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A B S T R A C T   

Non-photosynthetic vegetation (NPV) includes plant litter, senesced leaves, and crop residues. NPV plays an 
essential role in terrestrial ecosystem processes, and is an important indicator of drought severity, ecosystem 
disturbance, agricultural resilience, and wildfire danger. Current moderate spatial resolution multispectral sat
ellite systems (e.g., Landsat and Sentinel-2) have only a single band in the 2000–2500 nm shortwave infrared 
“SWIR2” range where non-pigment biochemical constituents of NPV, including cellulose and lignin, have 
important spectral absorption features. Thus, these current systems have suboptimal capabilities for character
izing NPV cover. This research used simulated spectral mixtures accounting for variability among NPV and soils 
to evaluate globally-appropriate hyperspectral and multispectral indices for estimation of fractional NPV cover. 
The Continuum Interpolated NPV Depth Index (CINDI), a weighted ratio index measuring lignocellulose ab
sorption near 2100 nm, was found to produce the lowest error in estimating NPV cover. CINDI was less sensitive 
to variability in soil spectra and green vegetation cover than competing indices. While CINDI was sensitive to the 
relative water content of soil and NPV, this sensitivity allowed for correcting error in estimated NPV cover as 
water content increased. CINDI bands were less capable than Dual Absorption NPV Index (DANI) bands for 
maintaining continuity with the heritage Landsat SWIR2 band, but combining multiple CINDI bands demon
strated adequate continuity. Three SWIR2 bands with band centers at 2038, 2108, and 2211 nm can provide 
superior capabilities for future moderate resolution multispectral/superspectral systems targeting NPV moni
toring, including the next generation Landsat mission (Landsat Next). These bands and the associated CINDI 
index provide potential for global NPV monitoring using a constellation of future superspectral sensors and 
imaging spectrometers, with applications including improving soil management, preventing land degradation, 
evaluating impacts of drought, mapping ecosystem disturbance, and assessing wildfire danger.   

1. Introduction 

Non-photosynthetic vegetation (NPV) includes plant litter, senesced 
leaves, and crop residues, as well as plant organs containing a low 
concentration of chlorophyll, such as branches, stems, bark, and cones 
(Daughtry, 2001; Nagler et al., 2000; Roberts et al., 1993). NPV plays an 

essential role in terrestrial ecosystem processes by directly impacting 
carbon and nutrient cycling (Hobbie, 2015). NPV is a powerful indicator 
of drought severity, and increases in response to ecosystem disturbances 
like insect outbreaks and extreme weather events (Chambers et al., 
2007; Coates et al., 2015; Tane et al., 2018). Seasonal changes in NPV 
are an important indicator of plant senescence and wildfire danger 
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(Elmore et al., 2005; Okin, 2010; Roberts et al., 2006). NPV also serves 
as an important indicator of rangeland vegetation condition, cropland 
tillage intensity, and erosion potential in agricultural ecosystems 
(Blanco-Canqui and Wortmann, 2020; Lal, 1995; Marsett et al., 2006). 
Despite the ecological and societal importance of NPV, satellite remote 
sensing metrics used for quantifying terrestrial ecosystem processes, 
mapping land cover change, and monitoring agricultural lands have 
been more commonly based on the spectral features of photo
synthesizing “green” vegetation (GV) than on NPV (Okin, 2010). 

NPV is principally made up of cellulose and lignin. These two 
structural components are the most abundant molecules produced by 
photosynthetic activity of terrestrial vegetation and have prominent 
absorption features in the shortwave infrared (SWIR) near 2100 and 
2300 nm (Elvidge, 1990). What is commonly referred to as “lignocel
lulose absorption” is actually a composite of overlapping absorption 
features caused by overtones and combinations of the fundamental ab
sorptions by molecular bonds in cellulose, lignin, carbohydrates, lipids, 
and other non-pigment biochemicals making up plant materials. Ab
sorption features produced by these biochemicals are most prevalent in 
the “SWIR2” spectral region (2000–2500 nm). While plant biochemical 
absorptions combine to produce the two broad lignocellulose absorption 
features in the SWIR2 spectral region, absorption feature positions and 
shapes vary with differing concentrations and chemical compositions of 
absorbing biochemicals (Kokaly and Clark, 1999). Biochemical con
centration and composition can vary across scales, but systemic differ
ences in absorption features have been documented, such as between 
low-lignin content grass species and high-lignin content pine species 
(Kokaly et al., 2009). Water in plant tissues can alter or obscure the 
2100 nm lignocellulose absorption feature (Kokaly et al., 2013). 
Vibrational absorption features are not restricted to organic molecules; 
minerals in background soils, sediments, and rocks also have strong 
absorption features in the SWIR2 spectral region (Clark, 1999), 
complicating the use of lignocellulose absorption for estimation of NPV 
cover. 

Despite the complexity of biochemical and mineral absorptions 
within the SWIR2 spectral region, current moderate spatial resolution 
multispectral satellite systems (e.g., Landsat, Sentinel-2) have a single, 
broad band centered near 2200 nm. This single band is not well posi
tioned with respect to lignocellulose absorption maxima near 2100 and 
2300 nm, but is still somewhat sensitive to spectral absorption produced 
by NPV cover. Early Landsat NPV studies focused on identifying dif
ferences in crop residue cover, a proxy measure for tillage intensity. Van 
Deventer et al. (1997) used Landsat 5 Thematic Mapper bands 5 
(~1550–1750 nm) and 7 (~2080–2350 nm) to calculate the Normalized 
Difference Tillage Index (NDTI) and achieved high classification accu
racies for identifying fields with low and high crop residue cover. NDTI 
calculated from Landsat and Sentinel-2 imagery has been used to char
acterize crop residue cover in many studies and is currently a de facto 
standard approach (Azzari et al., 2019; Beeson et al., 2020; Hively et al., 
2019; Jin et al., 2015; Najafi et al., 2019; Quemada et al., 2018; Zheng 
et al., 2013). NPV characterization studies applying spectral mixture 
analysis (SMA) techniques to Landsat 5–9 imagery have produced fairly 
accurate results across numerous study domains including agricultural 
fields, pasture, shrublands, forest, and even the continent of Australia 
(Davidson et al., 2008; Guerschman et al., 2015; Laamrani et al., 2020; 
Mayes et al., 2015; Numata et al., 2007; Quintano et al., 2013; Scarth 
et al., 2022). While NPV studies utilizing imagery with a single SWIR2 
band have achieved moderate-to-high accuracy results, these studies 
were often conducted at local to regional scales, and comparisons of 
their findings reveals inconsistencies at continental and global scales. 
For example, comparison of studies by Jin et al. (2015), Hively et al. 
(2018), and Najafi et al. (2019) shows NDTI values varying substantially 
for the same crop residue cover values for study sites in China, the U.S., 
and Iran, respectively. This indicates a lack of stability in NDTI re
lationships with NPV cover, making NDTI unsuitable for global mapping 
of agricultural NPV cover. 

Studies comparing NPV characterization performance for ap
proaches using a single SWIR2 band versus multiple SWIR2 bands have 
consistently demonstrated higher performance for the latter case (Ban
nari et al., 2006; Daughtry, 2001; Daughtry et al., 2006; Hively et al., 
2018, 2021; Lamb et al., 2022; Quemada et al., 2018; Quemada and 
Daughtry, 2016; Serbin et al., 2009b; Yue et al., 2019). Serbin et al. 
(2009b) developed the Shortwave Infrared Normalized Difference Res
idue Index (SINDRI) with bands centered at 2210 nm and 2260 nm and 
evaluated its performance across six U.S. sites. They found that SINDRI 
mapped crop residue cover with an R2 = 0.743 while NDTI achieved an 
R2 = 0.299. Perhaps the most commonly used NPV index with multiple 
bands in the SWIR2 spectral region is the Cellulose Absorption Index 
(CAI), a three-band difference index with band centers at 2000, 2100, 
and 2200 nm (Nagler et al., 2000). CAI has been demonstrated to 
accurately characterize NPV across natural ecosystems and agricultural 
systems alike (Bai et al., 2021; Nagler et al., 2003; Pancorbo et al., 2023; 
Ren et al., 2012). Daughtry et al. (2006) found that CAI predicted crop 
residue cover values with an R2 of 0.774 while NDTI produced an R2 of 
0.108. These studies have established that NPV characterization ap
proaches incorporating a single broad SWIR2 band (e.g., NDTI) are far 
more prone to errors from variability in GV cover, surface moisture, and 
soil properties. 

Though CAI, SINDRI, and related SWIR2 indices offer good site-scale 
performance for NPV cover estimation, the availability of imagery 
capable of computing these indices is limited to a small number of 
“superspectral” systems (e.g., WorldView-3) or airborne and satellite 
imaging spectrometers, both with limited spatial footprints. Perhaps 
related to the limited spatial and temporal coverage provided by these 
systems, uncertainties remain for optimal placement of spectral bands 
for NPV cover estimation. For example, the original derivation of the 
CAI in Nagler et al. (2000) was based on lab spectra and subsequent field 
studies have found that shifting CAI’s first band to 2019 nm (Daughtry, 
2001), 2031 nm (Daughtry et al., 2005), 2036 nm (Lamb et al., 2022), or 
2040 nm (Hively et al., 2021) may offer similar performance for NPV 
cover estimation while mitigating atmospheric interference. Most 
importantly, past efforts have been based on a limited number of sites 
and have not included global spectral variability in NPV or soils. 

With next generation Landsat and Sentinel-2 multispectral satellite 
systems currently being developed, there is an opportunity to add 
multiple SWIR2 bands for more accurately estimating and monitoring 
NPV cover. For example, the next generation Landsat mission (referred 
to as “Landsat Next”) is being designed with 26 spectral bands, more 
than doubling the number of bands measured by Landsats 8 and 9 (US 
Geological Survey, 2023). The objectives of this analysis are to investi
gate spectral indices and SWIR2 band combinations for estimation of 
fractional NPV cover; incorporate variability in NPV and soil reflectance 
using field and lab spectral libraries to produce indices and bands that 
should have lower error for global application; characterize the sensi
tivity of the best indices to factors like soil spectral absorptions, GV 
cover, and soil/NPV relative water content; and examine potential im
pacts of best indices on continuity with heritage multispectral systems. 

2. Methods 

Our methodology is divided into three primary sections, illustrated 
in Fig. 1. Section 2.1 (Synthetic mixtures) details the creation of random 
linear mixtures using endmembers derived from diverse field and lab 
spectral libraries. Section 2.2 (Index comparison) describes our meth
odology for calculating and comparing a wide range of hyperspectral 
and multispectral indices, arriving at two candidate indices that result in 
the lowest root mean square error (RMSE) for estimating fractional NPV 
cover. Section 2.3 (Sensitivity analyses) explains a variety of tests we 
performed on the most promising multispectral indices. 
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2.1. Synthetic mixtures 

2.1.1. Spectral libraries 
Synthetic mixtures of NPV, soil, and GV were derived based on 

spectral libraries assembled from multiple sources representing each 
endmember type. To ensure that each endmember represented “pure” 
cover of NPV, soil, or GV, most spectra were obtained from laboratory or 
field spectrometer measurements. Some spectra had missing data or very 
noisy reflectance values beyond 2400 nm, restricting the range of our 
analysis to 2000–2400 nm. Table 1 describes the provenance of twelve 
NPV spectra and six GV endmembers. NPV endmembers were selected 

from six sources to include both natural NPV cover and agricultural crop 
residues. Crop residue spectra were also selected to span a range of crop 
types and relative water content (RWC). Actual bandpass of spectrom
eters used to measure NPV and GV endmembers is approximately 10–12 
nm in the SWIR2 spectral region, depending on model (Dennison et al., 
2019). All NPV endmembers were originally oversampled at 1 nm, 
except for u9litt1a-av which was originally oversampled at 2 nm and 
then interpolated to 1 nm. NPV and subsequent endmembers provided 
as relative reflectance were corrected to absolute reflectance by multi
plying each spectrum by the reflectance spectrum of the reference panel, 
a Spectralon® 99% reflective surface. 

Fig. 1. A flowchart depicting the methodology used in this work. Field and lab spectral data are green, Landsat and EMIT image data are red, the synthetic mixture 
dataset is magenta, and indices are violet. CINDI and DANI indices are defined in Results sections 3.1 and 3.2. 

Table 1 
NPV and GV spectra selected as representing pure endmembers.  

Name Type Target Description Source Reference 

COP_20160526_5–40- 
W 

NPV grass dry grass, 99.5% NPV as assessed by photo classification Field Dennison et al. 
(2019) 

LL-1-87y NPV litter deciduous leaf litter, leaf stack Lab Meerdink et al. 
(2019) 

LL-2-89z NPV litter deciduous leaf litter, leaf stack Lab Meerdink et al. 
(2019) 

spec1418–1421 NPV residue Glycine max (soy) residue, 0.272 RWC Lab Serbin et al. (2009a) 
spec172–175 NPV residue Triticum aestivum (wheat) residue, old, 0.436 RWC Lab Serbin et al. (2009a) 
spec300–303 NPV residue Glycine max (soy) residue, 0.477 RWC Lab Serbin et al. (2009a) 
spec308–311 NPV residue Triticum aestivum (wheat) residue, new, 0.104 RWC Lab Serbin et al. (2009a) 
spec356–359 NPV residue Zea mays (corn) residue, 0.493 RWC Lab Serbin et al. (2009a) 
T3.01.E NPV residue Zea mays (corn) residue, 98% residue cover, 0.0131 litter RWC, field of view assessed by 

photograph point sampling 
Field Quemada and 

Daughtry (2016) 
u9litt1a-av NPV litter Pseudotsuga menziesii (Douglas fir) litter Field Roberts et al. (2004) 
VH322 NPV litter Pinus ponderosa (ponderosa pine) needles Lab Meerdink et al. 

(2019) 
VH358 NPV grass grass litter - mostly decomposed Lab Meerdink et al. 

(2019) 
OPE3_corn_P GV crop Zea mays (corn) canopy spectrum, assessed for canopy closure using field data Field N/A 
COFIV0702 GV crop Gossypium hirsutum (cotton) canopy spectrum, assessed for canopy closure using photography Field Marshall and 

Thenkabail (2014) 
RIWIL0101 GV crop Oryza sativa (rice) canopy spectrum, assessed for canopy closure using photography Field Marshall and 

Thenkabail (2014) 
SERC_decid_529_2941 GV tree broadleaf deciduous tree canopy spectrum from 1 m NEON imaging spectrometer (IS) pixel, scene 

NEON_D02_SERC_DP1_20210811_155341, interpolated to 1 nm 
Image NEON (2022) 

SERC_soy_685_7088 GV crop soybean canopy spectrum from 1 m NEON IS pixel, scene 
NEON_D02_SERC_DP1_20210811_155341, interpolated to 1 nm 

Image NEON (2022) 

WREF_conif_497_6428 GV tree needleleaf evergreen tree canopy spectrum from 1 m NEON IS pixel, scene 
NEON_D16_WREF_DP1_20210723_194155, interpolated to 1 nm 

Image NEON (2022)  
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The selected NPV endmembers (Fig. 2A) demonstrate variability in 
lignocellulose absorption. While several endmembers have local minima 
located near the 2100 nm reflectance minimum traditionally used for 
CAI (Nagler et al., 2000), other endmembers have minima at shorter or 
longer wavelengths dependent on cellulose and lignin content. VH358 
and COP_20160526_5–40-W have local minima at wavelengths close to 
or slightly shorter than 2100 nm, indicating higher cellulose content 
relative to lignin (Kokaly et al., 2009). Conversely, a broadleaf decidu
ous leaf stack spectrum LL-1-87y has a local minimum near 2140 nm, 
indicating a lower cellulose-to-lignin ratio. Cellulose-to-lignin ratio also 
impacts the shape and position of the 2300 nm absorption feature in 
vegetation spectra (Kokaly et al., 2009). All spectra exhibit a local 
minimum close to 2275 nm, but inferred high-ratio spectra have a sin
gle, broader absorption feature at wavelengths longer than 2300 nm, 

while inferred low ratio spectra (e.g., LL-1-87y and LL-2-89z) show two 
narrower absorption features at wavelengths longer than 2300 nm. 

The GV spectral library (Fig. 2B) was less extensive. Field spectra of 
mature corn, cotton, and rice canopies with complete canopy closure 
were selected as endmembers (Table 1). Obtaining relatively “pure” GV 
spectra for broadleaf deciduous and needleleaf evergreen tree canopies 
proved more challenging due to tree height and difficulty ascertaining 
GV purity. Instead, pixel spectra were selected from National Ecological 
Observatory Network (NEON) airborne imaging spectrometer data 
capturing a leaf-on deciduous tree canopy, coniferous tree canopy, and 
mature soybean field (NEON, 2022). 1 m pixels with the highest red- 
near infrared differences were selected for each vegetation type, and 
then were smoothed and spline interpolated from nominal 5 nm spectral 
resolution to match the 1 nm sampling of the field- and lab-sourced 

Fig. 2. A) NPV endmember spectra. The legend at right provides spectrum names in order of reflectance at 2200 nm. B) GV endmember spectra. The legend (inset) 
provides spectrum names in order of reflectance at 2200 nm. C) A subset of soil spectra representing the nine soil spectral classes. The legend (at right) provides 
spectrum names in order of soil class, indicated by the number before the soil spectrum name. 
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endmembers. GV endmembers were much darker in the SWIR2 region 
than NPV and soil endmembers (Fig. 2), with a shape dominated by 
canopy water absorption (Asner and Lobell, 2000). 

The soils spectral library (Fig. 2C) was assembled in an effort to 
capture global variability in soils by distilling approximately 48,300 
surface horizon spectra from six source soil spectral libraries into 228 
endmembers representing nine spectral classes. The source soil spectral 
libraries included: 

• World Agroforestry Center-International Soil Reference and Infor
mation Centre (ICRAF-ISRIC) globally distributed soil spectral li
brary (n = 754) (Viscarra Rossel et al., 2016; World Agroforestry 
(ICRAF) and International Soil Reference and Information Centre 
(ISRIC), 2021)  

• Mediterranean regional soil spectral library (n = 1751) (GeoCradle, 
2021)  

• European Land Use and Coverage Area frame Survey (LUCAS) soil 
spectral library (n = 43,560 which includes duplicate spectral mea
surements of each sample) (Orgiazzi et al., 2018)  

• Australian National Geochemistry Survey soil spectral library (n =
1308) (Lau et al., 2019) 

• United States Department of Agriculture (USDA) National Soil Sur
vey Center (NSSC) soil spectral library, which includes US and global 
soils (n = 854) (Brown et al., 2006)  

• Brazilian Soil Spectral Library (BSSL) (selected subset n = 100) 
(Demattê et al., 2019) 

The MICA module of the US Geological Survey PRISM (Processing 
Routines in IDL for Spectroscopic Measurements) software (Kokaly, 
2011) was used to identify spectral features associated with SWIR2 
mineral absorptions in the source libraries. MICA matches analyzed 
spectra to a set of reference spectra using linear continuum removal, 
least-squares linear regression, and threshold constraints. Based on 
MICA reference libraries used for mineral identification in prior research 
(Graham et al., 2018; Moskowitz et al., 2016; Reynolds et al., 2014, 
2020), we created a reference library containing 115 mineral spectra 
with SWIR2 absorption features, plus 21 spectra of other common sur
face materials (e.g., vegetation, water, snow). MICA matched each 
spectrum in the source libraries to a spectrally dominant material from 
the reference library. 

A stratified random sampling was used to select a representative 
subset of 228 soil endmembers. This number of endmembers was 
selected to preserve the relative abundance of 60 MICA-identified 
mineral types identified in the source soil spectral libraries, while also 
limiting the total number of NPV-GV-soil endmember combinations. The 
relative abundance of minerals in the subset was skewed lower for the 
most abundant mineral types; this was necessary in order to keep the 
total number of spectra in the subset to a computationally manageable 
size and yet have at least one representative spectrum for the mineral 
types that were less frequently detected in source data. Temperate 
latitude soils are likely overrepresented in the soils spectral library 
compared to their global distribution, due to their source spectral li
braries lacking true global representation (Viscarra Rossel et al., 2016). 

The 228 soil endmembers were assigned to nine soil spectral classes 
defined by the wavelength positions and dominance of absorption fea
tures within different portions of the SWIR2 region (Table 2). Fig. 2C 
provides representative examples of endmembers from each soil spectral 
class. For most classes, absorption features are limited to wavelengths 
longer than 2170 nm (Fig. 2C). Soil spectral class 8 is the notable 
exception. Class 8 is comprised of a single endmember (Table 2), indi
cating its uniqueness and rarity within the source spectral libraries. This 
endmember has an unusual absorption feature centered near 2070 nm 
caused by the mineral topaz, and is the only endmember with prominent 
spectral features close to the 2100 nm lignocellulose absorption feature 
(Fig. 2B, C). Soil spectral class 9 was comprised of weak or unmatched 
mineral absorption features. The top-most dashed gray line in Fig. 2C 

(LUCAS SE-44484206-60304_2) indicates an endmember with a 
shallow, unmatched absorption feature with a minimum near 2350 nm. 
Another class 9 endmember in Fig. 2C, LUCAS PL-47443326-40543_2, 
has no apparent absorption features. 

The seven remaining soil spectral classes have absorption features 
that overlap with or are adjacent to the 2300 nm lignocellulose ab
sorption feature (Fig. 2B, C). Class 1 spectra exhibit a mineral absorption 
feature near 2200 nm. Class 2 spectra have a 2200 nm absorption feature 
and a relatively weak absorption feature near 2300 nm, while class 3 
spectra have a stronger 2300 nm feature relative to their 2200 nm 
feature. Class 4 spectra exhibit strong features near 2300 nm. Class 5 
spectra exhibit multiple features near 2200, 2250, and 2300 nm. Class 6 
spectra exhibit absorption features near 2250 and 2300 nm, and Class 7 
spectra have absorption near 2270 nm. 

2.1.2. Creating synthetic mixtures 
Twelve NPV endmembers, 228 soil endmembers, and six GV end

members allowed for 16,416 unique three-endmember combinations. 
To test the ability of different indices to estimate NPV fractional cover, 
random linear mixtures of reflectance endmembers were created using a 

Table 2 
Soil spectral classes.  

Soil 
Spectral 
Class 

Dominant 
Spectral 
Feature 

Number of 
Endmembers 

Description of SWIR-Absorbing 
Minerals in Representative 
Soils 

1 2200 nm 64 mostly montmorillonite, some 
kaolinite + smectite mixes, 
with a few gypsum and 
hydrated silica dominated 
spectra 

2 2200 nm & 
2300 nm 

88 white mica (muscovite/illite), 
kaolinite, kaolinite + white 
mica(muscovite/illite) mixes, 
chlorite + muscovite and white 
mica (muscovite/illite) +
carbonate (calcite/dolomite) 

3 2300 nm & 
2200 nm 

20 carbonate (calcite/dolomite) 
mixtures with montmorillonite 
or white mica (muscovite/ 
illite) 

4 2300 nm 19 carbonate (calcite/dolomite/ 
aragonite), and a few others 
(vermiculite, nontronite, 
saponite) 

5 2200 nm 2250 
nm & 2300 nm 

11 chlorite + white mica 
(muscovite/illite) or biotite 
group mineral + white mica 
(muscovite/illite) or amphibole 
group mineral + white mica 
(muscovite/illite) or kaolinite 
+ muscovite or carbonate +
smectite/white mica or biotite 
group mineral + white mica 
(muscovite/illite) or amphibole 
group mineral + white mica 
(muscovite/illite) 

6 2300 nm & 
2250 nm 

6 chlorite/epidote or biotite 
group mineral + white mica 
(muscovite/illite) or amphibole 
group mineral + white mica 
(muscovite/illite) or other 
smectite group mineral 
(hectorite) or serpentine group 
mineral 

7 2270 nm 4 gibbsite 
8 2070 nm 2200 

nm & 2300 nm 
1 topaz bearing 

9 Weak or 
Unmatched 
Features 

15 relatively featureless, or may 
have features that are too weak 
to conclusively identify 
mineralogy, or cannot be 
matched to mineralogy  
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Dirichlet function, which at α = 1 provided a uniform distribution of 
mixtures across the three-endmember mixing space. Non-linear reflec
tance of vegetation-soil mixing due to multiple scattering is a well- 
known issue (Borel and Gerstl, 1994). Somers et al. (2009) found a 
0.03–0.07 RMSE in the SWIR2 spectral region when comparing modeled 
and measured mixtures of soil, tree, and weed fractional cover. To 
reduce the potential error associated with a wide range of GV non-linear 
mixing and simultaneously reduce representation of strong liquid water 
absorption in mixtures associated with high GV cover, mixtures with 
>50% GV cover were excluded from further analysis. More than 1.05 
million random mixtures were used in evaluating potential fractional 
NPV cover indices. 

Mixtures created from lab and field endmembers have reduced 
structural shadowing and relatively low water content, resulting in 
higher SWIR2 reflectance than satellite-measured spectra. To produce a 
more realistic SWIR2 reflectance distribution, each mixture was multi
plied by a random darkening factor. Landsat 8 Operational Line Imager 
(OLI) SWIR2 band data were used to set the range of the darkening 
factor. The median SWIR2 reflectance for every National Land Cover 
Database (NLCD) cropland, rangeland, and natural grassland pixel (Jin 
et al., 2019) within the continuous US between 15 April and 15 July 
2016 were used to create a reference distribution. This time period 
captured a mix of dormant-period NPV and high crop residue conditions 
in spring, as well as landscape green-up into summer, culminating in a 
representative range of fractional cover conditions across multiple 
climate zones. Mixtures were convolved using Landsat 8 OLI relative 
spectral response to compare distributions of reflectance values to the 
distribution from actual Landsat data (Fig. S1). A darkening factor 
created using a uniform random distribution bounded by [0.25, 1] was 
empirically found to approximate the reference distribution. This 
random darkening factor was applied to all mixture spectra, uniformly 
across all SWIR2 wavelengths. 

2.2. Index comparison 

2.2.1. Resampling mixtures and adding sensor noise 
Darkened synthetic mixtures were convolved from 1 nm sampling to 

hyperspectral bandpasses and multispectral bandwidths. Hyperspectral 
and multispectral band centers were separated by 5 nm. Hyperspectral 
bandpass functions used a Gaussian relative spectral response with a 10 
nm full width-half maximum (FWHM) to approximate imaging spec
trometer band relative spectral response (Green et al., 1998). 

A uniform “boxcar” relative spectral response was used for resam
pling to multispectral bands (Hively et al., 2021; Lamb et al., 2022). A 
boxcar function represents a reasonable simplification of filter-based 
multispectral instrument relative spectral response; more detailed hy
pothetical response functions were examined and provided similar re
sults. Hively et al. (2021) found that 30, 40, and 50 nm bandwidths 
produced similar error when used in multispectral indices for NPV cover 
estimation. However, they found that the reference band for 2100 nm 
lignocellulose absorption indices can be impacted by atmospheric car
bon dioxide and water vapor absorption, and determined that a 10–30 
nm bandwidth for a proposed band at 2040 nm would be well- 
positioned within the width of an atmospheric transmission window. 
Based on these prior findings, our multispectral analysis used a 40 nm 
bandwidth for multispectral bands at or longer than 2100 nm and used 
radiative transfer modeling to refine the bandwidth of multispectral 
bands shorter than 2100 nm. The MODTRAN6 radiative transfer model 
(Berk et al., 2014) was used to simulate atmospheric transmittance 
within the SWIR2 spectral region. Based on an assumed need for future 
sensors to be able to measure NPV cover through fall senescence in 
temperate climates, radiative transfer modeling assumed a 60◦ solar 
zenith angle that corresponds with a late-morning overpass at 45◦N 
latitude approximately one month after the autumnal equinox. A nadir 
view zenith angle was assumed. To model transmittance for “dry” and 
“moist” atmospheres, column water vapor values of 1 and 4 g cm− 2 were 

used. Radiative transfer modeling demonstrated that, once a band center 
tolerance of +/− 2 nm was taken into account, the maximum allowable 
bandwidth for a reference band between 2000 and 2100 nm is 25 nm 
(Fig. 3). Thus, a 25 nm bandwidth was used for multispectral bands 
between 2000 and 2100 nm. Note that mean atmospheric transmittance, 
averaged across a 25 nm bandwidth, peaks at 2038 nm (Fig. 3). 

After mixtures were convolved to hyperspectral and multispectral 
bands, simulated sensor noise was added to all reflectance values. A 
range of signal-to-noise ratios (SNRs) was applied to reflectance values 
used to calculate the indices described in Section 2.2.2. A 130:1 SNR was 
selected as representing maximum desirable sensor noise under refer
ence conditions (60◦ solar zenith angle and 12% surface reflectance 
corresponding to the 25th percentile of the adjusted reflectance distri
bution at 2100 nm). Noise was added to reflectance values by generating 
random Gaussian numbers with a mean of zero and standard deviation 
of one, scaling by 1/130 multiplied by reflectance, and then adding a 
scaled random noise value to the reflectance value for each band. 

2.2.2. Spectral indices 
Two- and three-band versions of difference (DI), ratio (RI), and 

normalized difference indices (NDI) were calculated from the spectrally 
resampled hyperspectral and multispectral mixtures and regressed 
against the fractional NPV cover associated with each mixture (Table 3). 
Two-band indices used bands centered at wavelengths λa and λb, where a 
and b indicate distinct band centers within the 2000–2400 nm range. 
Three-band indices used bands centered at wavelengths λx, λy and λz, 
where x, y, and z indicate distinct band centers within the 2000–2400 
nm range. 

Two- and three-band indices were calculated for all possible com
binations of bands, within the following constraints:  

1) band combinations could not have overlapping FWHM/bandwidth;  
2) for two-band indices, λa < λb; and.  
3) for three-band indices, λx < λy < λz. 

Ignoring the second and third constraints was tested but did not 
meaningfully impact results, so we kept these constraints in place to 
simplify index descriptions. 

For 2100 and 2300 nm lignocellulose absorption features, either a or 
b can serve as a reference band while the remaining band is within the 
absorption feature. For three-band indices under the third constraint, x 
and z serve as reference bands. These reference bands can straddle the 
absorption feature, placing y within the feature, effectively creating an 
absorption index. Alternatively, the two reference bands can reside 
within separate lignocellulose absorptions, placing y on the peak be
tween the absorptions and effectively creating a peak index. y will be 
referred to as the “feature band”, and can indicate either depth of 
lignocellulose absorption or height of the peak between absorptions. 

Neither RI nor NDI indices are reciprocal (e.g., the relationship be
tween NPV cover and (λa − λb)/(λa + λb) is not identical to the rela
tionship between NPV cover and (λb − λa)/(λb + λa)). Reciprocal forms 
for RI and NDI were tested, but again did not meaningfully impact re
sults, so only the index forms shown in Table 3 were used. 

RI3 and NDI3 perform best for spectral features that are symmetrical, 
since ρλx 

and ρλz 
are given equal weighting in index equations. If a 

spectral feature is asymmetrical, equal weighting used for the two 
reference bands (x, z) will not accurately represent the linear reflectance 
trend at the wavelength of band y. To improve performance over three- 
band indices that assume symmetry, the continuum interpolated band 
ratio (CIBR) was tested (Eq. 7). CIBR is a differential absorption tech
nique that weights reference bands based on their wavelength to mea
sure spectral feature depth or height (Dennison, 2006; Green et al., 
1989). This index form divides the reflectance of the feature band by the 
reflectance of two reference bands interpolated to the wavelength of the 
feature band, and is thus well-suited to asymmetrical spectral features. 
CIBR depends on calculation of weights wx and wz, described in eqs. 8 
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and 9. If λx − λy = λz − λy, weights will be equal and CIBR will produce 
index values identical to those from RI3. The CIBR form is consistent 
with previous spectroscopic studies that have applied linear continuum 
removal and feature depth calculations to estimate abundances of plant 
biochemicals (Kokaly and Clark, 1999; Kokaly and Skidmore, 2015). 

Linear regression used each index value derived from a band com
bination as the independent variable, with fractional NPV cover as the 
dependent variable. Regression coefficients were calculated using 70% 
of the simulated mixtures as training data. The remaining 30% of 

simulated mixtures were reserved as testing data and used to determine 
model fit and error, calculated as R2 and RMSE, respectively. Two 
candidate indices, both CIBRs, were identified based on lowest RMSE 
values within their respective parts of the SWIR2 spectral region and 
used for sensitivity analyses. 

2.3. Sensitivity analyses 

2.3.1. Modeling uncertainty due to reflectance retrieval 
Retrieving reflectance from at-sensor radiance contributes to mea

surement uncertainty, and ultimately to error in NPV cover estimation. 
Reflectance retrieval uncertainty for candidate multispectral indices was 
examined by using radiative transfer modeling in 6S (Vermote et al., 
1997). Previous reference conditions representing a late morning over
pass at 45◦ N approximately one month after the autumnal equinox (60◦

solar zenith angle) and 25th percentile reflectance (12%) were used in 
modeling. Reflectance retrieval uncertainty was calculated using a 
sensitivity analysis where column water vapor uncertainty was assumed 
to be 0.2 g cm− 2 based on Makarau et al. (2017) and column CO2 and 
CH4 uncertainty were assumed to be +/− 2%. Both a 1 g cm− 2 “dry” 
atmosphere and a 4 g cm− 2 “moist” atmosphere were modeled to reveal 
how sensitivity to column water vapor impacted reflectance uncertainty 
and error in estimated NPV cover. Additional modeling in 6S was used to 
reveal sensitivity of reflectance uncertainty to a hypothetical unchar
acterized post-launch +/− 2.5 nm shift in band center wavelength. 
130:1 sensor SNR was included in all reflectance uncertainty estimates, 
which were applied to synthetic mixtures as a Gaussian-distributed 
random error. 

Fig. 3. Atmospheric transmittance modeled by MODTRAN for a 60◦ solar zenith angle and “dry” (1 g cm− 2) and “moist” (4 g cm− 2) atmospheres. Lightly shaded lines 
show transmittance at 1 cm− 1 resolution. Darkly shaded lines show transmittance averaged across 25 nm bandwidth, at a 1 nm interval. Dashed lines indicate a 25 
nm bandwidth centered at 2038 nm. 

Table 3 
Index forms used to estimate fractional NPV cover. ρ signifies reflectance, with 
wavelength (λ) subscripts defined in Section 2.2.2. CIBR uses two weights (w) 
applied to reflectances of the x and z bands.  

Name Two-band 
equation 

Three-band equation 

difference index (DI) DI2 = ρλa
− ρλb 

(1) DI3 = 2ρλy
− (ρλx

+ ρλz
) (2) 

ratio index (RI) RI2 =
ρλa

ρλb 

(3) RI3 =
2ρλy

ρλx
+ ρλz 

(4) 

normalized difference index 
(NDI) 

NDI2 =
ρλa

− ρλb

ρλa
+ ρλb 

(5) 

NDI3 =
(ρλx

+ ρλz
) − 2ρλy

(ρλx
+ ρλz

) + 2ρλy 

(6) 
continuum interpolated band 

ratio (CIBR)  
CIBR =

ρλy

(wxρλx
+ wzρλz

)
(7) 

where: 

wx =
λz − λy

λz − λx 
(8) 

wz =
λy − λx

λz − λx 
(9)  
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After including reflectance uncertainty, candidate multispectral 
indices were tested on subsets of the simulated mixtures. A “global” 
model using all soil spectral classes was compared to “local” models 
specific to each soil class. Model error for the global model was also 
assessed within 10% intervals of GV and soil cover. 

2.3.2. Sensitivity to soil and NPV moisture 
Endmembers from the soils spectral library represent dry soils, and 

candidate index performance may be impacted by the effects of soil 
moisture on mixture reflectance (Daughtry and Hunt, 2008; Quemada 
and Daughtry, 2016). To test the impacts of soil and NPV relative water 
content (RWC) on NPV cover estimation error, we applied candidate 
indices to spectra collected during a field experiment by Quemada and 
Daughtry (2016). In this experiment, maize residue was distributed over 
bare soil to vary NPV cover. Moisture was manipulated during the 
experiment, and both soil and NPV RWC were measured along with NPV 
cover within the spectrometer field of view. 

Candidate multispectral indices were calculated for 410 field spectra, 
and then used as the independent variable in linear regressions with 
fractional NPV cover as the dependent variable. A 70%–30% random 
train/test split was used. Spectra were subset by total RWC, varying 
ranges in maximum RWC starting with 0–0.2 (i.e., relatively dry spectra) 
and increasing to 0–1.0 (i.e., full range in RWC). Daughtry and Hunt 
(2008) and Quemada and Daughtry (2016) demonstrated that error in 
CAI estimation of NPV cover could be reduced by adding a water ratio 
index based on the reflectance of the two reference bands to a multiple 
linear regression model. This water ratio index represents moisture 
impacts on soil and NPV reflectance. Using multiple linear regression, 
we tested applying similar water ratio indices based on candidate NPV 
index bands to examine improvement in RMSE across ranges in RWC. 
Water ratio indices were used in addition to candidate NPV indices as 
independent variables. 

2.3.3. Continuity analysis 
Candidate multispectral indices present options for SWIR2 bands 

that may produce biased reflectance values when compared against 
reflectance time series of previous Landsat SWIR2 bands. Heritage 
Landsat SWIR2 bands have centers ranging from 2200 nm (Landsat 8 
and 9 OLI) to 2220 nm (Landsat 7 Enhanced Thematic Mapper+), and 
bandwidths ranging from 187 nm (Landsat 8 OLI) to 270 nm (Landsat 4 
and 5 TM) (Goward et al., 2001; Masek et al., 2020; Mika, 1997). To 
assess how using candidate multispectral index band centers for Landsat 
Next might impact reflectance time series, a reflectance scene from the 
Earth Surface Mineral Dust Source Investigation (EMIT) imaging spec
trometer (Green and Thompson, 2020) was used to simulate candidate 
band and Landsat 8 OLI SWIR2 band reflectances. The EMIT imaging 
spectrometer has 285 bands with band centers spanning 381–2493 nm 
and FWHM ranging from 8.4 to 8.8 nm. The EMIT surface reflectance 
product has an approximate 60 m spatial resolution. 

EMIT_L2A_RFL_001_20220813T232355_2222515_004 is a diverse 
scene extending approximately 81 km by 82 km and containing the 
urban centers of Sacramento and Stockton, California, USA as well as 
large, surrounding agricultural and grassland areas. This scene was 
spectrally resampled using the relative spectral response of the Landsat 8 
OLI SWIR2 band and boxcar functions for candidate index bands. 
100,000 pixels were randomly sampled from the scene, and then 
candidate index band reflectances were regressed against simulated 
Landsat 8 OLI SWIR2 reflectance. R2 and RMSE for this regression were 
used to evaluate how well proposed index bands approximate heritage 
reflectance, and residual reflectance was calculated for each scene pixel. 
In addition, multiple linear regression was used to assess how ensembles 
of three index bands were able to approximate simulated Landsat 8 OLI 
SWIR2 band reflectance. 

2.3.4. Estimated NPV cover images 
To provide a qualitative comparison of index performance, bands 

simulated from EMIT scene EMIT_L2A_RFL_001_20220813T 
232355_2222515_004 were used to calculate candidate multispectral 
indices. Linear regression slope and intercept from the synthetic mixture 
training data were used to convert scene index values to estimated frac
tional NPV cover. 

3. Results 

We provide results for the index comparison in separate sections for 
hyperspectral (Section 3.1) and multispectral (Section 3.2) analyses. The 
sections that follow (3.3–3.7) describe results from the sensitivity 
analyses. 

3.1. Hyperspectral indices 

Linear regressions between hyperspectral indices computed using 
simulated imaging spectrometer data (10 nm bandwidth, 5 nm band 
center spacing) and fractional NPV cover were evaluated using test 
dataset R2 and RMSE for 3160 two-band combinations and 79,079 three- 
band combinations. To provide an easily interpretable graphical repre
sentation of RMSE trends, the lowest RMSE at each wavelength was 
plotted for bands a and b (two-band indices) or x, y, and z (three-band 
indices) in Fig. 4. Two-band index error was generally higher than three- 
band index error. Among two-band indices, NDI2 provided similar, but 
slightly lower RMSE compared to RI2. Both ratio indices distinctly 
improved RMSE compared to DI2. Minimum RMSE occurred at the same 
wavelengths for all three two-band indices, with λa at 2030 nm and λb at 
2095 nm. For NDI2, this band combination produced a 0.1489 RMSE 
and 0.613 R2. However, 2030 nm might be an impractical band center 
choice due to reduced atmospheric transmittance at this wavelength 
(Fig. 3). 

A local minimum for NDI2 occurred for λa at 2220 nm and λb at 2270 
nm (RMSE = 0.1588, R2 = 0.559). This two-band index is very similar to 
SINDRI, which uses the NDI2 form with λa at 2210 nm and λb at 2260 nm 
(Serbin et al., 2009b). By better accounting for variability in soil and 
NPV spectral shape, the NDI2 with λa at 2220 nm and λb at 2270 nm 
provided moderate improvement in error over the two-band combina
tion used for SINDRI (RMSE = 0.1659, R2 = 0.519). 

For three-band hyperspectral indices, RI3 and NDI3 again had very 
similar RMSE, with both outperforming DI3 (Fig. 4). The minimum 
RMSE of three-band combinations for RI3 and NDI3 had nearly identical 
0.675 R2 values, but RI3 produced a slightly lower RMSE (0.1363 for 
RI3, 0.1364 for NDI3). Minimum RMSE for RI3 occurred for λx at 2025 
nm, λy at 2115 nm, and λz at 2190 nm. Minimum RMSE for NDI3 
occurred for λx at 2025 nm, λy at 2125 nm, and λz at 2195 nm. For both of 
these indices, the 2025 nm band center is problematic because of 
reduced atmospheric transmittance due to carbon dioxide absorption 
(Fig. 3). CAI, with a DI3 index form, had high RMSE (0.1599) in com
parison to ratio indices. 

Since the CIBR index form can better accommodate the asymmetrical 
shape of the 2100 nm lignocellulose absorption feature, it improved 
minimum RMSE and shifted band wavelengths in comparison to the 
symmetrical three-band indices. A RMSE minimum of 0.1355 (R2 =

0.679) for CIBR occurred for λx at 2030 nm, λy at 2110 nm, and λz at 
2215 nm. While minimum RMSE and R2 were similar for CIBR, RI3, and 
NDI3, CIBR’s weighted index form provided four important advantages, 
as can be seen in Fig. 4:  

1) slightly reduced RMSE in comparison to RI3 and NDI3; 
2) the first reference band (λx) minimum RMSE shifts to longer wave

lengths and the minimum RMSE valley broadens, allowing this band 
center to be placed at a wavelength with higher atmospheric 
transmittance;  

3) the feature band (λy) minimum RMSE valley is broader and occurs 
closer to 2100 nm; and. 
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4) the third reference band (λz) has its minimum RMSE at longer 
wavelengths, potentially improving continuity with heritage SWIR2 
bands used by previous multispectral systems like Landsat OLI. 

Because of the increased width of the λx reference band minimum 
RMSE valley, alternative CIBR bands with better atmospheric trans
mittance can be selected with minimal reductions in accuracy. For 
example, λx at 2035 nm, λy at 2110 nm, and λz at 2215 nm produced a 
0.1357 RMSE and 0.678 R2, and λx at 2040 nm, λy at 2105 nm, and λz at 
2215 nm produced a 0.1361 RMSE and 0.676 R2. 

Additionally, a local minimum CIBR capturing the reflectance peak 
between 2100 and 2300 nm lignocellulose absorption occurred for λx at 
2135 nm, λy at 2225 nm, and λz at 2265 nm, producing a 0.1570 RMSE 
and 0.569 R2. 2225 nm and 2265 nm are close to local minimum NDI2 
wavelengths, and also close to wavelengths used for SINDRI. Remark
ably, there appears to be only a minor benefit to adding a third band 
residing in the 2100 nm lignocellulose absorption feature. The local 
minimum three-band CIBR reduced RMSE by 0.0018 and improved R2 

by 0.01 in comparison to the local minimum two-band NDI. 
Two new CIBR indices were defined based on these results. The 

hyperspectral version of the Continuum Interpolated NPV Depth Index 
(CINDI) is based on the CIBR using band centers of 2035, 2110, and 
2215 nm for λx, λy, and λz, respectively. The equation for CINDI subtracts 
the CIBR from 1 to provide a “band depth” value that is positively 
correlated with fractional NPV cover: 

CINDIh = 1 −
(

ρ2110

0.583ρ2035 + 0.416
ρ2215

)

(10)  

where the h subscript indicates hyperspectral bands based on simulation 
of imaging spectrometer data, reflectance subscripts indicate 

wavelength in nm, and weights were calculated using eqs. 8 and 9 (in 
Table 3). CINDI can be thought of as a weighted, ratioed version of CAI 
that has been optimized for atmospheric transmittance and spectral 
variability in both NPV and soils. 

The hyperspectral version of the Dual Absorption NPV Index (DANI) 
is based on the CIBR using 2135, 2225, and 2265 nm band centers, and is 
also positively correlated with fractional NPV cover: 

DANIh =
ρ2225

0.3077ρ2135 + 0.6923ρ2265
(11)  

where the h subscript on DANI indicates hyperspectral bands based on 
simulation of imaging spectrometer data, reflectance subscripts indicate 
wavelength in nm, and weights were calculated using eqs. 8 and 9 (in 
Table 3). DANI measures the height of the peak between the 2100 and 
2300 nm lignocellulose absorption features (Fig. 5B), and is a weighted 
version of the “center peak ratio” index described by Lamb et al. (2022), 
optimized for spectral variability in both NPV and soils. 

Fig. 5 provides illustrated examples of CINDIh and DANIh for end
members from the NPV spectral library, with selected 10 nm hyper
spectral index bands shown in dark gray. CINDI measures the depth of 
the 2100 nm lignocellulose absorption feature (Fig. 5A), while DANI 
measures the height of the peak between the 2100 and 2300 nm ab
sorption features (Fig. 5B). Each plot shows the linearly interpolated 
reference reflectance for endmember VH358 as a green circle. CINDI’s 
use of weighting increases the measured depth of the absorption feature 
over an unweighted index, since the mean of the two reference bands 
would have a lower reflectance value in Fig. 5A. Similarly, DANI’s use of 
weighting increases the measured height of the peak, since the mean of 
the two reference bands would have a higher reflectance value in 
Fig. 5B. 

Fig. 4. Lowest root mean squared error (RMSE) for hyperspectral two- and three-band indices at each wavelength. Dots indicate the minimum RMSE band com
binations for each index. 

P.E. Dennison et al.                                                                                                                                                                                                                             



Remote Sensing of Environment 295 (2023) 113715

10

CINDIh’s feature band (λy) at 2110 nm is positioned near the center of 
local reflectance minima produced by varying cellulose-to-lignin ratio 
(Fig. 5A). CINDIh’s second reference band (λz) at 2215 nm is well-aligned 
with the reflectance peak between the 2100 and 2300 nm lignocellulose 
absorption features. In contrast, DANIh’s feature band (λy) at 2225 nm is 
shifted slightly to the right of this reflectance peak. 

Scatterplots demonstrate linear relationships between predicted and 
observed NPV cover, with a tighter correlation for CINDI in comparison 
to DANI (Fig. 6, top row). As expected with an R2 and slope closer to one, 
CINDI has a smaller y-intercept than DANI. As would be expected with 
any linear regression model, both indices overpredict NPV cover at low 
fractions and underpredict NPV cover at high fractions. 

3.2. Multispectral indices 

Broadened bandwidths of simulated multispectral data increased the 
potential for overlapping bands and thus reduced the number of 
compared band combinations to 2701 for two-band indices and 47,905 
for three-band indices. Broadened bandwidths had minor impacts on 
RMSE and wavelength positions of bands with minimum RMSE (Fig. S2). 
NDI2 was again the two-band index with the lowest error (RMSE =
0.1499, R2 = 0.607), using band centers of 2030 and 2090 nm. NDI2 had 
a local minimum error (RMSE = 0.1618, R2 = 0.542) using band centers 
of 2225 and 2270 nm. 

CIBR again had the lowest RMSE values compared to the other three- 
band index forms. At 5 nm band center intervals, the lowest RMSE for 
estimating fractional NPV cover was found for band centers of λx at 
2030 nm, λy at 2110 nm, and λz at 2210 nm (RMSE = 0.1364, R2 =

0.675). These band centers are close to optimal band centers for CINDIh 
(Eq. 10). Multispectral CINDI bands were further refined by fixing λx at 
2038 nm to maximize atmospheric transmittance (Fig. 3) and examining 
band combinations at 1 nm interval. Rather than find the minimum 
RMSE for a single three-band combination among many similar com
binations, we averaged RMSE across a tolerance of +/− 2 nm for the 
2038 nm λx band center and +/− 4 nm for the λy and λz band centers. 

These tolerances could accommodate manufacturing of filters for any 
future multispectral/superspectral sensors adopting these bands. A 
minimum average RMSE of 0.1371 was found for λx at 2038 nm, λy at 
2108 nm, and λz at 2211 nm. These three bands were used for the 
multispectral version of CINDI, which assumes 25 nm bandwidth for 
band x and 40 nm bandwidth for bands y and z: 

CINDIm = 1 −
(

ρ2108

0.5954ρ2038 + 0.4046ρ2211

)

(12)  

where the m subscript on CINDI indicates bands based on simulation of a 
multispectral sensor, reflectance subscripts indicate wavelength in nm, 
and weights were calculated using eqs. 8 and 9 (in Table 3). 

A local minimum error in CIBR RMSE placed band centers for λx at 
2145 nm, λy at 2220 nm, and λz at 2265 nm (RMSE = 0.1589, R2 =

0.558). These three bands were used for the multispectral version of 
DANI, which assumes 40 nm bandwidths for all bands: 

DANIm =
ρ2220

0.375ρ2145 + 0.625ρ2265
(13)  

where the m subscript on DANI indicates bands based on simulation of a 
multispectral sensor, reflectance subscripts indicate wavelength in nm, 
and weights were calculated using eqs. 8 and 9 (in Table 3). 

Light gray shading in Fig. 5 denotes bandwidths for multispectral 
CINDI and DANI bands. Shifting the first CINDIm reference band (λx) to 
slightly longer wavelengths (2038 nm band center) was a practical 
choice to maximize atmospheric transmittance for the broader multi
spectral band; note that for hyperspectral CIBR results (Section 3.1), a 
band combination using 2040 nm for λx also had low error. The wave
length position of the DANIm feature band shifted to slightly shorter 
wavelength (by 5 nm) compared to DANIh in a way that better covers the 
range in peak positions between 2100 and 2300 nm lignocellulose ab
sorption features. The first DANIm reference band shifted to longer 
wavelength in comparison to the corresponding DANIh band. 

Scatterplots for the multispectral versions of CINDI and DANI are 
remarkably similar to scatterplots for the hyperspectral versions of the 

Fig. 5. Plots demonstrating hyperspectral (dark gray) and multispectral (light gray) bands for A) CINDI and B) DANI. A subset of the NPV endmembers from Fig. 2A 
are also shown. For each plot, endmember VH358 reference band, interpolated reference, and feature band reflectances for hyperspectral bands are shown as circles. 
The feature band depth (A) or height (B) for VH358 is indicated by the vertical orange line, and the dashed black line is the interpolated linear trend between 
reference bands. 
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same indices (Fig. 6). Despite having broader bands, multispectral index 
R2, intercept, and RMSE values are very close to those of their hyper
spectral counterparts. 

3.3. Multispectral reflectance uncertainty 

Relative uncertainty in retrieved reflectance, which included 130 

SNR, was approximately 1% (Table 4). Uncertainty was highest for the 
CINDIm x band, followed by the CINDIm y band. Both bands have higher 
sensitivity to uncertainty in water vapor and carbon dioxide. Uncer
tainty was generally lower for DANIm bands. Low column water vapor 
produced higher uncertainty than higher column water vapor, but dif
ferences were small. An uncharacterized +/− 2.5 nm shift in band 
center had minor impacts on relative uncertainty. When reflectance 
uncertainty was taken into account, RMSE for CINDIm-modeled NPV 
cover increased to approximately 0.150 for the no band shift case 
(Table 5). RMSE for DANIm-modeled NPV cover increased to approxi
mately 0.165 for the no band shift case. 

3.4. CINDIm and DANIm sensitivity to soil spectral class and GV cover 

With respect to mineral absorptions in the SWIR2 region, CINDIm 
was less sensitive to variability in soil spectral shape than DANIm 
(Fig. 7). Regardless of atmospheric moisture and bandshift, CINDIm had 
lower error in modeled NPV cover for all soil spectral classes with the 
exception of class 8, the class with a single spectrum for a topaz-bearing 
mineral. Soil spectral classes with absorption features close to 2250 and 
2300 nm (classes 4, 6, and 7) produced much higher RMSE values when 
the DANIm global model was applied. These three high error soil classes 
represent carbonate, chlorite/epidote/biotite/serpentine group, and 
gibbsite minerals, respectively (Table 1). Using local models trained on 
each specific soil spectral class did reduce error, particularly for DANIm, 
but CINDIm still produced lower RMSE relative to DANIm for all classes 
with the exception of class 8. 

With respect to fractional GV cover, CINDIm was broadly less 

Fig. 6. Scatterplots showing relationships between predicted and observed fractional NPV cover for test data. Darker shades indicate higher sample density. The top 
row uses hyperspectral versions of CINDI (left) and DANI (right) indices as defined in Section 3.1. The bottom row uses multispectral versions of CINDI and DANI as 
defined in Section 3.2. 

Table 4 
Relative uncertainties (in percent) in retrieved reflectance for CINDIm and 
DANIm bands, as modeled under dry and moist atmospheres and with no band 
center shift and a 2.5 nm band center shift. 6S parameters for each model run are 
shown in italics.   

band band center 
wavelength 
(nm) 

bandwidth 
(nm) 

Relative uncertainties (%) 

column 
water 
vapor (g 
cm− 2)    

1 4 1 4 

band 
center 
shift 
(nm)    

0 0 2.5 2.5 

CINDIm x 2038 25 1.38 1.32 1.41 1.33 
CINDIm y 2108 40 1.05 0.97 1.22 1.17 
CINDIm z 2211 40 0.98 0.92 1.00 0.94 
DANIm x 2145 40 0.95 0.88 0.96 0.91 
DANIm y 2220 40 0.90 0.87 0.98 1.28 
DANIm z 2265 40 0.82 0.83 0.85 0.83  
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sensitive than DANIm (Fig. 8). For both indices, error in estimated NPV 
cover was lowest in the 20–40% GV cover range. RMSE was consistently 
below 0.14 within this range for CINDIm. DANIm RMSE was slightly 
lower than CINDIm RMSE for some cases at 20–30% GV cover, but in all 
other ranges CINDIm RMSE was lower. While error was similar in the 
10–20% range, DANIm RMSE increased much more rapidly than CINDIm 
RMSE above 30% GV cover. For both GV cover (Fig. 8) and soil cover 
(Fig. S3), RMSE was highest in the 0–10% cover range with a general 
declining trend in error as GV or soil cover increased. A low GV or soil 
fraction enables a wider range in fraction of the two complementary 
endmembers, which in turn increases RMSE. 

3.5. CINDIm and DANIm moisture sensitivity 

RMSE for linear regression models broadly increased as the range in 
RWC increased in the Quemada and Daughtry (2016) dataset (Fig. 9), 
with lowest error generally occurring for the 0–20% RWC range. From 
0 to 20% RWC, CINDIm had lower error in fractional NPV cover than 
DANIm. For wider RWC ranges, DANIm was less sensitive to variation in 
moisture content due to band placement closer to the center of the 
SWIR2 spectral region, and produced lower error than CINDIm. The 
water ratio index for CINDIm used the 2211 nm reference band 

reflectance divided by the 2038 nm reference band reflectance. The 
water ratio index for DANIm used the 2220 nm feature band reflectance 
divided by the 2145 nm reference band reflectance; other ratios were 
tested but the ratio of these bands produced the largest reduction in 
RMSE. When water ratio indices were added to both linear regressions 
RMSE declined, particularly for wider ranges in RWC (Fig. 9). Due to 
CINDIm bands’ higher sensitivity to water content, its water ratio index 
provided a better correction to the CIBR index relationship with frac
tional NPV cover. Multiple linear regression using CINDIm and its water 
ratio index produced RMSE ranging from 0.061 for the driest spectra (R2 

= 0.950) to a maximum of 0.075 for 0–90% RWC (R2 = 0.924). 

3.6. Continuity analysis 

Simulated reflectances for CINDIm and DANIm bands, calculated from 
EMIT imagery, were strongly correlated with simulated reflectance from 
the Landsat 8 OLI SWIR2 band (Table 6). R2 values exceeded 0.98 for all 
potential index bands, with the first CINDIm reference band (2038 nm) 
producing the highest RMSE at 0.68% reflectance. The first DANIm 
reference band (2145 nm) was most strongly correlated with Landsat 8 
OLI, with a 0.998 R2 and RMSE at 0.18% reflectance. When all CINDIm 
or DANIm bands were included in a multiple linear regression against 

Table 5 
R2 and RMSE for NPV cover modeled by CINDIm and DANIm, considering reflectance uncertainty and SNR.   

dry atmosphere moist atmosphere  

no band shift 2.5 nm band shift no band shift 2.5 nm band shift 

Index R2 RMSE R2 RMSE R2 RMSE R2 RMSE 
CINDIm 0.600 0.1511 0.585 0.1539 0.607 0.1497 0.592 0.1526 
DANIm 0.522 0.1652 0.517 0.1661 0.523 0.1651 0.498 0.1693  

Fig. 7. Error in modeled fractional NPV cover based on reflectance uncertainty and SNR both with and without a modeled 2.5 nm band shift, for different soil 
spectral classes. Global models were trained on all soil classes and then applied to each class to assess error. Local models were trained on each soil class and then 
applied to the same class to assess error. 
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simulated Landsat 8 OLI SWIR2, RMSE dropped to <0.1% reflectance. 
Despite relatively low RMSE across all CINDIm and DANIm bands, 

reflectance error can be much higher for some spectra due to a narrower 
band’s inability to approximate Landsat 8 OLI’s broadband reflectance. 
Fig. 10 displays residuals for linear regression models between the two 
longer wavelength CINDIm bands (Fig. 10b, c) and simulated Landsat 
OLI SWIR2 band reflectance, and between DANIm bands (Fig. 10d, e, f) 
and simulated Landsat OLI SWIR2 band reflectance. For the 2108 band, 

areas with high NPV and GV cover had negative residuals, while urban 
surfaces (which commonly display 2300 nm absorption by carbonate 
minerals and hydrocarbons due to pervasive use of concrete and plastic) 
and soils with a 2200 nm absorption feature had positive residuals 
(Fig. 10b). These trends reversed for the 2211 nm CINDIm and 2220 nm 
DANIm bands, with high NPV and GV cover producing positive residuals, 
and urban and soil surfaces producing negative residuals (Fig. 10c, e). 
2145 nm displayed the lowest residuals of any individual band, with the 
only strong residuals appearing for soil surfaces with mineral absorption 
near 2200 nm and a photovoltaic solar farm with reduced reflectance at 
wavelengths beyond 2230 nm. When three index bands were used in 
multiple linear regressions, residuals dropped to very low levels. All 
three CINDIm bands combined produced the largest residuals for urban 
surfaces and the solar farm, but residuals were much closer to zero than 
for any individual band (Fig. 10g). Residuals from all three DANIm bands 
combined were very close to zero, with a weak positive residual from the 
solar farm producing the only feature of note within the residual image 
(Fig. 10h). 

3.7. Estimated NPV cover image qualitative comparison 

CINDIm proved better at capturing spatial variation in fractional NPV 
cover within the EMIT scene than DANIm. CINDIm produced high esti
mated NPV cover in fallowed fields and areas with senesced grass cover, 
and low estimated NPV cover in areas with high GV, soil, or impervious 
surface cover (Fig. 11b). NPV cover estimated using DANIm was mostly 
above 50%, with low NPV cover relegated to areas with exposed soil. 
DANIm strongly overestimated NPV cover in areas with high GV cover 
(Fig. 11c), consistent with past findings of poor discrimination between 
NPV and GV cover for indices using the 2300 nm lignocellulose ab
sorption feature (e.g., Lamb et al., 2022; Serbin et al., 2013). 

4. Discussion 

Comparison of error metrics for indices used to estimate NPV cover 
demonstrated several important findings. First, RMSE values for 
hyperspectral and multispectral indices were very similar, demon
strating that 10 nm hyperspectral bandpass is not necessary to improve 
accuracy of index-estimated NPV cover. Second, error was lower for 
indices utilizing only the 2100 nm lignocellulose absorption feature (e. 
g., CINDI), with higher RMSE for indices using the 2300 nm feature or 
both features (e.g., DANI). This difference is consistent with prior in
vestigations (Hively et al., 2021; Lamb et al., 2022), and our results 
point toward CINDI as being a more robust NPV index when global 
variability in soils is considered. Third, three-band indices utilizing only 
the 2100 nm lignocellulose absorption reduced error relative to two- 
band indices. In contrast, local minimum RMSE was similar for two- 
and three-band indices applied to the 2300 nm lignocellulose absorption 
feature or both features. However, a third band (e.g., DANIm x band at 
2145 nm) did provide an apparent advantage for continuity with heri
tage Landsat systems. Fourth, ratio-based indices (NDI, RI, and CIBR) 
were routinely superior for estimating NPV cover compared to 

Fig. 8. Error in modeled fractional NPV cover based on reflectance uncertainty 
and SNR both with and without a modeled 2.5 nm band shift, for different GV 
cover ranges. 

Fig. 9. Fractional NPV cover RMSE for field spectra with varying soil and NPV 
fraction and RWC from Quemada and Daughtry (2016). WRI is water ratio 
index. RWC ranges start at 0 and continue through the maximum RWC shown 
on the x-axis. 

Table 6 
R2 and RMSE for EMIT image spectra convolved to Landsat 8 OLI SWIR2 band 
reflectance, as modeled by CINDIm and DANIm bands. Similar continuity results 
for Sentinel-2a MSI SWIR2 band reflectance are shown in Table S1.  

Index Band center wavelength (nm) R2 RMSE 

CINDIm 2038 0.980 0.0068 
CINDIm 2108 0.991 0.0042 
CINDIm 2211 0.992 0.0041 
DANIm 2145 0.998 0.0018 
DANIm 2220 0.993 0.0040 
DANIm 2265 0.995 0.0028 
CINDIm all bands 1.000 0.0007 
DANIm all bands 1.000 0.0002  

P.E. Dennison et al.                                                                                                                                                                                                                             



Remote Sensing of Environment 295 (2023) 113715

14

difference indices. Lastly, CIBR indices provided the lowest RMSE out of 
all indices tested. We attribute their improved performance to the use of 
weighting factors, which can better account for the shape of asymmet
rical spectral features. 

Based on our results, CINDI is in most ways superior to DANI for 
estimating fractional NPV cover. Hyperspectral and multispectral ver
sions of CINDI produced the lowest RMSE for modeling the NPV cover of 

over a million synthetic mixtures that included a diversity in NPV and 
soil mineral spectral absorptions. Although CINDIm bands were more 
sensitive to uncertainty in atmospheric conditions, lower error for 
CINDIm persisted when reflectance retrieval uncertainty was included. If 
CINDIm bands are adopted for future multispectral/superspectral satel
lite missions, band center wavelength and bandwidth for the 2038 nm 
band will need to be constrained to smaller tolerances than for other 

Fig. 10. Residuals of EMIT image spectra convolved to Landsat 8 OLI SWIR2 band reflectance, as modeled by b) CINDIm feature band y at 2108 nm; c) CINDIm 
reference band z at 2211 nm; d) DANIm reference band x at 2145 nm; e) DANIm feature band y at 2220 nm; f) DANIm reference band z at 2265 nm; g) all CINDIm 
bands; h) all DANIm bands. CINDIm reference band x (2038 nm) was omitted from the single band comparison images because of its higher residuals compared to 
other bands. A true color composite of the EMIT tile is shown for reference in (a). All residuals are scaled from − 1% to +1% reflectance. The vertical stripe seen in 
d and g is due to a post-launch change in the EMIT instrument that was uncharacterized by pre-launch calibrations; reduction of this artifact is planned for future data 
versions (R. Green, personal communication). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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bands; this is due to the relatively narrow width of this atmospheric 
window, higher sensitivity to water vapor, and greater reflectance 
retrieval uncertainty. Atmospheric correction and reflectance retrieval 
uncertainty will be important for this band due to variability in atmo
spheric transmittance at this wavelength. Even when accounting for 
increased reflectance uncertainty, CINDIm had lower RMSE across 
nearly all soil spectral types, and similar or lower RMSE across a wide 
range of fractional GV and soil cover. Creating soil spectral class-specific 
models resulted in small reductions in RMSE for CINDIm, while class- 
specific models may be more necessary to reduce error using DANI. 
Qualitatively, CINDIm was not prone to overestimation of NPV cover in 
areas with high GV cover. DANIm was less sensitive to variability in 
RWC, but this wasn’t a clear advantage of this index. Since CINDI bands 
are more sensitive to moisture, better correction for RWC was possible 
using a water ratio index, which by extension could provide additional 
information about the water status of NPV, soil, and vegetation. 

Based on our mixtures of diverse NPV and soil endmembers, a single 
global relationship using three CINDIm bands would be anticipated to 
have fractional NPV cover error in the range of ±13–16%. Soil spectral 
class-specific models would only minimally reduce this uncertainty, 
with the possible exception of rare mineral absorption features like 
topaz in soil Class 8. Error may exceed this range for areas of very low 
GV cover. 

Multiple factors could cause NPV cover error to be underestimated 
by this study. While the soil spectral library captures a diversity of 
mineral absorption features, it was reliant on previously measured soil 
spectra and may not represent the actual global frequency distributions 
of soil mineral absorptions. In particular, tropical soils are likely un
derrepresented in the source soil spectral libraries. While the SWIR2 
spectrum of pure GV is dominated by liquid water absorption, relatively 
few vegetation types were included in the GV spectral library. Darkening 
of synthetic mixtures relied on a limited set of land cover types and 
temporal range. Lower reflectance mixtures may increase RMSE. Linear 
spectral mixing was assumed, and non-linear mixing may impact error 
in NPV cover estimation, particularly for high GV fractional cover. More 
extensive field datasets are needed to enable better quantification of 
error in NPV cover estimation, and future work should examine the 
impacts of GV cover exceeding 50%. 

Other limitations of this study may have led to overestimation of 
error in modeled NPV cover. Reflectance uncertainty and SNR were 
based on a 60◦ solar zenith angle and 12% surface reflectance. For many 

applications, solar zenith angle will frequently be smaller and/or 
average surface reflectance will be higher, leading to higher SNR and 
reduced RMSE (Fig. S4). While ±13–16% error represents large bounds 
for a potential global model, RMSE for the Quemada and Daughtry 
(2016) dataset (Section 3.5) demonstrates that site-specific models have 
the potential to greatly reduce error in estimated NPV cover. For dry 
soils, CINDIm RMSE was approximately 6%, and increased to 7% across 
the entire range of RWC when CINDIm was used with a water ratio index. 
At the global scale, relative abundances of NPV, soil, and GV fractions 
may differ from the Dirichlet distribution used in this analysis, which 
could decrease or increase error in estimated NPV cover. Presence of 
additional materials not accounted for in NPV-soil-GV mixtures, such as 
standing water or snow, will likewise have unknown impacts on error in 
estimated NPV cover. 

Our study examined only SWIR2 bands using relatively simple index 
methods. There is potential for reducing NPV cover error using addi
tional visible, near infrared, and SWIR1 (~1400–1800 nm) bands, or by 
using complete spectra with more advanced methods like SMA, spectral 
feature analysis, partial least squares regression, and machine learning 
(Dennison et al., 2019). Various forms of SMA have been commonly 
used for quantifying NPV cover (Coates et al., 2015; Davidson et al., 
2008; Guerschman et al., 2015; Mayes et al., 2015; Numata et al., 2007; 
Okin, 2007; Pancorbo et al., 2023; Tane et al., 2018). Future applica
tions of SMA may benefit from additional bands capturing the 2100 and 
2300 nm lignocellulose absorption features. Linear regression produced 
estimated NPV cover outside the range of physically possible values 
(Fig. 6), but methods like SMA or beta regression (Ferrari and Cribari- 
Neto, 2004) could be used to constrain estimated NPV cover to be
tween zero and one. 

The longer wavelength CINDIm reference band at 2211 nm would be 
sensitive to minerals absorbing in the 2200 nm wavelength region, 
which include clays, such as montmorillonite and kaolinite, and white 
micas, such as muscovite and illite. Because the feature band of CINDIm 
at 2108 nm is on the shoulder of the clay/white mica absorption feature, 
CINDIm bands would offer an opportunity to generate a normalized 
index for absorption by these minerals. Thus CINDIm bands could still 
allow for mineral mapping applications developed using broader SWIR2 
band sensitivity to 2200 nm absorption features (Adiri et al., 2020; 
Crósta and Filho, 2009). CINDIm bands would be relatively insensitive to 
longer wavelength mineral absorptions (e.g., carbonates and chlorites) 
and to methane plume emissions (Jacob et al., 2022). 

Fig. 11. a) A SWIR2/near infrared/false color composite of EMIT scene EMIT_L2A_RFL_001_20220813T232355_2222515_004, and fraction NPV cover estimates 
using b) CINDIm and c) DANIm. 
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CINDIm bands did provide worse continuity with Landsat OLI when 
compared to DANIm bands. DANIm’s 2145 nm reference band had the 
best single-band correlation with simulated Landsat 8 OLI SWIR2 
reflectance. This finding is somewhat counterintuitive since the second 
CINDIm reference band (2211 nm) and DANIm feature band (2220 nm) 
are closer to the nominal center of the Landsat 8 OLI SWIR2 band (2200 
nm). However, the 2145 nm band is still well within the OLI SWIR2 
band’s > 180 nm bandwidth, and the 2145 nm band avoids mineral 
absorption features at longer wavelengths that reduce correlations be
tween new bands and the heritage band. OLI SWIR2 reflectance cannot 
be replicated by any single narrower band due to spectral variability in 
the SWIR2 region, although combinations of three bands can reduce 
residuals to a very low level. More investigation is needed to determine 
how changing band centers and bandwidth could impact temporal 
monitoring applications of Landsat data (e.g., Eidenshink et al., 2007; 
Hansen et al., 2017; Kennedy et al., 2014) and “harmonized” multi
sensor products (Claverie et al., 2018). While continuity issues are 
important for temporal monitoring applications, new bands will intro
duce greatly enhanced capabilities for monitoring changes in NPV cover 
over time, enabling novel land cover, disturbance, agriculture, and 
wildfire danger applications. 

5. Conclusions 

CINDI, a three-band weighted index sensitive to the 2100 nm 
lignocellulose absorption feature, provided the best performance for 
estimating fractional NPV cover when considering a wide range of 
spectral mixtures that included variability in soil and NPV spectral ab
sorptions. The multispectral version of CINDI was less sensitive to soil 
spectral absorptions and fractional GV cover than competing indices. 
While CINDIm was more sensitive to soil and NPV RWC, this sensitivity 
allows for inclusion of a water ratio index capable of correcting errors in 
estimated NPV cover. Individual CINDIm band reflectance did not have 
the best continuity with the simulated Landsat 8 OLI SWIR2 band 
reflectance, but multiple bands may be used to adequately approximate 
heritage reflectance. 

Based on our findings, future multispectral or superspectral systems 
can adopt the three SWIR2 bands used to calculate CINDIm to improve 
global NPV mapping capabilities. Landsat Next is envisioned to include 
three satellites with 10–20 m spatial resolution visible, near infrared, 
and SWIR bands, with first launch anticipated by late 2030. Based on the 
analysis documented in this paper, Landsat Next has adopted the 
following SWIR2 band specifications in its instrument requirements 
(NASA, 2023): a band centered at 2038 nm with 25 nm bandwidth; a 
band centered at 2108 nm with 40 nm bandwidth; and a band centered 
at 2211 nm with 40 nm bandwidth. Tolerances for these band center 
wavelengths are +/− 2 nm for the 2038 nm band and +/− 4 nm for the 
2108 and 2211 nm bands, with the tighter tolerance for the 2038 nm 
band based on atmospheric transmittance. These bands and the associ
ated CINDI index may enable use of Landsat Next data for applications 
utilizing NPV cover mapping, such as improving soil management, 
preventing land degradation, evaluating impacts of drought, mapping 
ecosystem disturbance, and assessing wildfire danger. 

Since CINDI can function as a hyperspectral or multispectral index 
with little change in accuracy of NPV cover estimation, application of 
CINDI across data from future superspectral sensors and imaging spec
trometers will be feasible. Multiple imaging spectroscopy missions are 
currently on-orbit or planned for launch later this decade (Green and 
Thompson, 2020; Guanter et al., 2015; Iwasaki et al., 2011; Loizzo et al., 
2018; Rast et al., 2021; Stavros et al., 2023). Their capabilities can be 
combined with planned next generation superspectral systems like 
Landsat Next to provide high-frequency monitoring of dynamic NPV 
cover. 
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