(n = 100), labeled “CNN […] Sites” in Fig. 1, were used as the basis of 
training, validating, and testing a U-Net CNN model designed to predict 
canopy height using high-resolution aerial imagery. These sites were 
selected using a conditioned Latin hypercube sampling algorithm, which 
ensures that variability among a defined set of input variables is 
captured in a resultant set of sample points (Minasny and McBratney, 
2006). For this study, those input variables included elevation and 
climate data from PRISM (to capture environmental variability; Daly 
et al. (1997); PRISM Climate Group, Oregon State University (2019)), 
Landsat 8 surface reflectance data (to capture spectral variability), and 
latitude and longitude (to capture spatial variability). The sampling area 
was restricted to the intersection of areas mapped as PJ by 2023 
LANDFIRE Existing Vegetation Type (LANDFIRE, 2023) and areas that 
had USGS 3D Elevation Program quality level 2 or better airborne lidar 
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data collected since 2013. The CNN sample sites were 3x3km each in 
size, and did not overlap spatially. The average distance between each 
site and its nearest neighbor was approximately 35 km.

The smaller set (n = 18) of sites, labeled “Field Sites” in Fig. 1, 
represent a series of variably sized areas (33 – 838 km2), each of which 
contains between 7 and 12 field plots (180 in total) collected as part of a 
dedicated campaign to capture PJ woodland tree structure in 
2021–2022 (Campbell et al., 2024). The site extents are defined by a 
bounding box around a 1 km buffer around each site’s plots. As with the 
CNN sample sites, these sites were selected to capture ecological vari-
ability within the vast PJ range, though this was largely done on an 
opportunistic basis, factoring in additional considerations such as public 
land and road access. The field plots were used to train and validate 
random forest-driven models, which were applied to the predictive 
mapping of vegetation structure throughout each of the 18 sites.

2.3. Data Acquisition and Preprocessing

2.3.1. Field data
In the summers of 2021 and 2022, we collected 180 plots’ worth of 

PJ tree structural data, distributed throughout 18 sites in the Western US 
(Fig. 1). Each plot was approximately 30x30m in size, and the stem 
diameters of all trees greater than 0.5 m in height were measured. Stem 
diameters were used to estimate per-tree aboveground biomass through 
allometry (Chojnacky et al., 2014). Tree-level biomass was aggregated 
to plot-level estimates of biomass density (in megagrams per hectare, or 
Mg/ha), which served as one of the three focal tree structural measures 
in this study. A second structural measure of interest we derived from 
our field plot data was tree density, measured in trees per hectare (trees/ 
ha). The third structural measure of interest – canopy cover – was 
computed within field plots, but was not measured in the field. For this, 
we used airborne lidar, as it enables a more direct and spatially relevant 
measure of cover than field-based methods can provide. Canopy cover 

was calculated as the number of first return points equal to or greater 
than 1 m in aboveground height divided by the total number of first 
returns. More details on lidar data processing are provided in Section 
2.3.3.

2.3.2. NAIP data
We acquired NAIP high spatial resolution aerial image data from the 

USGS EarthExplorer data portal within both the 100 CNN sample sites 
and the 18 field sites. These orthorectified and mosaicked images are 
delivered as digital ortho quarter quad tiles, that each span 3.75′ x 3.75′ 
plus a 300 m buffer. Spatial resolutions and collection dates vary by 
state, but NAIP imagery are collected typically every two years at a 
spatial resolution of either 0.3 m or 0.6 m. NAIP imagery has four 
spectral bands: red, green, blue, and near-infrared. Bands are provided 
as digital number (DN) values and are not corrected to surface 
reflectance.

For the 100 CNN sample sites, we used the most recent data avail-
able, as we considered it to be of the highest quality. The resulting im-
agery was collected between 2021 and 2023. For the 18 field sites, we 
wanted to ensure that the imagery captured pre-field measurement 
conditions, so we used imagery acquired from 2018 to 2020. For con-
sistency, 0.3 m images were mean-aggregated to 0.6 m. The images were 
mosaicked and clipped to site extents. The mosaics were then subset into 
a series of 256x256 pixel image chips that overlapped by 16 pixels in 
both x and y dimensions, as these image chips would serve as the basis of 
training, validating, and testing a CNN model, which requires 
consistently-sized and relatively small input images. This yielded a total 
of 400 image chips for each of the 3x3km CNN sample sites, and a 
variable number of image chips for each of the field sites ranging from 
1,598 to 42,406.

2.3.3. Lidar data
We acquired airborne lidar data from the USGS 3D Elevation 

Fig. 1. Study area map highlighting the field sites and sample sites within the context of PJ woodlands in the Western United States. The field sites represent 18 sites 
within which we collected vegetation structure field data and the other sites represent 100 sites which were used to train, validate, and test a convolutional neural 
network (CNN) built to map vegetation height. The PJ woodland extent was derived from LANDFIRE Existing Vegetation Type. For display purposes, we applied a 
circular focal filter with a 5 km radius, thresholding the resulting data to only pixels containing at least 25 % PJ woodlands within their focal area.

M.J. Campbell et al.                                                                                                                                                                                                                            ISPRS Journal of Photogrammetry and Remote Sensing 226 (2025) 187–203 

189 



Program within the extent of each CNN sample site and field site 
(Snyder, 2012). Unlike NAIP, which is acquired programmatically on a 
statewide basis, lidar data from the 3D Elevation Program are compiled 
from individual projects through partnerships with various organiza-
tions. Within our 100 CNN sample sites, we used data from 25 different 
projects, whose collection dates ranged from 2013 to 08-24 to 2023–05- 
02, with a mean date of 2020–02-25. The pulse densities in these data 
ranged from 2.62 to 31.11 pulses/m2 (mean = 7.18 pulses/m2). Within 
our 18 field sites, we used data from 18 different projects, whose 
collection dates ranged from 2013 to 08-24 to 2021–11-17, with a mean 
date of 2019–04-23. The pulse densities ranged from 3.33 to 19.78 
pulses/m2 (mean = 8.16 pulses/m2).

All lidar data processing was done in R using the lidR library (R Core 
Team, 2021; Roussel et al., 2020). Across all sites, points that were 
classified as noise or flagged as withheld were removed. Among the 
remaining points in each cloud, raw elevations were normalized to 
aboveground heights through subtraction of a terrain model interpo-
lated using a triangulated irregular network. For the 100 CNN sample 
sites, 0.6 m-resolution CHMs were interpolated using the pit-free algo-
rithm of Khosravipour et al. (2014), matching the resolution of the NAIP 
data. These CHMs were subset into the same overlapping 256x256 pixel 
extents used to create NAIP chips, as they would represent the per-pixel 
response variable for CNN training, validation, and testing purposes.

2.3.4. Landsat, Topography, and climate data
We acquired and generated a suite of 30 m spatial resolution spec-

tral, topographic, and climatic datasets that we used to build a com-
parison vegetation structural predictive model (described later in 
Section 2.4.2.3) within our 18 field sites. We used Google Earth Engine 
to generate a series of 2020 seasonal cloud-free, cloud shadow-free, and 
snow-free surface reflectance composites of Landsat 8 OLI imagery 
(Gorelick et al., 2017). We used Collection 2 Tier 1 Level 2 surface 
reflectance to create “spring” (March-May), “summer” (June-August), 
and “autumn” (September-November) median reflectance composites. 
For each of these composites, we generated a variety of spectral indices 
(Table A1). We also acquired 30 m-resolution digital elevation models 
from the USGS within our field sites, which would serve as the basis for 
generating a suite of topographic derivative predictor variables 

(Table A2). The elevation models also served as inputs for downscaling 
climate data using ClimateNA (Wang et al., 2016). We generated 30- 
year (1991 – 2020) annual and seasonal averages for a diverse array 
of the climatic variables provided by ClimateNA (Table A3).

2.4. Modeling

2.4.1. Convolutional neural network
To build a model capable of predicting per-pixel canopy height at a 

high spatial resolution, we constructed a U-Net CNN (Ronneberger et al., 
2015), as implemented in Python using Keras and TensorFlow version 
2.7 (Fig. 2). We selected the U-Net framework for its widely regarded 
ability to generate per-pixel predictions at the original input resolution 
of the image data, while incorporating higher-level spatial patterns 
derived from convolutional filters applied at various scales in the 
learning process. We randomly split our 100 3x3km sample sites into 
training (n = 60), validation (n = 20), and test (n = 20). Each site had 
400 256x256 chips of 4-band NAIP image data, which served as the 
input to the U-Net, and CHM data, which served as the response vari-
able. We trained the network from scratch without the use of any pre- 
trained weights. In total, the U-Net was trained on 24,000 images, 
validated with 8,000 images, and tested on 8,000 images. The model 
architecture can be seen in Fig. 2. Our U-Net features an encoder (down- 
sampling) path with four convolutional blocks, each of which features 
two 3x3 convolutional layers, padded to ensure retention of the input 
spatial dimensions, and activated using a rectified linear unit (ReLu) 
function. The output layer from each block is down-sampled using 2x2 
max pooling to capture higher-level shape, texture, and contextual in-
formation. After each pooling process, dropout is applied to reduce 
overfitting, the remainder of which is fed into a new convolution block 
with increasing numbers of convolution filters. The U-Net then proceeds 
through a decoder (up-sampling) pathway with four 2x2 deconvolution 
(or transposed convolution) blocks, with dropout between each block. 
At each level, the features from the corresponding level in the encoder 
path are merged with the up-sampled features, which preserves the 
relative spatial location of information from the encoding process. These 
merged layers are then fed through two 3x3 convolution layers with 
decreasing numbers of filters. Lastly, a 1x1 convolution layer with a 

Fig. 2. U-Net convolutional neural network architecture used in this study.
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linear activation function yields a predictive map of canopy height with 
the original extent and resolution of the input NAIP image.

The model was trained with an Adam optimizer (learning rate =
0.0001) and validated with a batch size of 64 images for 100 epochs. 
Training took approximately 2000 s per epoch on a PowerEdge R740 
Server with 384 GB of RAM and an NVIDIA Tesla T4 GPU. Training and 
validation loss, as measured by mean squared error (MSE) in predicted 
canopy height, were monitored for each epoch, and the epoch with the 
lowest validation MSE was saved as the final model. This model was 
used to predict canopy height within the 8,000 test images. The output 
CHM chips were mosaicked to create site-wide CHMs using ArcGIS’s 
Mosaic To New Raster tool, with the overlap function set to “blend”, 
which determines output pixel values with a weighted mean of inputs 
according to their overlap position. This approach is designed to mini-
mize edge effects. A random sample of 50,000 points was generated 
within each of the 20 test sample sites, at which CNN-modeled (i.e., 
predicted) CHM and lidar-derived (i.e., observed) CHM pixel values 
were extracted. Given the high spatial resolution of these maps (0.6 m), 
and the potential for small positional offsets between NAIP and lidar 
data to negatively impact a direct performance assessment, we also 
sought to understand how CNN performance varied over larger spatial 
extents than the individual pixel (Duncanson et al., 2025). Accordingly, 
for each of the 1 M random sample points, we also extracted mean 
predicted and observed CHM values within circular buffer areas around 
each point. We tested buffers of 1 m, 2 m, 4 m, 8 m, and 16 m, the last of 
which is of comparable scale to the 30 m pixel resolution of the stand- 
scale vegetation structural modeling conducted in this study (Section 
2.4.2). Predicted versus observed canopy height was evaluated through 
linear regression and quantified by R2 (Eq. (1), %RMSE (Eq. (2), and % 
bias (Eq. (3), defined below: 

R2 =

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1) 

%RMSE = 100 ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n

√
√
√
√
√

/

y (2) 

%bias = 100 ×

∑n
i=1(ŷi − yi)

n

/

y (3) 

In Eqs. 1–3 above, yi is the observed value, ŷi is the predicted value, and 
y is the mean of all observed values for each data point in [i⋯n]. We 
opted to use the normalized %RMSE and %bias in lieu of their raw 
counterparts to facilitate response variable- and ecosystem-independent 
comparison.

2.4.2. Vegetation structure modeling

2.4.2.1. Primary Models: NAIP + CHM. To build models capable of 
predicting tree density, canopy cover, and live aboveground biomass, 
we needed to generate a suite of predictor variables that might correlate 
to these biometrics. Our primary models relied on NAIP imagery and our 
CNN-generated CHM to derive these predictors. Because the data are 
collected at different times of day, month, and year, and because those 
time frames vary between neighboring states, NAIP imagery can feature 
spectral artifacts that manifest as tile boundaries between imagery 
collected at different times (Hogland et al., 2018). It is impossible to 
remove these artifacts entirely, but to minimize their impact, we opted 
to use normalized difference indices, rather than raw band values, in the 
generation of NAIP-based predictor variables (Maxwell et al., 2017). We 
computed every non-redundant set of normalized differences that the 
four-band data offered (Table 1).

To correspond with the spatial dimensions of our field plots 
(30x30m), we needed a set of predictor layers that had a 30 m spatial 

resolution. To that end, we needed to aggregate the 0.6 m NAIP imagery 
to 30 m. For each of the normalized difference indices in Table 1, we 
computed the following descriptive statistics among the 250 0.6x0.6 m 
pixels that comprised each 30x30m super-pixel in the output predictor 
layer: mean, standard deviation, coefficient of variation, quantiles (5th, 
10th, 25th, 50th, 75th, 90th, 95th), skewness, and kurtosis. In all, 12 
predictor variables were generated for each of the six normalized dif-
ference image datasets, yielding a set of 72 NAIP-based predictor vari-
ables, designed to capture the spectral characteristics of vegetation 
structure.

To create an additional set of predictors that captured the three- 
dimensional characteristics of vegetation structure, we applied all of 
the same descriptive statistics to the CNN-derived CHMs. Given the rich 
structural information contained within CHMs, we opted to derive three 
additional sets of predictors. The first was aimed at capturing tree 
density. To do this, we used the local maximum filter function lmf() 
within the lidR library in R (Jean-Romain, 2023; R Core Team, 2021). It 
uses an adaptive focal filter to efficiently locate high points in a canopy 
height model. We thresholded the resulting points at four different 
heights (0.5, 1.0, 2.0, and 4.0 m) and calculated their densities, 
normalized by 30x30m pixel area. The second was aimed at capturing 
canopy cover. To do this, we used the same four height thresholds and 
calculated the proportion of 0.6 m pixels equal to or greater than each 
height, normalized by the total number of 0.6 m pixels in a 30x30m area. 
The third was aimed at capturing canopy volume. To do this, we once 
again used the four height thresholds; however, in this case, we multi-
plied the canopy heights of all pixels equal to or greater than those 
thresholds by their 0.6x0.6 m pixel area, summed them and normalized 
them by 30x30m pixel area. In all, this produced 12 descriptive statis-
tical predictors, four density predictors, four cover predictors, and four 
volume predictors from the CHM.

The 72 NAIP and 24 CHM predictor variables were used to model 
tree density, canopy cover, and biomass within the 180 field plots using 
the following random forest-driven model framework. For each of the 
three response variables, the 96 candidate predictors were fed through 
the variable selection using random forests (VSURF) algorithm to yield a 
concise, non-redundant, and meaningful set of predictor variables 
(Genuer et al., 2015). The distilled data were then used to tune random 
forest’s hyperparameters (number of variables tested at each decision 
tree split, minimum decision tree node size, and sample fraction used for 
bagging). This was done with tuneRanger, which uses model-based 
optimization to efficiently find a set of hyperparameters that minimize 
predictive error (Probst et al., 2019). Models were built and validated 
using a leave-one-site-out cross-validation procedure, which minimizes 
the effects of spatial autocorrelation on apparent model performance. To 
do so, plot data from each of the 18 field sites were iteratively set aside 
for validation, while the data from the other 17 sites were used to train 
the model. Predictions were made on the plot data that were left out. 
After all 18 iterations, the combined predictions were compared to their 
observed values, and performance was evaluated using a linear regres-
sion, R2, %RMSE, and %bias between predictions and observations. 
Variable importance was assessed on each of the 18 iterations according 

Table 1 
Normalized difference spectral indices derived from National Agricultural In-
ventory Program (NAIP) imagery that served as the basis of generating vege-
tation structural predictor variables. Note that for NAIP data, band 1 represents 
reflectance in the red portion of the spectrum, band 2 is green, band 3 is blue, 
and band 4 is near infrared (NIR).

Name Abbreviation Formula

Normalized Difference of Green and Red NDGR (b2 − b1)/(b2+b1)
Normalized Difference of Blue and Red NDBR (b3 − b1)/(b3+b1)
Normalized Difference of NIR and Red NDNR (b4 − b1)/(b4+b1)
Normalized Difference of Blue and Green NDBG (b3 − b2)/(b3+b2)
Normalized Difference of NIR and Green NDNG (b4 − b2)/(b4+b2)
Normalized Difference of NIR and Blue NDNB (b4 − b3)/(b4+b3)
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to two different measures: (1) permutation importance, as measure by 
the increase in %RMSE that a model yields when a predictor variable’s 
values are randomly permuted; and (2) mean absolute Shapley additive 
explanations (SHAP) values, which quantify individual predictor vari-
ables’ contribution to a model’s prediction. For the former, we used the 
ranger library’s permutation importance calculation. For the latter, we 
used the R package treeshap (Komisarczyk et al., 2024). For each we 
computed the mean and standard deviation among the 18 iterations, 
which yielded useful information on which predictor variables were 
found to be most valuable.

Given the propensity of random forests, and other ensemble machine 
learning algorithms, to yield relatively moderate predictions that un-
derestimate high values and overestimate low values, we sought to 
determine whether a bias correction procedure could improve the pre-
diction of extreme values (Zhang and Lu, 2012). To that end, we 
employed a quantile-driven approach that creates a correction factor for 
predictions driven by the differences in empirical distributions between 
out-of-bag predictions and training observations (Belitz and Stackelberg, 
2021). The method is illustrated in Fig. 3.

2.4.2.2. Comparison models #1: NAIP only. In comparison to more 
traditional machine learning approaches, building a U-Net CNN model is 
not a trivial task; it requires algorithmic and programmatic familiarity, a 
lot of training and validation data, and a capable computer ideally 
equipped with a powerful graphics processing unit. In recognition of this 
potential limitation, we sought to understand the value of the CNN- 
derived CHM in the prediction of vegetation structure. In other words, 
if NAIP imagery alone can yield models with comparable accuracy, then 
perhaps it would not be worthwhile to build and apply a canopy height 
model U-Net. To that end, we replicated the exact modeling and 
assessment workflow described in Section 2.4.2.1, but simply omitted 
the CHM-derived predictor variables. For each of the three vegetation 
structural parameters of interest (density, cover, and biomass), we 
compared R2 and %RMSE values between these models and the primary 
models to quantify performance differences.

2.4.2.3. Comparison models #2: Landsat + Topography + Climate. NAIP 
data are collected nationally in the contiguous US but, as mentioned 
previously, they are only available approximately every two years and 
can feature spatial and spectral artifacts due to imaging geometry and 
illumination conditions. Furthermore, their high spatial resolution cre-
ates data processing and storage challenges. We created a second com-
parison model that uses solely 30 m resolution Landsat 8 OLI imagery, 
topography data, and downscaled climate data (Section 2.3.4). In all, 
there were 155 Landsat, topographic, and climatic predictor variables 
(Tables A1-A3), all of which were fed through the same random forest 
modeling and assessment framework applied to the primary models. For 
each of the three vegetation structural parameters of interest (density, 
cover, and biomass), we compared R2 and %RMSE values between these 
models and the primary models to quantify performance differences.

2.4.2.4. Comparison models #3: Airborne lidar. Although the intent of 
our CNN model was to offer the improved ability to predict vegetation 
structure using the resulting CHMs’ height information, that improve-
ment may still be limited in comparison to lidar point cloud data for two 
reasons. The first is that the CHM is a modeled product, and thus con-
tains inherent error. The second is that a CHM merely captures the 
height of the tallest vegetation in a given pixel, whereas a point cloud 
contains discrete height measurements throughout the vertical canopy 
profile. Thus, it is likely that airborne lidar’s ability to map vegetation 
structure remains superior to our NAIP + CHM model. To evaluate how 
close to lidar’s benchmark performance our NAIP + CHM model gets, we 
generated a third set of comparison models driven solely by airborne 
lidar data. We generated two different sets of predictor variables from 
airborne lidar data: (1) CHM-derived variables; and (2) point cloud- 

derived variables. The former set mirrored the predictor variables 
generated from the CNN-modeled CHMs, for direct comparative pur-
poses. The latter was derived using the metrics_set3() function within the 
lidRmetrics library in R (R Core Team, 2021; Tompalski, 2023). In all, 
there were 121 lidar predictor variables, all of which were fed through 
the same random forest modeling and assessment framework applied to 
the primary models. For each of the three vegetation structural param-
eters of interest (density, cover, and biomass), we compared R2 and % 
RMSE values between these models and the primary models to quantify 
performance differences.

2.4.3. Vegetation structure mapping
We applied our primary models (NAIP + CHM) to the prediction of 

the three vegetation structural metrics of interest (tree density, canopy 
cover, and biomass) across all 18 of our field sites. To ensure that we 
were avoiding ecological extrapolation, we masked the resulting maps 
to areas mapped as PJ woodlands according to the 2020 LANDFIRE 

Fig. 3. Example demonstration of the bias correction approach evaluated in 
this study. A set of 1000 points were simulated to have a linearly correlated 
relationship, where the predictor variable was randomly sampled from a 
standard normal distribution and the response variable was equal to the pre-
dictor variable plus noise, also sampled from a standard normal distribution. 
The data were split into training (80%) and test (20%) data. A linear model was 
constructed using the training data. Applying this model to both the training 
(A) and test (B) data yielded predicted versus observed relationships that ten-
ded to underestimate high values and overestimate low values. By comparing 
the difference in quantile distributions between the training predictions and 
observations (C), we derive a correction factor (D) that can be applied to model 
predictions (E & F). The corrected models feature similar performance metrics 
with regression slopes closer to 1, suggesting an improved ability to predict 
extreme values.
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Existing Vegetation Type data. We used LANDFIRE 2020 data as they 
represented pre-field measurement conditions.

3. Results

3.1. Convolutional neural network results

The code used to produce our final canopy height predictive model, 
and the model itself, can be found here: https://github.com/mickeycam 
pbell/pj-lidar-naip. The first few epochs of the U-NET CNN model saw 
substantial decreases in loss in both the training and validation data 
(Fig. 4). After that point, both training and validation loss continued to 
decrease, though training loss continued to decrease at a higher rate and 
more linearly than validation loss. The 97th epoch featured the lowest 
validation loss, and thus was retained as the final model used for pre-
dictive purposes. It is possible that further training may have yielded a 
marginally improved model, though it is likewise possible that beyond 
100 epochs, overfitting may have begun to increase the validation error.

When applied to the prediction of canopy height within the test data, 
the model performed fairly well (Fig. 5). Given the relatively short 
height of PJ trees, the vast majority of predictions fell within the range 
of 0–8 m. Although the R2 between predictions and observations at the 
0.6 m pixel level was only 0.42, there is a high density of pixels within 
the 0–8 m range that fall fairly close to the 1:1 line, suggesting good 
prediction-observation agreement within the most relevant range of 
canopy heights (Fig. 5A). As we consider spatial units larger than that of 
the individual pixel as the basis of model performance assessment, we 
see that increasing area yields higher R2 and lower %RMSE values 
(Fig. 5C). At the largest buffer tested (16 m), the model captured 57 % of 
variance in observed canopy height with a predictive error of 56 % 
(Fig. 5B). In other words, when aggregated to the stand scale, canopy 
height predictions are more accurate than the comparably noisy pre-
dictions at the sub-tree, 0.6 m pixel scale. Performance varied signifi-
cantly by test site (Fig. A1), with sites 13, 17, and 18 yielding 
particularly low R2 values, indicating a failure to capture prevailing 
trends in observed canopy height. Test site 12 had the highest predictive 
error, with an average %RMSE of 335, attributable to the very low 

observed height throughout the site, resulting in a very high mean %bias 
(+295).

Fig. 6 depicts side by side comparisons of predicted and observed 
canopy heights, as well as the NAIP imagery used to make the pre-
dictions for geographic context for three of the 20 test sample sites 
(Figs. A2-A18 show the other 17 test sites). Indeed, a qualitative visual 
assessment of these maps revealed an impressive level of agreement 
between lidar-derived and CNN-predicted CHMs, with some notable 
caveats. There were a few extreme observed heights upwards of 40 m 
(Fig. 5A), which may have arisen from a number of sources, including 
the presence of taller trees (PJ transitions into fir and pine forests at 
higher elevations), powerlines, or cliffs. Cliff tops can get misclassified 
as non-ground points, given the extreme elevation changes that may 
occur over short distances. Test Area #13 in Fig. 6 illustrates one 
example of cliffs being misclassified as tall vegetation in the lidar CHM.

There is also a high concentration of points in Fig. 5A where the 
observed height is at or near zero, but the CNN predicted relatively taller 
vegetation. One clear example of this in the maps is Test Area #13 
(Fig. 6), where there are large areas of the NAIP imagery that are 
completely shaded by steep relief and comparably low sun angles. In the 
complete absence of spectral information, the CNN was left to predict a 
moderate vegetation height, much of which is significantly over-
estimated (and some of which is also underestimated). Furthermore, 
whereas lidar point clouds provide discrete, three-dimensional mea-
surements of vegetation structure, NAIP and other aerial imagery 
sometimes suffer from relief displacement, whereby features can appear 
to be laying on their side due to the perspective of the camera relative to 
features on the ground. In effect, this obscures ground area in the im-
agery, and elongates trees, both of which could explain the CNN pre-
dicting relatively tall trees where there were none.

The concentration of points along the x axis where y ≈ 0 in Fig. 5A 
points towards the inverse scenario – where observed height suggested 
the presence of trees but predicted height was at or near zero. One 
explanation for these cases can be seen in Test Area #2 (Fig. 6), which 
featured a high concentration of tree mortality. It would appear the CNN 
learned that image features needed to be green for them to be mapped as 
having some height. Thus, trees in various stages of mortality may have 
been perceived as being non-tree, and thus being predicted to have little 
or no height. Though unintended, in effect, this acts as a boon to vege-
tation structure mapping, as measures of tree density, cover, and 
biomass are focused on live vegetation. Indeed, it serves even as some-
what of an advantage over lidar data, which “sees” structure irrespective 
of condition, given the lack of spectral information contained in a single 
laser pulse.

3.2. Vegetation structure modeling results

Our primary models, driven by predictor variables from NAIP and 
the CNN-derived CHM, performed well at predicting vegetation struc-
ture (Fig. 7). Canopy cover was the highest-performing structural vari-
able, with 80 % of variance in observed cover captured by the model and 
a predictive error (%RMSE) of 19 %. Live aboveground biomass was the 
second best, with an R2 of 0.61 and %RMSE of 42 %. The tree density 
model performed the worst of the three, but still demonstrated a useful 
degree of predictiveness, with an R2 of 0.45 and %RMSE of 57 %. All 
three models were fairly unbiased when computed in aggregate (mean 
of predictions minus observations). However, the predictive bias varies 
substantially according to the magnitude of observations, with high 
values being underestimated and low values being overestimated. This is 
evident in the slopes of the linear equations for each prediction versus 
observation trendline. Density featured the lowest regression line slope, 
suggesting the greatest propensity for making overly moderate pre-
dictions (or, conversely, the poorest ability to predict extreme values 
accurately). The bias corrected models were intended to, and to varying 
degrees succeeded at, reducing this predictive tendency. The regression 
slopes for the bias corrected models all increased, with that of canopy 

Fig. 4. Training and validation loss, as measured by mean squared error (MSE) 
in model-predicted canopy height in comparison to lidar-derived esti-
mates thereof.
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cover almost reaching 1. However, the bias corrected models universally 
featured somewhat higher %RMSE. This highlights an important 
tradeoff to consider – whether it is more important to enable extreme 
predictions or if moderate but slightly less erroneous predictions are 
more desirable for a given application.

Despite being supplied with 96 candidate predictor variables, the 
variable selection algorithm yielded very parsimonious final sets of 
predictors, with the density model being based on 8 selected variables, 
cover on 12, and biomass on 10 (Fig. 8). The variable importance plots 
clearly reveal the key role that the CNN CHM played in the modeling 
process, with all three models featuring CHM-based variables atop the 
descending lists of importance according to both permutation impor-
tance and mean absolute SHAP values. Predictors representing canopy 
cover and volume at different height thresholds (CHM Cov 0.5 m, CHM 
Cov 1.0 m, CHM Vol 0.5 m, CHM Vol 1.0 m), along with the 50th 
percentile of height (CHM 50th), comprised the most important pre-
dictors across all three models. Two density-based variables (CHM Dens 
1.0 m CHM Dens 2.0 m), also appeared in the tree density model, found 
to be most important according to SHAP values, which aligned with 
expectations. Among the spectral predictor variables, skewness and 
kurtosis of various normalized differences both emerged as important 
predictors, showing up eight times in Fig. 8. Five of the six normalized 
difference indices were featured in the final predictor set, with NDNR 
(also known as the normalized difference vegetation index) and NDNG 
(also known as the green normalized difference vegetation index) being 
most abundant.

Our primary models (NAIP + CHM) outperformed the NAIP-only and 
Landsat + topography + climate models in both R2 and %RMSE across 
all three vegetation structural response variables (Table 2). The 
improved performance over the NAIP-only models, in particular, speaks 

to the value that the CNN CHM modeling procedure added to the ability 
to accurately predict vegetation structure. On average across all three 
response variables, NAIP-only explained approximately 19 % less vari-
ance and featured 15 % higher predictive error than the NAIP + CHM 
models. The relatively poor performance of Landsat + topography +
climate is particularly noteworthy, given the ubiquity of these data 
sources in the remote sensing of vegetation literature. On average, these 
models explained 32 % less variance in observed vegetation structure 
and yielded 29 % higher prediction error than our primary models. 
Landsat’s poor performance in modeling biomass is worth noting (R2 =

0.29; %RMSE = 56 %), given the importance of live aboveground 
biomass as a proxy for carbon stocks. As anticipated, the models driven 
by airborne lidar data featured the highest performance of all. This is 
particularly true of tree density, where airborne lidar had a 50 % higher 
R2 and a 23 % lower error than the primary NAIP + CHM model. The 
differences in the biomass model were less significant (12 % better R2 

and 10 % better RMSE than NAIP + CHM). Given that airborne lidar is 
often considered the “gold standard” for biomass mapping, the fact that 
our primary model achieved comparable biomass mapping performance 
is a valuable finding.

3.3. Vegetation structure mapping results

One example of the vegetation structure mapping results can be seen 
in Fig. 9. Given the correlation between them, the three structural var-
iables convey the same spatial trends, such that higher density areas also 
tend to have higher cover and biomass. A close visual inspection, 
however, reveals some key differences. For example, cover tends to vary 
less over local scales, whereas density and biomass feature more local-
ized hotspots. Furthermore, there are examples of areas that feature 

Fig. 5. Model performance of the U-Net convolutional neural network (CNN) for predicting vegetation height, compiled from a random sample of 1 M points equally 
distributed among the 20 test areas. (A) Predicted (y-axis) versus observed (x-axis) canopy height at the individual 0.6 m pixel level. (B) Predicted (y-axis) versus 
observed (x-axis) canopy height averaged within a 16 m buffer area around each sample point. (C) R2 and %RMSE values across the different scales of model 
performance tested according to the buffer size around each sample point. Given the volume of points, the results in (A) and (B) are shown as a gradient of point 
densities on a log scale to facilitate visual interpretation in the heavily skewed data. The cyan lines in (A) and (B) represent an ordinary least-squares regression 
between predictions and observations, with associated statistics shown in the upper left. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)
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Fig. 6. Three examples from the 20 test sample sites where per-pixel vegetation height was modeled from aerial imagery using a convolutional neural network. Test 
Area #1 (top) represented a case where the model captured patterns of vegetation height with minimal error. Test Area #2 (middle) represented a case where tree 
mortality yielded patches of tree height underprediction. Test Area #13 (bottom) represented a case where topographically driven shadows yielded large swaths of 
uncertainty in vegetation height predictions and where steep cliffs yielded overestimation of vegetation height predictions. In all three examples, the locator map on 
the bottom left features a magenta point representing the test area’s location within its US state. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)
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relatively higher cover, but lower density and biomass, such as in the 
southeastern portion of the site displayed in Fig. 9. Some NAIP artifacts 
are clear in the maps – especially Fig. 9B – where areas of higher and 
lower predicted canopy height are separated by a vertical flight line 
boundary. Note that this effect is also present in Test Area #14 
(Fig. A12).

When zoomed in to the level of individual trees near one of the image 
mosaic seamlines (Fig. 10), a few notable artifacts emerge. First, the 
imagery to the right of the seamline (predicted as having higher density/ 
cover/biomass) featured higher relief displacement due to having been 
captured from a higher off-nadir viewing angle. This effectively elon-
gates the trees, artificially increasing the projected two-dimensional 
area of each of each tree. This would act to inflate many of the predic-
tor variables (e.g., cover, volume), yielding downstream vegetation 
structural overprediction. Secondly, the shadow length and orientation 
differences point to different illumination conditions, where the imagery 
on the right of the seamline was collected with a lower solar zenith 
angle. These shadow areas were predicted to have some vegetation 
height, likely since shaded portions of trees (which have height) may be 
indistinguishable from tree shadows on the ground (which have no 
height). Furthermore, the CNN may have learned that longer shadows 
correspond to taller trees, increasing the predicted heights of individual 
trees. Taken together, variability in viewing perspective and illumina-
tion conditions appeared that manifested in the NAIP imagery acted to 
yield artifacts in the vegetation structure prediction maps, though cover 
and density appear more robust to these artifacts than biomass.

4. Discussion

Our primary objective in this study was to introduce and describe a 
robust analytical framework for mapping vegetation structure in an 

ecologically diverse and geographically expansive dry woodland 
ecosystem. To that end, we have presented a robust, multistage data 
fusion workflow, which leverages the individual strengths and over-
comes the weaknesses of NAIP imagery and airborne lidar, to map tree 
density, canopy cover, and biomass across the wide range of PJ wood-
lands in the Western US. By leveraging both deep and machine learning 
techniques, the methods that we have described herein could be applied 
in a repeatable manner to quantify important woodland biometrics on 
broad spatial scales.

NAIP’s strengths lie primarily in its high two-dimensional spatial 
resolution and its systematic, statewide, collection frequency. To un-
derstand not just how vegetation structure varies over space but also 
over time requires remote sensing data collected with some level of 
temporal consistency. Given that NAIP is both spatially and temporally 
exhaustive in the contiguous US, it could potentially serve as a useful 
basis for vegetation structure mapping. Indeed, our model comparison 
results show that NAIP alone can capture prevailing trends in tree 
density, canopy cover, and biomass. This finding adds to a fairly lengthy 
body of existing scientific literature where NAIP or other comparable 
airborne image datasets have shown promise towards accurate vegeta-
tion mapping (e.g., Basu et al., 2015; Erker et al., 2019; Hogland et al., 
2018; Sunde et al., 2020). Indeed, even some have demonstrated success 
in PJ and other dry woodland ecosystems (Coates et al., 2017; Davies 
et al., 2010; Gustafson et al., 2018; Hulet et al., 2014; Ku and Popescu, 
2019). However, to the authors’ knowledge, none of these efforts have 
designed their study specifically to question NAIP’s ability to map PJ 
tree structure on an ecosystem-wide basis. Here we have shown that not 
only is NAIP capable of mapping vegetation structure in ecologically 
narrow portions of PJ’s vast range, but our leave-one-site-out cross- 
validation is a clear demonstration that structure can be mapped across 
ecologically diverse portions of the range with relatively high accuracy 

Fig. 7. Predictions (y-axis) versus observations (x-axis) for the NAIP + CHM random forest models within the 180 field plots. The top row represents the raw 
predictions, whereas the bottom row represents the bias-corrected predictions. All results are based on a leave one site out cross-validation procedure.
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(Eastburn et al., 2024).
Airborne lidar adds a third dimension (height), which is critical for 

vegetation structure mapping, but absent in passive optical aerial image 
data. Vegetation height, and the various derivative statistics one can 
extract from lidar-based height measurements, have been widely shown 
to be an essential component of vegetation structure mapping (Zolkos 
et al., 2013). Our lidar-based predictive model outperformed all others, 
highlighting just how impressive its vegetation structure mapping ca-
pabilities are, despite the inherent remote sensing challenges posed by 
our focal dryland ecosystem. However, airborne lidar, at least to date, 
are not collected with the same programmatic frequency in the US as 
NAIP imagery, and far less so than satellite imaging programs. Although 
the USGS 3D Elevation Program has made great strides towards 
nationwide lidar data collection, these data can quickly become 

outdated as vegetation structure changes in response to afforestation 
and deforestation, the latter of which can occur rapidly and on broad 
spatial scales (Snyder, 2012). Thus, airborne lidar alone, though 
certainly considered a gold standard for providing vegetation structural 
snapshots in time, is currently poorly suited for temporally consistent 
vegetation mapping.

Through the use of a U-Net CNN, we built a model capable of pre-
dicting per-pixel canopy height using only NAIP imagery. As a result, we 
can fuse the critical vertical dimension to NAIP, at once overcoming 
NAIP’s two-dimensional nature and also lidar’s infrequent, opportu-
nistic temporal availability. Although the CNN-derived CHMs are not as 
accurate as those derived from lidar, our study showed that adding 
CHM-based predictors greatly enhanced the ability to accurately map 
vegetation structure in comparison to NAIP alone. To be sure, we are not 

Fig. 8. Variable importance for the three tree structural random forest models. The points represent the mean and the lines represent the standard deviation of 
importance computed across the 18 folds in the leave one site out cross-validation procedure. The CHM-based predictor variables are shown in magenta, whereas the 
NAIP imagery-based predictor variables are shown in cyan. The top row provides permutation importance, measured by the increase in predictive percent root mean 
squared error (%RMSE) that occurs when a predictor variable’s values are randomly permuted. The bottom row provides mean absolute Shapley additive expla-
nations (SHAP) values, which quantify individual predictor variables’ marginal contribution to a model’s prediction. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
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the first to predict lidar-based canopy height using high-resolution aerial 
or satellite imagery (Chang et al., 2025; Malambo and Popescu, 2023; 
Tolan et al., 2024; Wagner et al., 2024). However, to our knowledge, we 
are the first to demonstrate this analysis technique with an ecosystem- 
specific focus on PJ woodlands. In some ways, PJ may be ideally 
suited to this task, given the trees’ relatively wide spacing and the 
resultant spatial variability in image texture and pattern, both of which 
CNNs rely on for learning purposes. In other ways, however, PJ wood-
lands pose novel challenges, such as their relatively short stature, and 
low variability therein. In many forests, the difference between a sapling 
and mature tree can be tens of meters. In PJ, that same difference may 
only be one or two meters. So, while CNN’s may excel at capturing the 
patterns of individual trees, their ability to accurately attribute heights 
to those trees may be limited by the small amount of training variability 
in the response variable supplied to the model. This manifested in our 
results, where even small shifts in tree shadow length and orientation led 
to substantial differences in height predictions, which yielded down-
stream vegetation structural prediction uncertainties. Future work 
should focus on replicating this analytical workflow in other tree- 
dominated ecosystems to evaluate its broad applicability. Given Allred 
et al. (2025)’s recent release of calibrated NAIP-lidar CHM imagery 
pairs, this process could greatly simplified.

Although U-Nets have been widely shown to be effective at a range of 
image analysis tasks in the ecological remote sensing discipline, they are 
but one category of deep learning architecture that we could have 
employed to map canopy heights. Indeed, even within the general U-Net 
framework there are many different ways to design the network, 
including the use of various backbones (e.g., ResNet), with and without 
pre-trained weights, to improve model performance (Cao and Zhang, 
2020; He et al., 2016). It is possible that an entirely different deep 
learning algorithm, such as a transformer-based approach, may have 
yielded superior canopy height predictive performance (Chang et al., 
2025; Wagner et al., 2024). An exhaustive comparison of different deep 
learning algorithms, architectures, and hyperparameters was beyond 
the scope of this study. Instead, our focus was on demonstrating one 
relatively simple, widely used CNN technique within a broader analyt-
ical framework aimed at using modeled canopy heights as important 

predictors of ecologically valuable biometrics (density, cover, and 
biomass). Future research should explore alternative deep learning ap-
proaches in the hopes of improving model performance. Furthermore, 
given the fact that many foundational CNN models are trained on 3-band 
(RGB) imagery, there may be value in establishing foundational models 
trained on 4-band NAIP imagery in the future.

It should be noted that deep learning is not the only approach for 
getting height information from NAIP imagery. The NAIP program has 
begun in recent years to make digital aerial photogrammetric point 
cloud data available for purchase. Recent studies have shown varying 
degrees of success at using these data products to map tree height (e.g., 
Prior et al., 2022; Ritz et al., 2022; Schroeder et al., 2022), though lidar- 
derived terrain elevations are typically needed to normalize surface el-
evations to aboveground heights. To our knowledge, there have been no 
quantitative comparisons of deep learning-derived and NAIP photo-
grammetric canopy height models. A future comparison like this would 
enable a valuable assessment of tradeoffs between height estimation 
approaches.

Although we did not explicitly test it, our CNN demonstrated a useful 
degree of temporal transferability. The training, validation, and test data 
represented aerial imagery collected over the course of three years, 
collected with different specifications, at different times of year. 
Furthermore, we applied the model to the prediction of vegetation 
heights within our field sites, whose image data were collected over 
three different years. Although we did not test the accuracy of height 
predictions in our field sites, the strength of the vegetation structural 
models, which were heavily influenced by CNN CHM-derived pre-
dictors, suggests that heights were modeled with a useful degree of ac-
curacy. Future research should aim to test the temporal consistency of 
predictions, by applying the CNN model to the same location in suc-
cessive image captures. Given that our CNN showed evidence of the 
ability to distinguish between live and dead trees, a future study could 
explore the CNN’s ability to specifically quantify disturbance severity.

The poor performance of Landsat, topography, and climate data at 
explaining vegetation structural variability in PJ woodlands is particu-
larly noteworthy. Several studies have used Landsat as the primary or 
secondary basis of vegetation structure mapping in PJ woodlands, 
though most of these were undertaken at comparably local scales 
(Brewer et al., 2017; Campbell et al., 2021; Huang et al., 2010; Sankey 
and Glenn, 2011; Yang et al., 2012). One exception to this is Filippelli 
et al. (2020), who mapped PJ biomass across the entire Great Basin 
using Landsat, topography, and climate data; however, even their results 
showed poor agreement with field-based biomass estimates at the pixel- 
level. Another is Reinhardt et al. (2020), who mapped PJ canopy cover 
at a similar scale to Filippelli et al. (2020), yielding predictive results 
quite similar in performance to our study, as canopy cover yielded the 
best performance of the structural metrics we modeled. At best, topog-
raphy and climate data can capture the ecological niche of a vegetation 
type, and perhaps even quantify biomass trends within that niche as a 
function of environmental factors such as moisture availability (Xu 
et al., 2015). However, given the complex management-driven and 
naturally occurring disturbance history in PJ woodlands, optical imag-
ery is needed to augment environmentally driven biomass predictions. 
The problem is that Landsat, with 30 m spatial resolution, may be poorly 
suited to mapping structure in these sparsely canopied, low-productivity 
woodlands. The high exposure of understory rock, soil, grasses, forbs, 
and shrubs, coupled with tree canopies with relatively low greenness 
means that the materials driving surface reflectance and spectral indices 
are not dominantly the tree canopies themselves (Smith et al., 2019). So, 
while Landsat may be able to map PJ biomass locally, where understory 
conditions are held relatively constant, when understory conditions vary 
between ecologically distinct sites, Landsat falters.

A close examination of our NAIP + CHM variable importance may 
explain some of Landsat’s poor performance. As Fig. 8 highlights, nearly 
all of the NAIP-based predictor variables found to be most important 
were either skewness/kurtosis measures or high (90th or 95th) 

Table 2 
Performance metrics (R2 and RMSE) for the vegetation structural predictive 
models based on four different sets of predictor variables. All four predictor sets 
contain the performance metrics, but the three comparison models (NAIP, 
Landsat + Topo + Clim, and Airborne Lidar) also feature parenthetical pro-
portional comparisons to the primary NAIP + CHM model to convey how much 
better or worse they are performing relative to the central model described in 
this study. All metrics are based on the raw (not bias-corrected) models. The not 
applicable (NA) values for the Airborne Lidar-driven Cover model statistics is 
meant to highlight that, since lidar was used to derive these response variables, 
the model performance should be ignored.

Response 
Variable

Performance 
Metric

NAIP 
þ

CHM

NAIP 
Only

Landsat þ
Topo þ
Clim

Airborne 
Lidar

Density R2 0.45 0.35 
(–23 
%)

0.37 (− 17 
%)

0.68 (+50 
%)

​ %RMSE 57 63 
(+9%)

62 (+7%) 44 (–23 %)

Cover R2 0.80 0.72 
(− 9%)

0.58 (− 27 
%)

NA

​ %RMSE 19 22 
(+17 
%)

28 (+45 %) NA

Biomass R2 0.61 0.46 
(− 25 
%)

0.29 (− 52 
%)

0.69 (+12 
%)

​ %RMSE 42 50 
(+20 
%)

56 (+35 %) 38 (− 10 
%)
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percentiles of spectral indices. This highlights the importance of non- 
normal distributions of spectral constituents within an aggregated 30 
m pixel, and how high-end spectral index values (e.g., tree canopies with 
a dominantly barren soil background) are more predictive than mea-
sures of central tendency. The most Landsat-like predictor one could 
derive from aggregation of NAIP data would be a mean, but no mean 
values were selected in any of our models, suggesting that spectral 
averaging over 900 m2 areas does not adequately capture vegetation 
structure in PJ and perhaps other dry woodlands that feature spectrally 
and/or structurally similar vegetation.

A limitation of our primary modeling workflow comes from the ar-
tifacts inherent to aerial image data. Acknowledged by other studies that 
have relied on NAIP and comparable image datasets (Hogland et al., 
2018; Maxwell et al., 2017; Richardson and Moskal, 2014), differences 
in solar illumination and viewing perspective can drive vegetation 
predictive uncertainty. There are a few ways to potentially mitigate 
these effects. First, ensuring that imagery captured with wide-ranging 
illumination and viewing perspective conditions are included in the 

training and validation data could enhance a CNN’s ability to account 
for these effects in the prediction of vegetation heights. Secondly, 
including solar zenith angle metadata in the modeling process – in the 
CNN and/or the vegetation structure random forests – could offset the 
effects of shadowing. This would be difficult to do with NAIP data, as 
time of day and day of year metadata are not readily available on a per- 
pixel basis. Third, the use of multitemporal aerial imagery could mini-
mize scene-specific artifacts. By applying a CNN to the prediction on 
image data collected consecutively, averaging the height predictions 
could potentially improve results. Fourth, using high-resolution satellite 
imagery (e.g., Tolan et al., 2024), rather than aerial imagery, would both 
minimize relief displacement and enable more temporally specific image 
capture, minimizing illumination effects. Lastly, incorporating other 
predictor variables into the CNN modeling workflow, such as topog-
raphy (e.g., Sha et al., 2020), could help improve the model learn 
environmental patterns of tree height in addition to optical patterns.

Fig. 9. Results of the vegetation structure mapping in one of the 18 field sites in Northern Arizona, USA, including (A) National Agricultural Inventory Program 
(NAIP) imagery; (B) the convolutional neural network (CNN)-modeled canopy height model (CHM); (C) random forest-modeled tree density; (D) random forest- 
modeled canopy cover; and (E) random forest-modeled live aboveground biomass. (A-B) are at 0.6 m resolution whereas (C-E) are at 30 m resolution, masked to 
areas mapped as piñon-juniper woodlands in 2020 LANDFIRE Existing Vegetation Type data. (A-E) are shown in EPSG:26912.

M.J. Campbell et al.                                                                                                                                                                                                                            ISPRS Journal of Photogrammetry and Remote Sensing 226 (2025) 187–203 

199 



5. Conclusions

Given the importance of dryland ecosystems in global land-climate 
interactions, we need to develop remote sensing-driven workflows for 
consistently and accurately mapping their vegetation structure over 
space and time. In this study, we have introduced one such workflow 
that overcomes some of the most critical tradeoffs faced by individual 
remotely sensed datasets, potentially enabling broad-scale and tempo-
rally consistent vegetation structure mapping. Although our models 
performed somewhat poorer than those driven by predictor variables 
derived from airborne lidar data, our reliance on NAIP imagery, which is 
collected every two years in the US, provides the ability to evaluate 
change over time, which opportunistically collected lidar data do not. 
Furthermore, our model greatly outperformed one driven by Landsat, 
topography, and climate data, whose comparably poor performance 
emphasizes the complexity of mapping vegetation in structurally com-
plex dry woodlands. Although our focus in this study was on dry 
woodlands, the workflow we have introduced should be tested in other 
tree-dominated ecosystems. Future research should aim to evaluate 
whether our approach could yield similar predictive performance in 
more mesic, forested settings. Furthermore, more research is needed to 

test the temporal consistency of this analytical approach. Given the 
sometimes-inconsistent spectral characteristics of aerial imagery, un-
derstanding the limitations of our approach to quantifying vegetation 
structural change over time will inform the degree to which our 
approach can be operationalized for broad-scale, systematic mapping of 
vegetation structure.
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