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A B S T R A C T   

Airborne laser scanning (ALS) data enable accurate modeling and mapping of aboveground biomass (AGB), but 
the limited spatial and temporal extents of ALS data collection limit the capacity for broad-scale carbon ac
counting. Conversely, while space-based remote sensing instruments provide increased spatial and temporal 
coverage, it can be difficult to directly link field-level vegetation biometrics to satellite data due to coarser spatial 
resolution and positional uncertainty. The combined use of ALS and satellite remote sensing data may offer a 
solution to efficient, accurate, and consistent AGB mapping across time and space. Such airborne-spaceborne 
data fusion has been demonstrated successfully in high-biomass settings; however, the unique structural con
ditions of dryland woodland ecosystems, with open canopies and low leaf area indices, pose mapping challenges 
that require further study. These challenges are particularly acute with large footprint spaceborne lidar, where 
short, widely-spaced trees may limit the capacity for accurate AGB estimation. In this study, we present a scaled 
methodological framework for linking field-measured woodland AGB to ALS data and, in turn, linking ALS- 
modeled AGB to satellite data, using piñon-juniper woodlands in southeastern Utah as a case study. We 
compare the effectiveness of this scaling approach using two satellite sensors, Landsat 8 OLI (multispectral) and 
GEDI (lidar). Since the predicted outputs of our local-scale model are being used as inputs to our regional-scale 
model, we also demonstrate an approach for propagating uncertainty throughout this nested, multiscale 
analytical framework, leveraging the inherent variability within a random forest’s decision trees. Given the 
positional uncertainty of GEDI footprints, we test a range of different footprint sizes for their relative effects on 
ALS-GEDI AGB model accuracy. Our local-scale (field-ALS) predictive model was able to account for 74% of 
variance in AGB, and estimate AGB with a root mean squared error (RMSE) of 14 Mg/ha, a mean absolute error 
(MAE) of 11.09 Mg/ha. Our regional-scale (ALS-Landsat/GEDI) analysis with propagated uncertainty revealed 
that the combined use of Landsat and GEDI metrics produced the best predictive model (R2 = 0.68; RMSE =
12.71 Mg/ha; MAE = 9.40 Mg/ha), followed by Landsat-only metrics (R2 = 0.66, RMSE = 13.08 Mg/ha; MAE =
9.71 Mg/ha), and GEDI-only metrics (R2 = 0.49, RMSE = 16.01 Mg/ha; MAE = 12.14 Mg/ha). These results 
suggest that Landsat may be better-suited than GEDI for estimating AGB in woodland environments where low 
canopy covers and short trees limit the capacity for precisely characterizing vegetation structure within large- 
footprint, waveform lidar data. The footprint size analysis revealed that larger simulated footprints (e.g., 30 
m radius and greater) produced higher GEDI model accuracies; however, increasing footprint radii beyond 30 m 
does not significantly increase model accuracy. This research represents an important step forward in improving 
our capacity for reliably mapping woodland AGB, and provides an early test case for the application of GEDI data 
to woodland AGB mapping.   

1. Introduction 

To better understand the role that vegetation plays in the global 

carbon cycle requires accurate, spatially-explicit, and temporally- 
consistent estimates of aboveground biomass (AGB) (Goetz and 
Dubayah, 2011). AGB is a readily-measurable proxy for the amount of 
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carbon stored in a plant, giving it unique importance in the estimation of 
current carbon stocks (Brown, 2002). In this capacity, it also allows for 
the measurement of carbon fluxes, including net losses over time due to 
natural or anthropogenic vegetation removal, and net gains due to 
growth, recruitment, and expansion (Gibbs et al., 2007). As with most 
vegetation biometrics, the most accurate way to quantify AGB is using 
field-based measures. This is typically done through destructive sam
pling and the development of statistically-based allometric relationships 
between physical plant dimensions and AGB (Chojnacky et al., 2014). 
While these allometric relationships are valuable, this analytical 
approach is practically limited and does not allow for broad-scale AGB 
estimation (Lu, 2006). Remote sensing techniques uniquely have ca
pacity for providing accurate, objective estimates of AGB on broad 
spatial and temporal scales (Hudak et al., 2012). 

The most accurate, remote sensing-based approach for estimating 
AGB is through the use of light detection and ranging (lidar) technology 
(Zolkos et al., 2013). Individual pulses of light are emitted in rapid 
succession from an airborne platform towards the ground surface, 
exploiting small gaps in a canopy to capture measurements of three- 
dimensional vegetation structure (Lefsky et al., 2002). Critical pre
dictors of AGB such as vegetation height and canopy cover can be easily 
derived from an airborne laser scanner (ALS) point cloud (e.g., Hollaus 
et al., 2006; Korhonen et al., 2011). The most common approach to 
mapping AGB using ALS is through the area-based approach (Næsset, 
2002), whereby ground reference data are collected within a fixed-area 
plot, which are fed through species-specific allometric equations to 
produce a plot-level AGB estimate, which is then compared to a suite of 
point cloud metrics, using a regression or machine learning algorithm (e. 
g., Kankare et al., 2013; Luo et al., 2019). Although the effectiveness of 
this approach has been widely demonstrated, it has some critical limi
tations: (1) the high cost of data collection and the voluminous nature of 
ALS point cloud data result in limited spatial extents of data availability; 
(2) the airborne, opportunistic nature of data collection result in limited 
temporal data availability; and (3) the range of different sensor speci
fications and collection parameters limit the transferability of ALS-AGB 
algorithms derived in one location to another. 

One way to overcome these limitations is through the use of more 
spatially exhaustive, temporally repetitive, and consistently-calibrated 
satellite data. A wide range of passive remote sensing instruments 
measuring reflected solar radiance have been explored for their AGB 
estimation capacity, including coarse spatial resolution sensors like 
MODIS (e.g., Li et al., 2018), moderate resolution sensors like Landsat 8 
OLI and Sentinel-2 (e.g., Askar et al., 2018; Nguyen et al., 2020), and 
high resolution sensors like Worldview (e.g., Vastaranta et al., 2018). 
Although these multispectral sensors tend to enable a more broad-scale 
analysis, they lack the capacity for measuring vegetation structure 
directly and suffer from spectral saturation in densely-vegetated envi
ronments, limiting their ability to directly map AGB (Pflugmacher et al., 
2014). The use of space-based lidar instruments, such as the Geoscience 
Laser Altimeter System (GLAS) onboard the IceSAT and IceSat-2 satel
lites, as well as the Global Ecosystem Dynamics Investigation (GEDI) 
onboard the International Space Station may bridge the gap between 
ALS data and spaceborne passive instruments, providing new and fertile 
ground for consistent, reliable AGB estimation on a global or near-global 
scale (Dubayah et al., 2020; Duncanson et al., 2020). Although space- 
based lidar has demonstrated promise in AGB mapping, through anal
ysis of real and simulated data (Narine et al., 2019; Qi et al., 2019), the 
point-based data collection approach inherent to these missions does not 
enable the provision of a spatially-exhaustive AGB estimate. This limits 
the ability to, for example, derive total AGB estimates for a given loca
tion, or vegetation type. 

Individually, all of the aforementioned approaches (ground-level, 
ALS, passive satellite, and active satellite) to mapping AGB are inher
ently limited. However, by combining these different datasets together, 
we can leverage their individual strengths and overcome their weak
nesses to produce the best possible, spatially- and temporally-explicit 

AGB estimates. Data fusion approaches have gained much attention in 
the remote sensing literature in recent years (Schmitt and Zhu, 2016; 
Zhang, 2010). One of the most common approaches to data fusion is to 
link datasets collected at different scales and resolutions. High spatial 
resolution, local-scale ALS and coarser spatial resolution, regional-scale 
multispectral satellite data have been fused for scaling estimates of tree 
mortality (Campbell et al., 2020), canopy height (Hudak et al., 2002), 
and land cover (Singh et al., 2012). In addition, a small number of 
studies have linked local-scale ALS data to multispectral satellite im
agery to enable regional-scale AGB estimation (Asner et al., 2018; Lu 
et al., 2012; Luther et al., 2019; Xu et al., 2017; Zald et al., 2016). With 
respect to active sensor satellite data, it has been suggested that ALS 
should act as an intermediary between field and space-acquired wave
forms for calibrating AGB models in order to minimize prediction error 
due to geolocational uncertainty (Duncanson et al., 2019). Success in 
ALS-active satellite scaled AGB modeling has been demonstrated with 
GLAS (Popescu et al., 2011), but given the nascency of GEDI, we have 
yet to fully explore its potential and limitations. Thus, it is important to 
test the extent to which local-scale ALS data can be used in a scaled 
modeling context to enable regional-scale AGB estimation using space
borne lidar data from GEDI. 

In addition to the inherent strengths and weaknesses of different 
remote sensing platforms and sensors, the ability to accurately map AGB 
is also affected by the ecosystem being studied. Research into remote 
sensing of AGB has revolved heavily around high-biomass forests in 
humid tropic and subtropical environments, given their relatively large 
contribution to the global carbon budget (e.g., Clark et al., 2011; Drake 
et al., 2002; Dubayah et al., 2010; Foody et al., 2003). Indeed, both 
Asner et al. (2018)and Xu et al. (2017) have successfully demonstrated 
ALS-satellite multispectral AGB scaled modeling in tropical environ
ments. Likewise, there are a large number of studies inquiring into the 
capacity for remote sensing to estimate biomass in high-biomass boreal 
forests (e.g., Dong et al., 2003; Matasci et al., 2018; Muukkonen and 
Heiskanen, 2005; Næsset and Gobakken, 2008; Rauste, 2005). Scaled 
AGB modeling has been shown to be effective in these higher-latitude 
ecosystems (Luther et al., 2019; Zald et al., 2016). However, consider
ably less attention in the scientific literature has been paid towards 
lower-biomass dryland woodland ecosystems. Woodland ecosystems 
possess low-to-moderate tree cover, existing on a spectrum between 
higher-cover forest ecosystems and lower-cover savanna ecosystems 
(Ratnam et al., 2011; Taft, 1997). Open-canopy dryland woodland 
ecosystems are found on approximately 550 Mha globally, representing 
4% of all terrestrial land, and spanning every continent besides 
Antarctica (Bastin et al., 2017). Despite their lower overall biomass, the 
dynamism of these semiarid ecosystems positions them as a major 
contributor to interannual variability in the global land carbon sink 
(Ahlström et al., 2015; Poulter et al., 2014). They exist at a critical 
environmental threshold, receiving just enough moisture to support the 
existence of trees. This gives small differences in precipitation a large 
influence on biomass, as droughts can induce widespread tree mortality 
(biomass reduction) and moist periods can bring about significant 
afforestation (biomass increase) (Clifford et al., 2013; Mitchard and 
Flintrop, 2013). 

Remote sensing in semiarid and arid ecosystems poses significant 
challenges not faced in other, more mesic environments (Krofcheck 
et al., 2014; Okin et al., 2001; Smith et al., 2019). Trees tend to be short 
in stature and feature irregularly-shaped crowns (Campbell et al., 2020). 
Open canopies and relatively low leaf area indices result in an abun
dance of understory shrubs, grasses, and forbs, as well as bare soil and 
rock when viewed from the synoptic remote sensing perspective (Smith 
et al., 2019). While a small number of studies have demonstrated suc
cessful AGB mapping in dryland woodland ecosystems using ALS (e.g., 
Krofcheck et al., 2016), relatively few studies to date have attempted to 
scale local, ALS-driven woodland AGB estimates to the regional scale 
using satellite data. Given the vegetation structural differences between 
tropical and boreal environments, both of which have been well-studied 
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with respect to scaled ALS-satellite scaled AGB mapping (Asner et al., 
2018; Luther et al., 2019; Xu et al., 2017; Zald et al., 2016), and dryland 
environments, which have not, there is a critical need to understand the 
best practices for developing broad-scale estimates of open-canopy 
woodland AGB. Additionally, the vast majority of AGB scaling studies 
that exist rely on passive optical remote sensing data (e.g., Landsat) as 
the basis of regional-scale mapping. Particularly given the recent launch 
of GEDI, there is an additional need to understand the relative strengths 
and limitations of passive multispectral and active lidar data in scaled 
AGB modeling. 

In this study, we: (1) use ALS data to map AGB on a local scale in an 
open-canopy woodland environment; (2) use those estimates to map 
AGB on a regional scale using Landsat imagery and GEDI waveforms, 
comparing their individual and combined model accuracies; (3) deter
mine which multispectral and waveform lidar predictor variables are 
most closely-associated with woodland AGB; and (4) compare the effects 
of different scaled footprint sizes on model accuracy; (5) examine the 
extent to which adding ancillary climate and topography variables im
proves AGB predictions; (6) demonstrate a repeatable approach for 
computing the propagated uncertainty that results from using local-scale 
modeled estimates to drive a regional-scale predictive model; (7) test the 
effects of spatial autocorrelation on regional scale model performance. 

2. Methods 

2.1. Study area 

This study is based in the original extent of Bears Ears National 
Monument (BENM) in southeastern Utah, USA (Fig. 1). BENM was 
established by presidential proclamation in 2016 as a nearly 6000 km2 

protected area that possesses immense cultural, historic, and ecological 
importance. Approximately one year later, it was dramatically reduced 
in size by a second presidential proclamation (Creadon and Bergren, 
2019). However, there is currently a movement underway to restore the 
monument to its original extent (Nordhaus, 2021). This gives unique 

and timely importance to understanding the implications of protecting 
the cultural and natural resources of BENM, including its abundance of 
woodland vegetation. We selected the original extent of BENM as our 
study area because of this woodland dominance and because ALS data 
were captured within a portion of the Monument in 2018, enabling us to 
quantify the amount and distribution of woodland AGB within this 
important setting. The dominant woodland type within BENM is piñon- 
juniper (PJ). Although PJ woodlands encompass a wide variety of 
codominant species of piñon pines and junipers, in this study area, the 
two most common species are twoneedle piñon (Pinus edulis) and Utah 
juniper (Juniperus osteosperma). PJ woodlands tend to be low in canopy 
cover, averaging 16.2% cover within the ALS data extent (Fig. 1C), with 
trees short in stature (mean = 5.5 m) (LANDFIRE, 2020). As discussed in 
the Introduction, these structural conditions create unique challenges 
for remote sensing in PJ woodlands (Campbell et al., 2020). 

2.2. ALS data 

ALS data were collected in five PJ-dominant areas in the study area 
on June 2nd, 2018 (Fig. 1C). The areas were specifically designed to 
capture a wide range of PJ AGB, along an environmental gradient from 
lower, warmer, drier areas that tend to possess lower AGB to higher, 
cooler, moister areas that tend to possess higher AGB. A comparison 
between the distributions of elevation, annual average temperatures and 
precipitation totals of the ALS data collection areas and BENM can be 
seen in Fig. 2. The five areas encompass 231.2 km2 in total, ranging in 
elevation from 1654 m at the low end to 2762 m at the high end. The 
data were captured using an Optech Titan sensor, which emits laser 
pulses in three distinct wavelengths: green (532 nm), near infrared 
(1064 nm), and shortwave infrared (1550 nm). Multispectral ALS data 
such as these have gained attention in the scientific literature in recent 
years due to increased availability (e.g., Hopkinson et al., 2016; Wallace 
et al., 2012), but to our knowledge, have not been applied in the context 
of AGB mapping. Given their capacity for not only mapping three- 
dimensional structure but also potentially providing valuable 

Fig. 1. Study area map with three scales depicted: (A) southwestern United States; (B) the original 2016 extent of Bears Ears National Monument in southeastern 
Utah with ALS data extent highlighted in yellow; and (C) ALS data extent with field plot locations. Also included are three 20 × 20 m ALS data subsets within field 
plot areas representing high (D), moderate (E), and low (F) biomass conditions. PJ woodlands extent derived from LANDFIRE Existing Vegetation Type data 
(LANDFIRE, 2020). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

M.J. Campbell et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 262 (2021) 112511

4

multispectral intensity data for distinguishing between different surface 
types, it is conceivable that multispectral ALS data could improve AGB 
model predictive power. With a nominal flying height of 600 m, a pulse 
frequency of 125 kHz, and a scan angle range of ±23◦, the resulting 
point cloud, merged between the three spectral bands, featured an 
average pulse density of 21.4 pulses/m2. 

2.3. Analysis overview 

An overview of our analytical approach can be seen in Fig. 3. For the 
purpose of this study, we will define three analytical scales. The first 
scale, henceforth “plot scale”, takes place at the scale of the individual 
field plot. This is the scale at which field data were collected and AGB 
estimates derived through tree diameter-based allometry (described in 

Section 2.4). Taken together, these plots are distributed throughout the 
extent of our ALS data collection, which we refer to as “local scale”. We 
first model AGB at the local scale by comparing field-measured AGB to 
spatially-coincident ALS structural metrics (described in Section 2.5). 
While it is useful to understand the spatial distribution of PJ AGB across 
the five collection areas shown in Fig. 1C, our ultimate goal is to map 
AGB throughout the entirety of BENM (Fig. 1B). To estimate AGB at the 
scale of BENM, henceforth known as the “regional scale”, we take the 
results the local-scale AGB modeling process and use those as reference 
data for generating a regional-scale model (described in Section 2.6). 
The regional-scale model is driven by spaceborne remotely-sensed data, 
along with ancillary spatial datasets representing climatic and topo
graphic conditions, that are not as limited in spatial extent as the ALS 
data. Data preparation, analysis, and modeling for this study took place 

Fig. 2. Relative abundance, as depicted by normalized kernel density distributions, of elevation (A), annual average temperatures (B), and annual precipitation totals 
(C) between the local-scale ALS data collection areas and the regional-scale BENM. Climate data derived from PRISM (PRISM Climate Group, Oregon State Uni
versity, 2019). 

Fig. 3. Overview of the scaled analysis approach used in this study, including the three nominal analytical scales.  
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using a combination of Esri ArcGIS Pro, Python, and R (R Core Team, 
2018), with functions from the following R libraries: lidR (Roussel et al., 
2020), randomForest (Cutler and Wiener, 2018), raster (Hijmans and 
van Etten, 2014), rfUtilities (Evans and Murphy, 2019), rgdal (Bivand 
et al., 2021), rGEDI (Silva et al., 2020), rgeos (Bivand et al., 2020), 
VSURF (Genuer et al., 2015), and their various dependencies. 

In addition to testing the abilities of spaceborne remote sensing data 
to model regional-scale AGB, we also examine the extent to which 
adding ancillary climate and topography data to the modeling process 
affects model performance (described in Section 2.7). Because the 
reference data that are driving the regional-scale model are themselves a 
modeled product and, as a result, possess inherent uncertainty, error 
must be propagated through the entire modeling process in order to 
understand regional model performance. Our process for propagating 
uncertainty is described in Section 2.8. Lastly, the reference data being 
used for the regional-scale analysis are defined by the positions of GEDI 
footprints. Because GEDI footprints can be as close as 60 m from one 
another, it is important to account for the potential effects of spatial 
autocorrelation on model performance. To account for these effects, we 
perform a buffered leave-one-out cross-validation (BLOOCV) procedure, 
described in Section 2.9. 

2.4. Field data and biomass allometry 

Field data were collected within 65 circular plots within the ALS data 
extent between 2018 and 2020 (Fig. 1C; Table S2). The plots were cir
cular, with 59 plots having 15 m radii and 6 plots having 18 m radii. Plot 
locations were guided by a stratification process aimed at capturing a 
wide range of terrain and climatic variability. Plot centers were navi
gated to and recorded with a Trimble Geo7x GPS unit, the post- 
processing of which resulted in average positional error of ±0.36 m. 
Plot radii were measured using a TruPulse 360 laser rangefinder. Within 
each plot, all standing live and dead trees with diameters larger than 4 
cm were counted and measured. Diameters were either recorded either 
at breast height (DBH) or at the root collar (DRC). Since most allometric 
equations for piñon and juniper trees rely on DRC measurements, all 
DBH were converted to DRC, using the DRC-DBH allometries defined by 
Chojnacky and Rogers (1999). Juniper trees in this region can frequently 
take a multi-stemmed form. When these were encountered in the field, 
multiple stems were measured and a single DRC was derived using the 
root-sum-square formula defined in the USDA Forest Service Forest In
ventory and Analysis protocol (Bechtold and Patterson, 2005). These 
DRC measurements (in cm) were used in conjunction with the DRC-AGB 
allometries defined by Grier et al. (1992). Numerous piñon and juniper 
allometries exist (e.g., Chojnacky et al., 2014; Cunliffe et al., 2020; 
Miller et al., 1981; Sprinkle and Klepac, 2015), but those of Grier et al. 
were chosen due to a combination of both geographic and ecological 
similarity to our study area and the production of relatively conservative 
AGB estimates in comparison to others. In addition to diameters, the 
condition of each tree was recorded as a proportion of live canopy. Per- 
plot live AGB was calculated as the sum of each individual tree’s pro
portional live AGB. It is important to note that only trees were consid
ered in the calculation of total AGB in this study. AGB from grasses, 
forbs, shrubs, litter, and debris – all of which are quite minor in this 
system – were not considered. 

2.5. Local-scale AGB modeling (Field – ALS) 

The next major step in our scaled modeling procedure involved 
comparing field data to ALS data. To do this, plot center points were 
buffered by their respective radii (either 15 or 18 m), and used to clip 
out individual plot-level subsets of ALS point cloud data. Within each of 
these point cloud subsets, we first derived a series of topographic vari
ables using the points classified as “ground” returns by the vendor, 
including elevation, slope, cosine transformation of aspect, sine trans
formation of aspect, topographic position index (TPI), terrain 

ruggedness index (TRI), and ground surface roughness (Hijmans and van 
Etten, 2014; Wilson et al., 2007). In addition, a series of aboveground 
point cloud metrics were derived using ground height-normalized data 
(Table 1). All ALS data processing was performed in R using the lidR 
library, with additional raster and vector data processing provided by 
the raster, rgdal, and rgeos libraries (Bivand et al., 2021, 2020; Hijmans 
and van Etten, 2014; R Core Team, 2018; Roussel et al., 2020). 

Terrain, structural, and intensity metrics were combined and 
compared to plot-level AGB estimates. However, given the large number 
of predictor variables (n = 131), and the comparably small number of 
plots (n = 65), we had to first perform a variable selection procedure. To 
do this, we employed the use of the variable selection using random 
forest (VSURF) algorithm of Genuer et al. (2015). This algorithm uses a 
three-staged procedure that iteratively uses random forests to remove 
variables that bear little relationship to the outcome variable (step 1), 
variables that are not needed for accurate prediction (step 2), and finally 
variables that are redundant (step 3). The resulting, parsimonious set of 
predictor variables was then used to create a random forest model for 
predicting AGB as a function of some combination of ALS structural and 
intensity metrics using the randomForest library in R (Breiman, 2001; 
Cutler and Wiener, 2018). To evaluate model performance, we used a 
cross validation procedure implemented in the rfUtilities library by 
Evans and Murphy (2019). This approach performs a bootstrapping 
analysis, with 99 iterations, whereby 10% of the samples are randomly 
selected and withheld for cross-validation on each iteration and 
compared to a random forest model generated using the other 90% of 
data. Variable importance was evaluated for the final model as a percent 
increase in mean square prediction error that would result when a given 
variable is removed from consideration. Models were evaluated ac
cording to the proportion of variance explained (R2; Eq. 1), the root 
mean square error (RMSE; Eq. 2), the mean absolute error (MAE; Eq. 3), 
and bias (Eq. 4), as follows: 

Table 1 
Plot-level ALS structural metrics generated from ground height-normalized 
point cloud data used as predictor variables for local-scale AGB modeling. 
With the exception of canopy cover (cc), which was derived from first returns 
only, metrics were derived using all point returns. For a detailed description of 
the distinction between vertical relative point density (vrd.x.y) and vertical 
normalized relative point density (vnrd.x.y), please refer to Campbell et al. 
(2018).  

Abbreviation Metric 

cc Canopy cover: number of first returns at or above breast height (1.37 
m) divided by total number of first returns 

cd Canopy density: number of all returns at or above breast height 
(1.37 m) divided by total number of all returns 

p.x xth height percentile of rank-ordered point heights from 5th to 100th 
at a 5 percentile interval 

mh Mean of all point heights 
mh.ag Mean of aboveground point heights 
sd Standard deviation of all point heights 
sd.ag Standard deviation of aboveground point heights 
skew Skewness of all point heights 
skew.ag Skewness of aboveground point heights 
kurt Kurtosis of all point heights 
kurt.ag Kurtosis of aboveground point heights 
vrd.x.y Vertical relative point densities between heights x and y: the number 

of points between x and y divided by the total number of points 
between 0 and 5 m in height (all points in a given area), for all height 
ranges between 0 and 5 m at an interval of 0.5 m [[x = 0, y = 0.5], [x 
= 0.5, y = 1], […], [x = 4.5, y = 5]] 

vnrd.x.y Vertical normalized relative point densities between heights x and y: 
the number of the number of points between x and y divided by the 
number of points between 0 and y (only points within height range 
and below), for all height ranges between 0 and 5 m at an interval of 
0.5 m [[x = 0, y = 0.5], [x = 0.5, y = 1], […], [x = 4.5, y = 5]] 

In addition, a suite a of intensity metrics was derived in order to take advantage 
of the multispectral nature of the ALS data (Table 2). 
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R2 = 1 −

∑
(

yi − ŷi

)2

∑
(yi − y)2 (1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
(

yi − ŷi

)2

n

√
√
√
√
√

(2)  

MAE =

∑
⃒
⃒
⃒
⃒yi − ŷi

⃒
⃒
⃒
⃒

n
(3)  

bias =

∑
(

ŷi − yi

)

n
(4) 

Cross-validation results were compared to the final model results to 
assess whether or not overfitting occurred. 

2.6. Regional-scale AGB modeling (ALS – Landsat/GEDI) 

With a well-tuned, local-scale AGB predictive model, we were then 
able to perform our second, regional-scale analysis. The goal of this 
portion of the study is to use the modeled results of the local-scale 
predictive model as reference data to build a regional-scale model, 
enabling the mapping of woodland AGB throughout the entirety of 
BENM. There were three main parts to this analysis: (1) comparing ALS- 
derived AGB to GEDI waveform metrics for regional predictive 
modeling; (2) comparing ALS-derived AGB to Landsat spectral metrics 
for regional predictive modeling; and (3) comparing ALS-derived AGB to 
both GEDI and Landsat metrics for regional predictive modeling. Each 
part will be described below. 

To compare ALS-derived AGB to GEDI data, we acquired GEDI data 
and conducted all of the following processing steps in R using the rGEDI 
library (Silva et al., 2020). All GEDI Level 1B (L1B), Level 2A (L2A), and 
Level 2B (L2B) datasets that overlapped BENM (Fig. 1B) for the entire 
year of 2019 were acquired. For a comprehensive description of these 
datasets, please refer to Dubayah et al. (2020). Briefly, the L1B product 
contains the footprint geolocation information, the L2A product con
tains waveform relative height metrics, and the L2B product contains 
derivative structural metrics from the L2A waveform, such as canopy 
cover and plant area index. In all, data from 39 different dates in 2019 
were acquired, totaling 283,312 individual GEDI footprints (Table S1). 
Although some of the datasets represented winter conditions, which 
could potentially present complications if there were snow on the 
ground, a comparison to contemporaneous SNOTEL data from a nearby 
site suggested that snow did not begin accumulating until after the last 
GEDI date in 2019. In order to develop a regional-scale model, we 
needed to compare GEDI metrics to ALS metrics. Accordingly, we 
needed to create a subset of GEDI footprint points that fell within the 
local-scale ALS data collection areas (Fig. 1C). To do this, we derived 
footprint geolocations (as center points) from the L1B product, derived 
L2A and L2B datasets based on the subset of footprints that fell within 
the ALS data collection areas (n = 12,769). All L2A waveform relative 
height metrics and L2B structural metrics were derived for each foot
print (Table 3). For a complete description of how these metrics are 
computed, please refer to Luthcke et al. (2019), Hofton and Blair (2019), 
and Tang and Armston (2019). 

Other diagnostic metrics were also retained, not for use as modeling 
predictors, but for quality filtering, such as the degrade flag and quality 
flag attributes. Only those unflagged footprints were retained for further 
analysis, which eliminated approximately 40% of the regional-scale 
footprints and 24% of the local-scale footprints, leaving 170,512 
regional and 9707 local footprints for further analysis. GEDI waveform 
footprints are approximately 25 m in diameter. Accordingly, in the 
absence of any positional uncertainty, one could simply subset an ALS 

point cloud within a 12.5 m radius circular buffer around the footprint 
center point to perform an ALS-GEDI comparison. Given the geolocation 
uncertainty associated with GEDI footprints, however, which is reported 
to be on the order of 15–20 m for the currently available data (GEDI 
Science Team, 2020), we can assume that a 12.5 m radius ALS subset 
would not necessarily align with the true GEDI footprint and associated 
waveform metrics. We can also assume that, by using a larger radius for 
extracting ALS data, we would be more likely to overlap the true GEDI 
footprint location. However, it was unknown precisely what plot radius 
would be most appropriate for ensuring a maximally-effective ALS-GEDI 
comparison. We opted to test a series of different plot radii empirically, 
as follows. 

For each radius from 10 to 40 m at an interval of 0.5 m, we created a 
circular buffer around GEDI footprint center points with that radius. We 
then extracted ALS point cloud data within each buffer area, and 
generated the same suite of structural and intensity metrics seen in 
Tables 1 and 2. Those metrics were used in conjunction with the 
previously-generated local-scale random forest predictive model to es
timate AGB within each footprint area. The data were then split evenly 
and at random into training and validation datasets. The training dataset 
was used to develop a regional-scale random forest model using the 
same variable selection and modeling procedure performed at the local 
scale, described earlier, except now with the GEDI metrics as predictors 
(Table 3). The model was then applied to the validation data in order to 
facilitate a direct comparison between the reference AGB (as modeled by 
ALS data) and the newly-predicted AGB (as modeled by the GEDI data). 
It is important to note that, although we are using the term “validation 
data”, because the validation data themselves are the product of a 
modeling effort and, as such, have inherent uncertainty, the raw vali
dation results should be evaluated cautiously. In Section 2.8 we describe 
how we address uncertainty in the validation data to attain a more 
robust estimate of regional-scale model performance. On each iteration, 
the variable importance was extracted and compiled to determine which 
GEDI metrics were best for predicting AGB across the range of radii 
tested. 

A 30 m footprint radius was chosen for use in further investigation. 
This is partly reflective of the results gleaned from the previous analysis, 
discussed later, but also partly reflective of some additional spatial 
considerations (Fig. 4). First, GEDI footprint center points have an along- 
track separation of 60 m. Accordingly, extracting ALS data within a 
buffer larger than 30 m would result in some of the same ALS data being 
used in the prediction of AGB in adjacent GEDI footprints (Fig. 4A). 
Second, this radius agrees with the reported geolocational uncertainty of 
the GEDI footprint geolocation (15–20 m). Adding these uncertainty 
bounds to the nominal footprint radius of 12.5 m, this produces a 
footprint boundary geolocational uncertainty range of 27.5 m and 32.5 
m, the average of which is 30 m (Fig. 4B). Third, a 30 m radius facilitates 
a direct comparison to the Landsat data, because, like GEDI, Landsat 8 
OLI data also have a degree of positional uncertainty (approximately 12 
m, per Storey et al., 2014). Thus, it is good practice to use a 3 × 3 pixel 
area, rather than a single pixel, as a basis of comparison between 
reference data and Landsat pixel values (Congalton and Green, 2008). A 

Table 2 
Plot-level ALS intensity metrics generated from ground height-normalized point 
cloud data used as predictor variables for local-scale AGB modeling.  

Abbreviation Metric 

mi.by Mean of all point intensities in band y for each of the three bands 
mi.by.ag Mean of aboveground point intensities in band y for each of the three 

bands 
sd.by Standard deviation of all point intensities in band y for each of the 

three bands 
sd.by.ag Standard deviation of aboveground point intensities in band y for 

each of the three bands 
pi.by.x xth intensity percentile of rank-ordered point percentiles from 5th to 

100th at a 5 percentile interval in band y for each of the three bands  
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30 m radius enforces this 3 × 3 pixel area comparison process (Fig. 4C). 
Using this 30 m radius, three regional-scale AGB predictive models 

were generated: (1) using GEDI data alone; (2) using Landsat data alone; 
and (3) using a combination of GEDI and Landsat data. The first pre
dictive model was already created in the previously-described iterative 
process. In order to generate the Landsat-based model, Landsat 8 OLI 
data were acquired for three different cloud-free dates in 2018: May 8th, 
representing early growing season conditions, June 25th, representing 
peak of growing season, and September 13th, representing early 
senescence. Two Landsat tiles were needed for each date to cover the 

entirety of BENM (path 36, rows 33 and 34). The data were processed by 
the United States Geological Survey Earth Resources Observation and 
Science Center to surface reflectance using the Land Surface Reflectance 
Code (LaSRC) algorithm (Vermote et al., 2016). In addition to the raw 
spectral reflectance data, we also generated a suite of vegetation indices 
(Table 4). The Landsat modeling procedure mirrored that of GEDI, 
except Landsat spectral reflectance and vegetation indices, computed as 
3 × 3 pixel mean values surrounding each footprint, were used as pre
dictors of AGB instead of GEDI waveform metrics. 

Finally, a regional-scale AGB model was created by combining all of 
the possible GEDI predictors and all of the Landsat predictor variables 
together. The same modeling procedure was once again applied. Com
parisons of model fit, predictive error, and bias statistics were made 
between the GEDI-only model, the Landsat-only model, and the GEDI- 
Landsat combined model. Variable importance between these three 
models was also compared to reveal which among the three pools of 
predictor variables was most important for modeling AGB. 

Of the three modeling approaches, the Landsat-only approach is the 
only one that enables direct, study area-wide estimation of total AGB. 
Although one of GEDI’s explicit mission goals is to map vegetation 
biomass, its discrete, footprint point-based sampling scheme does not 
enable spatially-exhaustive AGB estimates. There are a number of GEDI 
upscaling/interpolation techniques that are being applied to overcome 
this limitation (Dubayah et al., 2020; Saarela et al., 2018), but they are 
beyond the scope of this study. Thus, to estimate total AGB throughout 
BENM, we used the Landsat-only predicted values subset to the extent of 
PJ woodlands within AGB. 

Table 3 
GEDI L2A and L2B metrics generated from geolocated footprints used as pre
dictor variables for regional-scale AGB modeling. For description of how these 
metrics were derived, please refer to Luthcke et al. (2019), Hofton and Blair 
(2019), and Tang and Armston (2019).  

Product Abbreviation Metric 

L2A rhx Relative waveform height at the xth percentile for 
every percentile between 0 and 100 at an interval of 1 
percentile 

L2B cover Total canopy cover 
L2B elev. 

highestreturn 
Elevation of the highest waveform return 

L2B elev. 
lowestmode 

Elevation of the lowest waveform “mode”, or 
waveform peak 

L2B fhd.normal Foliage height diversity index normalized by plant 
area index 

L2B pai Plant area index 
L2B pgap.theta Total gap probability  

Fig. 4. Justification for selecting 30 m footprint radius: (A) to avoid overlap between sequential GEDI footprints; (B) to fall in between the reported geolocation 
uncertainty error bounds; and (C) to ensure that 3 × 3 Landsat pixels are overlapped. 
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2.7. Testing the role of ancillary data in regional model performance 

Although the primary focus of our regional-scale modeling process is 
a comparison between Landsat and GEDI, it is possible that the incor
poration of ancillary spatial data may improve the ability to accurately 
map AGB. This is particularly true in the PJ woodland ecosystem, where 
environmental and climate gradients are major drivers of AGB. To 
explore the extent to which climate and topography affect regional-scale 
model performance, we acquired a variety of 30-year average climate 
data from PRISM (PRISM Climate Group, Oregon State University, 
2019), including annual and monthly precipitation totals, daily mean, 
maximum, and minimum temperatures, mean dewpoint temperatures, 
and minimum and maximum vapor pressure deficits, each of which was 
generated at a spatial resolution of 800 m. We also acquired 30 m spatial 
resolution digital elevation model data from the USGS, from which we 
derived a suite of topographic metrics including elevation, slope, cosine 
transformation of aspect, sine transformation of aspect, topographic 
position indices at a range of radii, and topographic wetness index. All of 
these climate and topographic variables were added as potential pre
dictors to the three regional-scale predictive models (GEDI, Landsat, and 
GEDI + Landsat) and evaluated for model performance. 

2.8. Regional-scale uncertainty analysis 

In the three regional-scale models, it is important to consider the 
compounding error that results from the use of scaled modeling ap
proaches, where the erroneous predictions of one model are used as the 
reference data for another model (Duncanson et al., 2019). One 
approach to quantifying the propagation of error is to use the framework 
proposed by Saatchi et al. (2011), where total error (εtotal) is computed 
as the root-sum-square of error estimated in each model (Eq. 1): 

εtotal =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

εlocal
2 + εregional

2
√

(5)  

where εlocal is a measure of local (scale 1) model error such as MAE, and 
εregional is a measure of regional (scale 2) model error in the same units. 
Although this relatively simple approach to quantifying uncertainty has 
been applied in similar studies that feature nested, scaled modeling 
analyses (e.g., Asner et al., 2018, 2013; Saatchi et al., 2011), it is merely 
an estimate of error, given that the data that we are using for validation 
purposes are also modeled (rather than measured) data. In the absence 
of a truly independent validation dataset, it is difficult to provide a 
robust measure of accuracy or error for our regional-scale model. And 

even with an independent, field-measured dataset, the positional un
certainty of GEDI data makes direct comparison between field data and 
satellite data particularly challenging. However, we can leverage the 
uncertainty information contained within our local-scale predictive 
model to estimate the uncertainty of the predictions. 

Random forests are an ensemble machine learning tool composed of 
many individual decision trees (Breiman, 2001). When working in a 
regression (rather than classification) environment, the predicted values 
from a random forest represent the mean of predictions among all of the 
decision trees. By averaging out the results of individual trees, random 
forests ideally produce more robust predictions that are less subject to 
noise and outliers than any of the individual decision trees that comprise 
the forest. However, contained within those trees is the inherent un
certainty of individual predictions. Predictions that are very consistent 
throughout the forest’s decision trees are thought to be made with less 
uncertainty (higher confidence) and vice versa (Coulston et al., 2016). 
This is the same principle that underlies quantile regression forests 
(Meinshausen, 2006; Vaysse and Lagacherie, 2017), and is akin to a 
prediction interval in parametric statistics (e.g., multiple linear regres
sion). Thus, by calculating the variability of predictions among the in
dividual decision trees, one can estimate prediction uncertainty. 
Likewise, if random forests are used as the basis of predicting reference 
data for a subsequent modeling procedure, such as the scaled analysis in 
this study, then the uncertainty associated with the first model can be 
propagated through to the second model. 

To do this, we performed the following analysis. The local-scale 
random forest model was generated using 10,000 trees. For each of 
the three regional-scale models, we randomly selected 100 of those 
local-scale decision trees. Each decision tree was then used to predict the 
AGB values for a random subsample of 2000 points from the regional- 
scale reference data. These points were split equally into training (n 
= 1000) and validation (n = 1000). The training data were used to build 
regional-scale random forest models and the validation data were used 
to assess model performance. In all, this resulted in 300 models: 100 
GEDI models, 100 Landsat models, and 100 GEDI + Landsat models. 
Each model was used to predict biomass throughout all PJ woodlands in 
BENM. As a result of this Monte Carlo approach, we could calculate 
several measures of uncertainty. First, we calculated the mean and 
standard deviation of the model fit and error metrics associated with 
each iteration (R2, RMSE, MAE). In effect this gave us an estimate not 
only of the scaled model performance, but also of the uncertainty of that 
performance metric. Second, we calculated the standard deviation of all 
of the predictions that resulted from the regional-scale models. This 

Table 4 
Vegetation indices generated from Landsat 8 OLI imagery used as AGB predictor variables in this study, with abbreviations, formula, and sources. SWIR1 and SWIR2 are 
Landsat 8 bands 6 and 7, respectively.  

Index Abbreviation Formula Source 

Normalized Difference Vegetation Index NDVI (NIR − Red)
(NIR + Red)

Rouse (1974) 

Enhanced Vegetation Index EVI 2.5 ×
(NIR − Red)

(NIR + 6 × Red − 7.5 × Blue + 1)
Liu and Huete (1995) 

Near Infrared Reflectance of Vegetation NIRV NIR × NDVI Badgley et al. (2017) 
Soil Adjusted Vegetation Index SAVI 

1.5 ×
(NIR − Red)

(NIR + Red + 0.5)
Huete (1988) 

Modified Soil Adjusted Vegetation Index MSAVI 
(

2 × NIR + 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2 × NIR + 1)2
− 8 × (NIR − Red)

√ )

2  

Qi et al. (1994) 

Normalized Difference Moisture Index NDMI (NIR − SWIR1)

(NIR + SWIR1)

Hardisky et al. (1983) 

Normalized Burn Ratio NBR (NIR − SWIR2)

(NIR + SWIR2)

Key and Benson (1999) 

Normalized Burn Ratio 2 NBR2 (SWIR1 − SWIR2)

(SWIR1 + SWIR2)

Miller and Thode (2007) 

Tasseled Cap Brightness TCB 0.3029 × Blue + 0.2786 × Green + 0.4733 × Red 
+0.5599 × NIR + 0.5080 × SWIR1 + 0.1872 × SWIR2 

Baig et al. (2014) 

Tasseled Cap Greenness TCG − 0.2941 × Blue − 0.2430 × Green − 0.5424 × Red 
+0.7276 × NIR + 0.0713 × SWIR1 − 0.1608 × SWIR2 

Baig et al. (2014) 

Tasseled Cap Wetness TCW 0.1511 × Blue + 0.1973 × Green + 0.3283 × Red 
+0.3407 × NIR − 0.7117 × SWIR1 − 0.4559 × SWIR2 

Baig et al. (2014)  

M.J. Campbell et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 262 (2021) 112511

9

provided us with a spatially-explicit estimate of uncertainty, as every 
GEDI footprint or Landsat pixel within BENM was attributed with not 
only a single predicted value, but also a standard deviation of those 
predictions. Lastly, in addition to a singular estimate of total AGB within 
BENM derived from the Landsat-only regional model (described in 
Section 2.6), this iterative approach allowed us to calculate a range of 
estimates. To do this, we took the 5th and 95th percentile AGB estimates 
on a per-pixel basis and derived BENM-wide estimates of these uncer
tainty bounds. 

2.9. Regional-scale spatial autocorrelation analysis 

Adjacent GEDI footprints, which were the spatial units that served as 
the reference data locations for our regional model, can be as close as 60 
m to one another. Thus, it is possible in our random selection of training 
and validation reference points that one of these adjacent points is being 
used to train a model and the other is being used to assess the accuracy of 
that model. This violates the assumption of independence between 
training and validation data, as the proximity of these two points almost 
certainly means that they are spatially-autocorrelated with respect to 
AGB (Chen et al., 2019; Ploton et al., 2020). To test the effects of spatial 
autocorrelation on model performance, we performed a BLOOCV anal
ysis on each of the three regional-scale models, as follows. A random 
point from the reference data was selected. This point would serve as the 
leave-one-out validation sample. This point was then buffered by a given 
distance. A random selection of 1000 other reference points that did not 
overlap that buffer were used to build a random forest-based AGB pre
dictive model. The model was then applied to the validation point and 
compared to its reference value. This was repeated 500 times for every 
buffer distance between 500 m and 20,000 m at an interval of 500 m. 
Model fit and error metrics (R2, RMSE, and MAE) were computed among 
the 500 iterations at each radius and compared among the range of radii 
to determine the effect of spatial autocorrelation on model performance. 

3. Results 

3.1. Local-scale AGB modeling (Field – ALS) 

The first of the two modeling scales compared field-based, plot-level 
estimates of AGB to a suite of ALS structural and intensity metrics in the 
hopes of being able to predict and map AGB on the local scale. This 
predictive model was able to account for 74% of variance in AGB, with a 
RMSE of 14 Mg/ha, a MAE of 11.09 Mg/ha, and a bias of − 0.38 Mg/ha 
(Fig. 5). The cross-validation results were very similar (R2

median = 0.73; 
RMSEmedian = 13.79 Mg/ha; MAEmedian = 10.74 Mg/ha; biasmedian =

− 0.54 Mg/ha), suggesting that the model is fairly robust and is not 
overfitting the data. 

The VSURF variable selection procedure resulted in a very parsi
monious model, reducing the 124 possible predictor variables down to 
only four. In order of decreasing variable importance, they are cd 
(canopy density), vrd.0.50 (vertical relative ALS point density between 
0 and 0.5 m in height above the ground), mh (mean height of ALS 
points), and mi.b2 (mean intensity of band 2) (Fig. 6). Of the four vari
ables, the first three are structural, and only the fourth is intensity-based. 
Interestingly, the band selected (band 2), which represents intensity in 
the near-infrared band, is at the wavelength most common to single- 
wavelength ALS instruments. And the fact that intensity in only one of 
the three ALS bands in our point cloud data was selected for prediction 
suggests that the multispectral nature of the ALS dataset did not improve 
the capacity for AGB mapping. 

Unlike traditional regression techniques, random forests are non- 
parametric in nature, and thus do not produce a model with simple, 
easily-interpreted coefficients that can provide insight into the magni
tude and direction of the relationship between dependent and inde
pendent variables. However, one commonly-applied approach to 
quantifying the nature of those relationships is through the evaluation of 

partial dependence (Cánovas-García et al., 2017). Partial dependence 
provides insight into the effect of individual predictor variables on the 
outcome variable while accounting for the effects of the other model 
predictors (Arribas-Bel et al., 2017). The partial dependence plots for 
each of the four most important predictor variables in our local-scale 
model can be seen in Fig. 7. As cd increases, so too does AGB, which 
suggests that a higher density of ALS point returns above breast height is 
associated with greater AGB. As vrd.0.50 increases, AGB decreases, 
meaning that a greater relative proportion of low-lying points is linked 
to higher AGB totals – this is essentially the inverse of the cd-AGB 
relationship. As mh increases, so too does AGB, suggesting that taller 
vegetation is associated with greater AGB. Lastly, as mi.b2 increases, 
AGB decreases. In the passive remote sensing realm, one might expect 

Fig. 5. Results of local-scale AGB modeling, comparing field-measured AGB to 
ALS-modeled AGB. 

Fig. 6. Local-scale variable importance, as measured by the percent increase in 
mean squared prediction error (MSE) when a variable is removed from the 
random forest modeling process. Abbreviations: cd = canopy density; vrd.0.50 
= vertical relative ALS point density between 0 and 0.5 m in height above the 
ground; mh = mean height of ALS points; mi.b2 = mean intensity of band 2. 
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that higher AGB environments would possess higher near-infrared 
reflectance, as healthy foliage tends to strongly reflect wavelengths in 
that range. However, with ALS data, intensities are as much of an in
dicator of the surface geometry as they are the spectral characteristics of 
the surface. Thus, pulses interacting with multiple-scattering tree can
opies, are more likely to scatter and produce lower return intensities 
than pulses interacting with the ground surface. Accordingly, more 
densely vegetated plots with more tree canopy cover, will likely produce 
lower ALS intensities. 

3.2. Regional-scale AGB modeling (ALS – GEDI/Landsat) 

The results of the local-scale AGB modeling effort were used as the 
basis of generating training and validation data for the regional-scale 
AGB modeling procedure. Three different models were produced, rep
resenting AGB predicted using GEDI data alone (Fig. 8A), using Landsat 
data alone (Fig. 8B), and using a combination of GEDI and Landsat data 
(Fig. 8C). The GEDI-only model produced the weakest results of the 
three (R2 = 0.68; RMSE = 10.6 Mg/ha; MAE = 7.87 Mg/ha; bias = 0.04 
Mg/ha). The Landsat-only model produced results of intermediate 
quality (R2 = 0.87; RMSE = 6.86 Mg/ha; MAE = 4.98 Mg/ha; bias =
0.08 Mg/ha). The combined model produced the best results (R2 = 0.89; 
RMSE = 6.44 Mg/ha; MAE = 4.64 Mg/ha; Bias = 0.08 Mg/ha). 

Unlike the local-scale AGB predictive model, where only four vari
ables were selected, the three regional scales produced much more 
complex models, likely due to the large number of samples used to 

generate them and the associated ability to capture much more nuanced 
relationships between AGB and the predictors (Fig. 9). The GEDI-only 
model featured high importance of the two elevation variables (elev. 
highestreturn and elev.lowestmode), which makes sense in this semiarid 
region, where low elevations are much hotter and drier and cannot 
support as much AGB as higher, cooler, moister areas. The third and 
fourth most important predictor variables were also L2B metrics, sug
gesting that derivative products tend to be more useful than the more 
raw relative height data contained within the L2A metrics. Among the 
relative height metrics, there appears to be bimodal importance, such 
that high relative heights (e.g., rh88-rh100) and low relative heights (e. 
g., rh1-rh3) are important predictors of AGB, whereas intermediate 
heights are less so. Recall, however, that these results are from only a 
singular footprint radius (30 m). A more robust look into the variable 
importance of GEDI metrics that was gleaned from the iterative footprint 
size test is described later on. With respect to the Landsat-only model, a 
large number of predictors (n = 24) were selected for modeling regional 
AGB. There is no clear pattern among which image date (early, middle, 
or late season) was most important, although the selection of important 
variables from all three dates suggest that there is value in incorporating 
image data captured in different portions of the growing season. There 
was a clear pattern among which vegetation indices are most useful for 
predicting AGB. Specifically, NBR, NBR2, and NDMI make up all of the 
top 6 most important predictors. This points to the utility of longer 
wavelengths (near infrared-shortwave infrared) for predicting AGB in PJ 
woodlands. Although the combined model only slightly outperformed 

Fig. 7. Partial dependence of the four ALS-derived variables selected for predicting AGB at the local scale. Abbreviations: cd = canopy density; vrd.0.50 = vertical 
relative ALS point density between 0 and 0.5 m in height above the ground; mh = mean height of ALS points; mi.b2 = mean intensity of band 2. 

Fig. 8. Results of regional-scale AGB modeling, comparing ALS-modeled AGB to (A) GEDI-modeled AGB, (B) Landsat-modeled AGB, and (C) GEDI and Landsat 
modeled AGB. Data shown represent the validation dataset. 
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the Landsat-only model, clearly the addition of GEDI metrics improved 
the ability to predict AGB, given that the top four most important var
iables in the combined model are GEDI metrics. 

An example of the application of all of the previously-described AGB 
predictive models can be seen in Fig. 10. The area shown represents one 
of the five ALS data extent areas shown in Fig. 1C, featuring a diversity 
of vegetation and terrain conditions, as evident in the high spatial res
olution aerial image in Fig. 10B. The results of the local-scale, ALS- 
driven model can be seen in Fig. 10C, applied at a 30 m spatial resolu
tion. Note the fact that within the ALS extent there is spatially- 
exhaustive coverage of AGB estimates, but that limited extent pre
cludes broader-scale AGB estimation. The results of the regional-scale, 
Landsat-driven model can be seen in Fig. 10D. The general spatial pat
terns of the Landsat-driven model mirror those of the ALS-driven model, 
although local-scale AGB variability appears to be lower in the Landsat 
model. Fig. 10C and E represent the GEDI-only and GEDI/Landsat 
combined modeling results, respectively. Like the Landsat-only model, 
AGB can be mapped on a broader, regional basis, but unlike the ALS and 
Landsat models, the results can only be applied at an individual footprint 
level. A close examination can reveal subtle differences between the 
GEDI-only and GEDI/Landsat combined model results, but their overall 
AGB trends are very similar and are also in line with the ALS and 
Landsat-only results. As discussed in the Section 2.6, the Landsat-only 
model is the only model that allows for direct, BENM-wide estimation 
of AGB. According to LANDFIRE, there is 2734 km2 of PJ woodlands in 
BENM (45% of the entire Monument area). The mean AGB density 
among these woodlands is 34.38 Mg/ha. When summed throughout 
BENM, there is an estimated 9.4 Tg of PJ woodland AGB in total. 

3.3. GEDI footprint size and variable importance 

An empirical comparison of the effect of simulated footprint size on 
model fit and error can be seen in Fig. 11. The trend is very clear – 
increasing the footprint size increases the model fit and decreases the 

model error. Interestingly, though, the trend is logarithmic, such that the 
difference in model quality between 10 and 20 m footprint radii is much 
greater than the difference in model quality between 30 and 40 m 
footprint radii. Beyond a radius of 30 m, for example, even though the 
model quality still increases, the increases are minimal. When combined 
with the additional considerations presented in Fig. 4, this motivated 
our selection of 30 m as a suitable basis of operation for scaling between 
ALS, GEDI, and Landsat data. 

As mentioned earlier, the iterative nature of the footprint size test 
yielded 61 separate ALS-GEDI scaling models, each generated using 
random forests with variable selection. This enabled us to inquire into 
the variable importance in perhaps a more robust way than a single 
predictive model, in order to better understand which GEDI metrics are 
most useful for predicting AGB in woodland ecosystems (Fig. 12). In 
terms of both the number of times they were selected and their average 
importance, the two elevation L2B metrics (elev.highestreturn and elev. 
lowestmode) were very important for predicting AGB. Again, in this 
precipitation-limited ecosystem, higher elevation tends to be associated 
with greater precipitation totals and retention. Similarly, high relative 
heights (e.g., rh80-rh100) tended to show up in a lot of models and have 
high importance, which makes sense given that taller and denser stands 
with higher AGB should produce higher relative height metrics. 
Although low relative heights (e.g., rh0-rh10) showed up in a lot of 
models, their importance was relatively low. This suggests that they are 
useful for explaining some minor amount of variance in AGB, but their 
omission would not dramatically alter the model results. 

3.4. The role of ancillary data in regional model performance 

As can be seen in Fig. 10, the distribution and abundance of vege
tation throughout the study area in this region is both spatially- 
heterogeneous and controlled heavily by abiotic factors, such as 
topography and climate. Accordingly, when we included climate and 
topography data into the three regional-scale models, model 

Fig. 9. Regional-scale variable importance, as measured by the percent increase in mean squared prediction error (MSE) when a variable is removed from the 
random forest modeling process. For variable abbreviations and descriptions, refer to Tables 1, 2, 3, and 4. 
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performance increased. The GEDI-only model saw the greatest 
improvement in model performance with the inclusion of these ancillary 
predictors, with the R2 increasing from 0.69 to 0.80 (16% improvement) 
and RMSE decreasing from 10.60 Mg/ha to 8.62 Mg/ha (19% 
improvement). The Landsat-only model saw moderate improvement, 
with the R2 increasing from 0.87 to 0.90 (3% improvement) and RMSE 
decreasing from 6.86 Mg/ha to 6.20 Mg/ha (10% improvement). The 
combined model saw the least improvement, with the R2 increasing 
from 0.89 to 0.90 (1% improvement) and RMSE decreasing from 6.44 
Mg/ha to 6.09 Mg/ha (5% improvement). 

3.5. Regional-scale uncertainty 

We considered regional uncertainty in two ways. The first, relatively 
simple, albeit statistically-limited approach is using Eq. 5., the results of 

which can be seen in Table 5. 
The results of the second approach, which used Monte Carlo sub

sampling of decision trees from the local-scale random forest and 
propagated their uncertainty through to the reference data of the 
regional scale models, can be seen in Table 6. Comparing the uncertainty 
means (εmean) from Table 6 to the total propagated uncertainty estimates 
(εtotal) from Table 5 reveals that the relatively simpler root-sum-squared 
approach for calculating propagated uncertainty results in higher esti
mates of uncertainty (poorer apparent regional scaled model perfor
mance). One benefit of the more nuanced, decision tree-based approach 
for scaling uncertainty is that it allows for the calculation of standard 
deviation of the uncertainty metrics (εsd). Taking these into account, we 
can see that the simpler uncertainty propagation metrics from Table 5 
are within 2 standard deviation of the mean propagated RMSE and MAE 
from Table 6. Another benefit is that it allows for the propagation of 

Fig. 10. Example application of local-scale and regional-scale AGB modeling for a portion of the study area featuring diverse terrain and vegetation structure within 
BENM (A), including an aerial image from the USDA National Agricultural Inventory Program (B), the ALS-modeling results (C), GEDI-only modeling results (D), 
Landsat-only modeling results (E), and GEDI/Landsat combined modeling results (F). All model results (C–F) are applied only in areas classified as PJ woodlands, 
according to LANDFIRE (LANDFIRE, 2020). GEDI footprints (E & F) are enlarged to facilitate visual interpretation. 

M.J. Campbell et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 262 (2021) 112511

13

uncertainty in variance explained (R2), which the room-sum-squared 
approach from Eq. 5 does not. Given the widespread use of R2 as a 
metric for model performance in the AGB mapping literature, this en
ables more direct comparison between the results of various studies. 

A third benefit of the decision tree subsampling approach is that, in 

addition to overall model performance metrics, it provides uncertainty 
estimates at the individual prediction level, as approximated by the 
standard deviation of predicted values (Fig. 13). Generally, prediction 
uncertainty is highest in areas with highest predicted AGB, which is to 
be expected. However, some interesting patterns of uncertainty 

Fig. 11. The effect of footprint size on regional-scale AGB model quality, in terms of variance explained (left) and root mean squared error (right).  

Fig. 12. Aggregated variable importance for GEDI-based regional AGB prediction from the 61 iterations (10–60 m by 0.5 m interval) on different footprint radii, in 
terms of the number of times variables were selected in the final predictive model (left) and the mean variable importance of those variables (right). 
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emerged, particularly in the Landsat-only and combined Landsat + GEDI 
model results (Fig. 13 C & D). A close review of the spatial patterning of 
uncertainty in comparison to aerial imagery suggested that the back
ground soil reflectance characteristics were driving some of the pre
dictive uncertainty. The high-uncertainty patches in Fig. 13C correspond 
very closely to the dark red soils seen in the aerial image (Fig. 13A). 
Cross-referencing with local geologic data reveals that these areas are 
part of the Moenkopi Formation, which is dominated by reddish-brown 
mudstone, sandstone, and siltstone. Background soil reflectance is a 
known challenge in mapping vegetation structure and condition in 
sparsely-canopied ecosystems such as PJ woodlands (Campbell et al., 
2020; Huete, 1988; Qi et al., 1994; Smith et al., 2019). The GEDI-only 

model, however, does not appear to be affected by soil color, as evi
denced by the lack of correspondence between the spatial distribution of 
reddish soils in Fig. 13A and predictive uncertainty in Fig. 13B. 

Lastly, the iterative approach allows for calculation of uncertainty 
bounds on total AGB prediction. As discussed in Sections 2.6 and 3.2, the 
Landsat-only model is the only of the three regional-scale models that 
allows for direct AGB estimation throughout BENM. Whereas the total 
AGB estimate from the complete Landsat-only model was 9.4 Tg, the 
iterative analysis allowed us to compute estimates of the 5th and 95th 
percentiles of total AGB, which were 7.5 Tg and 12.0 Tg, respectively. 

3.6. Regional-scale spatial autocorrelation 

The results of the BLOOCV analysis aimed at assessing the effects of 
spatial autocorrelation on model performance can be seen in Fig. 14. As 
the buffer distance increases, model performance decreases. In other 
words, when models are built with training data that are more distant 
from the data that are being used to validate the model, apparent model 
quality decreases. This is largely to be expected – calibrating a model in 
one place and applying it far away will almost always yield worse results 
than applying it close by. However, even with a buffer distance of 20 km 
– that is, even when training data and validation data are no closer than 
20 km within our study area – the model performance metrics still 
suggest moderate strength. Particularly in the case of the combined 
GEDI and Landsat model, even at extreme buffer distances, the R2 values 
are above 0.7. This suggests that our regional modeling procedure is 
fairly robust to the effects of spatial autocorrelation. 

4. Discussion 

Here, we leveraged data fusion techniques with Landsat and GEDI to 
model AGB in woodland ecosystems. We found: (1) Landsat alone is 
better than GEDI alone; and (2) Landsat and GEDI combined is better 
than either individually. These results might seem counterintuitive, 
particularly given the fact that AGB mapping is one of GEDI’s main 
purposes. However, we believe this is attributable to a few possible 
factors. First, we suspect that the footprint size and waveform sensitivity 
of GEDI pose challenges for mapping AGB in woodlands with relatively 
sparse cover and short trees. In such environments, it may be difficult for 

Table 5 
Results from the first uncertainty propagation analysis for the three regional 
models based on Eq. 5.  

Model Metric εlocal (Mg/ha) εregional (Mg/ha) εtotal (Mg/ha) 

GEDI-only RMSE 14.00 10.60 17.56 
MAE 11.09 7.87 13.60 

Landsat-only RMSE 14.00 6.86 15.59 
MAE 11.09 4.98 12.16 

Landsat + GEDI RMSE 14.00 6.44 15.41 
MAE 11.09 4.64 12.02  

Table 6 
Results from the second uncertainty propagation analysis for the three regional 
models based on subsampling of decision trees from the local-scale random 
forest model, including the mean and standard deviation of uncertainty esti
mates derived from 100 iterations.  

Model Metric εmean εsd 

GEDI-only R2 0.49 0.06 
RMSE 16.01 Mg/ha 1.6 Mg/ha 
MAE 12.14 Mg/ha 1.28 Mg/ha 

Landsat-only R2 0.66 0.05 
RMSE 13.08 Mg/ha 1.61 Mg/ha 
MAE 9.71 Mg/ha 1.3 Mg/ha 

Landsat + GEDI R2 0.68 0.06 
RMSE 12.71 Mg/ha 1.66 Mg/ha 
MAE 9.40 Mg/ha 1.37 Mg/ha  

Fig. 13. Example results from the regional-scale AGB uncertainty mapping process depicting the same area as in Fig. 10, including an aerial image (A), the standard 
deviation of AGB predictions for the GEDI-only model (B), from the Landsat-only model (C), and from the combined GEDI and Landsat model (D). 
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GEDI’s algorithms to distinguish between the ground surface and 
vegetation, particularly in diverse terrain. Further research in similarly- 
structured ecosystems is required to test this hypothesis. Second, there 
was a time discrepancy between the three remote sensing datasets used 
in this study. The ALS and Landsat data were both captured in 2018, 
making them the most directly comparable. The data from GEDI, due to 
its launch in late 2018, had to come from the following year, 2019. 
Although one year should ordinarily have a relatively minimal effect on 
AGB comparisons, an exceptional drought in this region during 2018 
actually triggered a significant mortality event in these woodlands 
(Campbell et al., 2020; Kannenberg et al., 2021). In this event, nearly 
39% of PJ experienced some degree of mortality, with localized patches 
of high canopy mortality being localized to only approximately 1% of 
the region. Although woody AGB would not have been altered between 
2018 and 2019, significant foliage loss could result in some ALS-GEDI 
disagreement. It is currently unknown how the presence of an abun
dance of dead AGB within a GEDI footprint will affect waveform metrics. 
Future research should aim to explore the relationship between mor
tality and GEDI-AGB modeling. Lastly, the biomass in piñon and juniper 
trees is less sensitive to tree height as it is to other biometrics such as 
stem diameter and crown area (Sprinkle and Klepac, 2015). This acts as 
a disadvantage to a sensor such as GEDI, whose waveform provides a 
direct measure of vegetation height, and an advantage to multispectral 
sensors such as Landsat, whose pixel reflectance is more closely linked to 
canopy cover rather than canopy height. Accordingly, it is conceivable 
that in other woodland types that feature trees with greater variability in 
height, GEDI would outperform Landsat. Even taking these factors into 
account, GEDI was still able to explain nearly half of regional-scale AGB, 
factoring in uncertainty propagation from the local scale, which is quite 
good in comparison to the existing literature (e.g., Huang et al., 2009; 
Saarela et al., 2018). 

The impressive performance of Landsat, both alone and in combi
nation with GEDI data, is also worth noting. It is known that Landsat 8 
OLI, and other passive spectral remote sensing sensors, can reach a 
saturation point in densely-vegetated environments, limiting the ca
pacity for accurate AGB quantification. However, in relatively sparsely- 
treed woodland ecosystems, this saturation point is likely not met 
(Huang et al., 2010). In addition, whereas in many forested ecosystems, 
vegetation height is a good proxy for AGB, the relatively small differ
ences in height between high AGB and low AGB PJ woodlands in 
particular suggests that multispectral remote sensing, whose measure
ments are more closely tied to canopy cover rather than canopy height, 
may be well-suited for woodland AGB mapping. That being said, the 
relative importance of GEDI metrics in the combined GEDI-Landsat 
model suggest that a combination of elevation, height, and spectral 
response provides the best opportunity for accurate AGB quantification. 
This highlights the importance of our study focusing on woodland 

settings. While other studies have demonstrated success in scaled 
modeling between ALS and satellite data in tropical (Asner et al., 2018; 
Xu et al., 2017) and boreal (Luther et al., 2019; Zald et al., 2016) en
vironments, our results highlight the relative strengths and weaknesses 
of different satellite sensors in a structurally-distinct but globally- 
widespread ecological setting. Our results suggest that longer wave
lengths such as those in the shortwave infrared range are useful for 
quantifying AGB in PJ woodland. The two most important variables in 
the Landsat-only model were NRB2, one from early growing season and 
one from late, both of which rely exclusively on Landsat 8 OLI’s two 
shortwave infrared bands (Table 4). This is consistent with previous 
research that found change in NBR2 to be a good predictor of PJ canopy 
mortality (Campbell et al., 2020). It also aligns with previous work 
suggesting that spectral indices based on shorter wavelengths such as 
NDVI do not perform as well in dryland woodland settings due to their 
structural complexities (Norris and Walker, 2020; Smith et al., 2019; 
Yang et al., 2012). The fact that data from multiple Landsat image 
acquisition dates were present in the final variable selection highlights 
the importance of accounting for vegetation phenology in the AGB 
prediction process. Although piñon and juniper trees are evergreen co
nifers, and thus their spectral characteristics are somewhat consistent 
throughout a growing season, the high exposure of understory shrubs 
and grasses through the sparse canopies can have significant effects on 
spectral response (Norris and Walker, 2020; Smith et al., 2019). 

Incorporating GEDI into our regional model provided minimal im
provements in accuracy over using Landsat alone. Moderate resolution 
multispectral data (e.g., Landsat, Sentinel-2) may have similar advan
tages over GEDI in other open-canopy woodland environments. More 
work is needed to determine the ranges of structural parameters that 
produce accurate modeling with Landsat alone versus GEDI or a com
bination of GEDI and Landsat. While Landsat alone may prove sufficient 
for open-canopy woodlands, mapping AGB in higher biomass forests is 
likely to require GEDI or a combination of GEDI and Landsat data. 

It is worth considering the results for our local-scale modeling pro
cedure in the context of other studies who have modeled woodland 
biomass using ALS data under an area-based approach analytical 
framework. The most directly-comparable, unitless, and frequently- 
reported statistic for model fit is that of the percent variance 
explained by the predictive model (R2). García et al. (2010) modeled 
AGB in a semiarid Spanish woodland featuring juniper trees using ALS 
data, and obtained R2 values between 0.58 and 0.67. Simonson et al. 
(2012) modeled AGB in the same region using a more recent ALS 
dataset, attaining an R2 of 0.53. Wessels et al. (2012) mapped AGB in a 
South African woodland with R2 values ranging between 0.75 and 0.82. 
Wu et al. (2016) modeled AGB in a piñon-juniper-oak woodland 
ecosystem in eastern Arizona, achieving R2 values between 0.56 and 
0.68, depending on ALS point density. Krofcheck et al. (2016) modeled 

Fig. 14. Results of BLOOCV analysis to determine the effects of spatial autocorrelation on model performance, as approximated by RMSE and R2, at a range of buffer 
radii for regional AGB modeling using GEDI (A), Landsat (B), and GEDI and Landsat (C). 
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equivalent stem diameters, which are the basis of AGB estimates in most 
allometries, of juniper trees in a woodland ecosystem of central New 
Mexico, reporting R2 values of 0.83, although they were quantifying 
biomass of individual tree clusters, rather than broader-scale plot areas, 
thus limiting direct comparability to our study. Goldbergs et al. (2018) 
modeled AGB in an Australian using a combination an individual tree 
and an area-based approach, which yielded R2 values between 0.65 and 
0.86, depending on the plot size used, though the trees they were 
studying are much taller than those found in our study area and their 
heights are directly linked to AGB. Comparing our local-scale modeling 
results to these studies, we find that our results are at least comparable 
and, in some cases, better than those in the existing woodland AGB 
literature (R2 = 0.74). 

Nevertheless, there remains a noteworthy amount of variance left 
unexplained by our local-scale model and those we’ve cited here, 
pointing to the inherent challenges associated with modeling AGB in 
open-canopied, short-treed woodland ecosystems, even with the benefit 
of high-quality ALS data. We attribute some of this residual error to 
uncertainties in the allometries used to estimate AGB in woodlands, 
where the unique structure of trees such as junipers do not fit typical 
allometric relationships (Chojnacky et al., 2014). The AGB values 
modeled in our study are relatively high by comparison to other studies 
who have mapped PJ woodland AGB (e.g., Filippelli et al., 2020; Huang 
et al., 2010; Hulet et al., 2014). This points to both the importance of 
allometric equation selection and the inherent variability of PJ wood
land structure throughout its wide habitat range. However a comparison 
to a database that compiles AGB field plot data from a wide variety of 
sources revealed that, although on the high end of the PJ AGB range, our 
results are not outside of the range of existing data (Prichard et al., 
2019). 

Given the paucity of woodland AGB scaling studies in the existing 
literature, it is difficult to directly compare our regional-scale results in a 
similar manner. One such scaling study by Huang et al. (2009) linked an 
AVIRIS-derived estimate of PJ woodland AGB (via regression to canopy 
cover) to Landsat 7 ETM+ data with an R2 of 0.52. More recently, 
Saarela et al. (2018) presented a methodological framework similar to 
that demonstrated in this study, by linking ALS data to GEDI and Landsat 
data. They did not present woodland-specific results, although one of 
their study areas in Colorado did feature plots in PJ woodlands. In that 
area, they did not provide R2 values, but they reported relative standard 
errors between 6.3%–9.1%. In addition, the GEDI data used were 
simulated from ALS point cloud data, thus representing idealized GEDI 
waveforms. These factors make direct comparisons to our study difficult. 

Beyond the scaling-specific literature there are several studies that 
have linked field-level data directly to Landsat data. Avitabile et al. 
(2012) mapped woodland AGB in Uganda using Landsat 5 TM data and 
achieved R2 values between 0.78 and 0.85. Karlson et al. (2015) mapped 
woodland AGB in Burkina Faso by comparing field measurements to a 
series of Landsat 8 variables using random forests, attaining an R2 of 
0.57. Gizachew et al. (2016) mapped woodland biomass in Tanzania 
using Landsat 8 data, achieving maximum R2 values of 0.25. Egberth 
et al. (2017) mapped woodland AGB in Tanzania using a combination of 
ALS and Landsat 8 data (though not in a scaling context, per se), and 
achieved R2 values of 0.38 and 0.66 for Landsat alone and Landsat with 
ALS data, respectively. Filippelli et al. (2020) used a combination of 
National Agricultural Inventory Program (NAIP) and Landsat imagery to 
model AGB in PJ woodlands on a broad spatial scale, and while they did 
not report their plot-level AGB model fit, they reported a canopy cover 
R2 of 0.75. Without an independent sample of field validation data, we 
cannot directly compare our model performance with these studies; 
however, our decision tree-based error propagation procedure provides 
an estimate of uncertainty that can be cautiously compared. The prop
agated variance explained (R2 = 0.68 ± 0.06 SD) falls in line with, and in 
some cases demonstrates improved results over, existing studies. 

It is worth noting that, ignoring the effects of uncertainty propaga
tion, the two Landsat-driven regional-scale models outperformed the 

ALS-driven local-scale model. We believe this is attributable to a two 
primary factors. First, there is a major difference in the sample size 
between local- and regional-scale models. The local-scale model was 
driven by 65 field plots, whereas the regional-scale models were driven 
by thousands of points. Random forest models tend to perform best with 
large sample sizes (Fassnacht et al., 2014). Second, this larger regional 
sample allowed for a wider range of geographic conditions to be 
sampled. By capturing a wider range of vegetation structural and 
topographic conditions in the regional-scale modeling procedure, a 
better representation of the study area could be attained, thus allowing 
for a more robust modeling procedure. 

As with all ecologically-focused remote sensing analyses, it is 
important to consider the role that spatial autocorrelation plays, 
particularly in the assessment of model performance (Cánovas-García 
et al., 2017; Chen et al., 2019; Dale and Fortin, 2002; Griffith and Chun, 
2016; Legendre and Fortin, 1989; Ploton et al., 2020). The spatial dis
tribution of GEDI footprints, which formed the geographic basis of our 
regional-scale reference data, is such that individual footprints can be as 
close as 60 m from one another. This distance is well within the range of 
AGB spatial dependence for the ecosystem we are studying. Accordingly, 
if a sufficient number of these footprints are being incorporated into the 
reference dataset, it is likely that the assumption of independence be
tween training and validation data is violated. Our application of a 
BLOOCV analysis (Ploton et al., 2020) demonstrated that, while spatial 
autocorrelation was indeed affecting our model fit and accuracy metrics, 
the effects were relatively mild, even at large buffer distances well 
beyond the range of spatial dependence. 

Lastly, our footprint size analysis revealed that using larger simu
lated footprint areas will increase the accuracy of modeling AGB using 
GEDI. We attribute this to the positional uncertainty of GEDI footprints, 
but it also is likely strongly correlated with the structure of the vege
tation. Highly spatially heterogeneous vegetation types are more likely 
to suffer from the effects of GEDI footprint positional inaccuracy, as 
small shifts in footprint location can result in significant differences in 
AGB. Conversely, highly spatially homogeneous vegetation types are 
likely more robust to positional uncertainty. We suspect that across a 
wide range of vegetation types and structures, the generally positive, 
asymptotic relationship between footprint size and model accuracy we 
have demonstrated will persist, but the specific quantitative nature of 
that relationship will likely differ from one vegetation type to another. 

5. Conclusions 

In this study, we have presented a framework for modeling and 
mapping AGB in woodland ecosystems through a flexible and repeatable 
scaled analytical approach. Improving our capacity for accurately esti
mating woodland AGB will in turn improve our ability to understand the 
important role that these ecosystems play in global carbon cycling and 
land-climate interactions (Ahlström et al., 2015; Bastin et al., 2017; 
Poulter et al., 2014). The results we have presented provide a sound 
basis upon which to build future woodland AGB mapping studies and 
provide insight into the types of data best-suited for quantifying 
woodland AGB. In PJ, the most abundant woodland type in the US, we 
found that a combination of satellite multispectral and lidar data pro
duced the most accurate predictions of AGB on a regional scale, out
performing the results of multispectral and lidar data-driven models 
individually. This suggests that, at least in woodland settings, those 
attempting to use space-based, waveform lidar for predicting AGB 
should consider incorporating data from a sensor like Landsat 8 OLI or 
Sentinel-2. Although we did not test Sentinel-2 data, it is possible that 
the higher spatial and spectral resolution as compared to Landsat would 
demonstrate improved results. For example, the GEDI AGB Level 4A 
product, which will contain footprint-level AGB estimates, would likely 
benefit from the incorporation of passive reflectance data in its modeling 
process. Further, in such dryland woodland settings as we have studied 
here, where the spatial distribution of AGB is heavily controlled by 
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abiotic factors such as climate and topography, we have demonstrated 
that the incorporation of such variables into the modeling process can 
improve predictive power. More research in a diverse range of vegeta
tion types is needed to confirm whether these findings are extensible in a 
broader range of woodland and other forest settings. 

This study also represents an early test case of the application of 
GEDI data to AGB mapping in woodland ecosystems. The recent launch 
of the space-based waveform lidar GEDI represents one of the most 
important steps forward in the effort to map near-global AGB. However, 
our results found that, while GEDI was able to estimate woodland AGB 
with a moderate degree of accuracy, Landsat proved superior in this 
capacity. This stands in contrast to the prevailing paradigm that active 
remote sensing is better-suited for AGB mapping than passive remote 
sensing (Zolkos et al., 2013). While that paradigm likely holds true in 
higher-biomass ecosystems, the unique structure of woodlands clearly 
necessitates tailored analytical approaches. 

Although the combination of Landsat and GEDI resulted in the best 
performance, the fact that the Landsat-based model performed so well 
has significant implications. Given that Landsat coverage is both global 
and spatially-exhaustive, our results suggest that total AGB can be 
quantified on a per-pixel basis across entire woodland ecosystems. In our 
study, this allowed us to estimate that BENM, an area of rich with nat
ural and cultural resources that is currently being considered for addi
tional regulatory protection, possesses between 7.5 and 12.0 Tg of 
woodland AGB (best estimate = 9.4 Tg). These results can be, in turn, 
compared to spatially-explicit climatic, terrain, and soil variables to 
assess controls on woodland AGB and facilitate an improved under
standing of how future climatic conditions will affect woodland AGB. In 
addition, the lengthy history of the Landsat archive and projected 
continuation of the Landsat program presents an added opportunity to 
quantify losses in AGB over time due to anthropogenic and natural 
disturbance events, and gains due to growth and recruitment (Wulder 
et al., 2019; Zhu et al., 2019). 

The scaling approach presented in this study hinges upon the ability 
to link field-measured AGB to ALS at the local scale. There are still large 
portions of the globe that lack ALS coverage, and while scaling limits the 
need for exhaustive ALS coverage, to avoid extrapolation, at least a 
sparse sample of ALS is required. Future research should explore the 
limitations of using sparse ALS samples as a basis of regional AGB pre
diction and quantify the effects of extrapolation on AGB model accuracy. 

Funding 

This research was funded by the National Science Foundation, grant 
number DEB-1714972. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2021.112511. 

References 

Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., 
Reichstein, M., Canadell, J.G., Friedlingstein, P., Jain, A.K., Kato, E., Poulter, B., 
Sitch, S., Stocker, B.D., Viovy, N., Wang, Y.P., Wiltshire, A., Zaehle, S., Zeng, N., 
2015. The dominant role of semi-arid ecosystems in the trend and variability of the 
land CO2 sink. Science 348, 895–899. https://doi.org/10.1126/science.aaa1668. 

Arribas-Bel, D., Patino, J.E., Duque, J.C., 2017. Remote sensing-based measurement of 
living environment deprivation: improving classical approaches with machine 
learning. PLoS One 12, e0176684. https://doi.org/10.1371/journal.pone.0176684. 

Askar, N., Phairuang, W., Wicaksono, P., Sayektiningsih, T., 2018. Estimating 
aboveground biomass on private forest using sentinel-2 imagery. J. Sens. https://doi. 
org/10.1155/2018/6745629. 

Asner, G.P., Mascaro, J., Anderson, C., Knapp, D.E., Martin, R.E., Kennedy-Bowdoin, T., 
van Breugel, M., Davies, S., Hall, J.S., Muller-Landau, H.C., Potvin, C., Sousa, W., 
Wright, J., Bermingham, E., 2013. High-fidelity national carbon mapping for 
resource management and REDD+. Carbon Bal. Manage. 8, 7. https://doi.org/ 
10.1186/1750-0680-8-7. 

Asner, G.P., Brodrick, P.G., Philipson, C., Vaughn, N.R., Martin, R.E., Knapp, D.E., 
Heckler, J., Evans, L.J., Jucker, T., Goossens, B., Stark, D.J., Reynolds, G., Ong, R., 
Renneboog, N., Kugan, F., Coomes, D.A., 2018. Mapped aboveground carbon stocks 
to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 
217, 289–310. https://doi.org/10.1016/j.biocon.2017.10.020. 

Avitabile, V., Baccini, A., Friedl, M.A., Schmullius, C., 2012. Capabilities and limitations 
of Landsat and land cover data for aboveground woody biomass estimation of 
Uganda. Remote Sens. Environ. Remote Sens. Urban Environ. 117, 366–380. https:// 
doi.org/10.1016/j.rse.2011.10.012. 

Badgley, G., Field, C.B., Berry, J.A., 2017. Canopy near-infrared reflectance and 
terrestrial photosynthesis. Sci. Adv. 3, e1602244 https://doi.org/10.1126/ 
sciadv.1602244. 

Baig, M.H.A., Zhang, L., Shuai, T., Tong, Q., 2014. Derivation of a tasselled cap 
transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 5, 
423–431. https://doi.org/10.1080/2150704X.2014.915434. 

Bastin, J.-F., Berrahmouni, N., Grainger, A., Maniatis, D., Mollicone, D., Moore, R., 
Patriarca, C., Picard, N., Sparrow, B., Abraham, E.M., Aloui, K., Atesoglu, A., 
Attore, F., Bassüllü, Ç., Bey, A., Garzuglia, M., García-Montero, L.G., Groot, N., 
Guerin, G., Laestadius, L., Lowe, A.J., Mamane, B., Marchi, G., Patterson, P., 
Rezende, M., Ricci, S., Salcedo, I., Diaz, A.S.-P., Stolle, F., Surappaeva, V., Castro, R., 
2017. The extent of forest in dryland biomes. Science 356, 635–638. https://doi.org/ 
10.1126/science.aam6527. 

Bechtold, W.A., Patterson, P.L. (Eds.), 2005. The Enhanced Forest Inventory and Analysis 
Program–National Sampling Design and Estimation Procedures, General Technical 
Report. USDA Forest Service, Southern Research Station. 

Bivand, R., Rundel, C., Pebesma, E., Stuetz, R., Hufthammer, K.O., Giraudoux, P., 
Davis, M., Santilli, S., 2020. rgeos: Interface to Geometry Engine - Open Source 
(’GEOS’). 

Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Sumner, M., Hijmans, R., Baston, D., 
Rouault, E., Warmerdam, F., Ooms, J., Rundel, C., 2021. rgdal: Bindings for the 
“Geospatial” Data Abstraction Library. 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A: 
1010933404324. 

Brown, S., 2002. Measuring carbon in forests: current status and future challenges. 
Environ. Pollut. 116, 363–372. https://doi.org/10.1016/S0269-7491(01)00212-3. 

Campbell, M.J., Dennison, P.E., Hudak, A.T., Parham, L.M., Butler, B.W., 2018. 
Quantifying understory vegetation density using small-footprint airborne lidar. 
Remote Sens. Environ. 215, 330–342. https://doi.org/10.1016/j.rse.2018.06.023. 

Campbell, M.J., Dennison, P.E., Tune, J.W., Kannenberg, S.A., Kerr, K.L., Codding, B.F., 
Anderegg, W.R.L., 2020. A multi-sensor, multi-scale approach to mapping tree 
mortality in woodland ecosystems. Remote Sens. Environ. 245, 111853. https://doi. 
org/10.1016/j.rse.2020.111853. 

Cánovas-García, F., Alonso-Sarría, F., Gomariz-Castillo, F., Oñate-Valdivieso, F., 2017. 
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Alho, P., Viitala, R., 2013. Retrieval of forest aboveground biomass and stem volume 
with airborne scanning LiDAR. Remote Sens. 5, 2257–2274. https://doi.org/ 
10.3390/rs5052257. 

Kannenberg, S.A., Driscoll, A.W., Malesky, D., Anderegg, W.R.L., 2021. Rapid and 
surprising dieback of Utah juniper in the southwestern USA due to acute drought 
stress. For. Ecol. Manag. 480, 118639. https://doi.org/10.1016/j. 
foreco.2020.118639. 

Karlson, M., Ostwald, M., Reese, H., Sanou, J., Tankoano, B., Mattsson, E., 2015. 
Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian 
woodlands using Landsat 8 and random forest. Remote Sens. 7, 10017–10041. 
https://doi.org/10.3390/rs70810017. 

Key, C.H., Benson, N.C., 1999. The Normalized Burn Ratio (NBR): A Landsat TM 
Radiometric Measure of Burn Severity. United States Geological Survey, Northern 
Rocky Mountain Science Center, Bozeman, MT.  

Korhonen, L., Korpela, I., Heiskanen, J., Maltamo, M., 2011. Airborne discrete-return 
LIDAR data in the estimation of vertical canopy cover, angular canopy closure and 
leaf area index. Remote Sens. Environ. 115, 1065–1080. https://doi.org/10.1016/j. 
rse.2010.12.011. 

Krofcheck, D.J., Eitel, J.U.H., Vierling, L.A., Schulthess, U., Hilton, T.M., Dettweiler- 
Robinson, E., Pendleton, R., Litvak, M.E., 2014. Detecting mortality induced 
structural and functional changes in a piñon-juniper woodland using Landsat and 
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Aboveground forest biomass derived using multiple dates of WorldView-2 stereo- 
imagery: quantifying the improvement in estimation accuracy. Int. J. Remote Sens. 
39, 8766–8783. https://doi.org/10.1080/01431161.2018.1492176. 

Vaysse, K., Lagacherie, P., 2017. Using quantile regression forest to estimate uncertainty 
of digital soil mapping products. Geoderma 291, 55–64. https://doi.org/10.1016/j. 
geoderma.2016.12.017. 

Vermote, E., Justice, C., Claverie, M., Franch, B., 2016. Preliminary analysis of the 
performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. 
Environ. Landsat 8 Sci. Results 185, 46–56. https://doi.org/10.1016/j. 
rse.2016.04.008. 

Wallace, A., Nichol, C., Woodhouse, I., 2012. Recovery of forest canopy parameters by 
inversion of multispectral LiDAR data. Remote Sens. 4, 509–531. https://doi.org/ 
10.3390/rs4020509. 

Wessels, K.J., Erasmus, B.F.N., Colgan, M., Asner, G.P., Mathieu, R., Twine, W., Van 
Aardt, J.A.N., Smit, I., 2012. Impacts of communal fuelwood extraction on LiDAR- 
estimated biomass patterns of savanna woodlands. In: 2012 IEEE International 
Geoscience and Remote Sensing Symposium. Presented at the 2012 IEEE 
International Geoscience and Remote Sensing Symposium, pp. 1676–1679. https:// 
doi.org/10.1109/IGARSS.2012.6351204. 

Wilson, M.F.J., O’Connell, B., Brown, C., Guinan, J.C., Grehan, A.J., 2007. Multiscale 
terrain analysis of multibeam bathymetry data for habitat mapping on the 
continental slope. Mar. Geod. 30, 3–35. https://doi.org/10.1080/ 
01490410701295962. 

Wu, Z., Dye, D.G., Stoker, J.M., Vogel, J.M., Velasco, M.G., Middleton, B.R., 2016. 
Evaluating Lidar Point Densities for Effective Estimation of Aboveground Biomass. 
International Journal of Advanced Remote Sensing and GIS. 

Wulder, M.A., Loveland, T.R., Roy, D.P., Crawford, C.J., Masek, J.G., Woodcock, C.E., 
Allen, R.G., Anderson, M.C., Belward, A.S., Cohen, W.B., Dwyer, J., Erb, A., Gao, F., 
Griffiths, P., Helder, D., Hermosilla, T., Hipple, J.D., Hostert, P., Hughes, M.J., 
Huntington, J., Johnson, D.M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., 
McCorkel, J., Pahlevan, N., Scambos, T.A., Schaaf, C., Schott, J.R., Sheng, Y., 
Storey, J., Vermote, E., Vogelmann, J., White, J.C., Wynne, R.H., Zhu, Z., 2019. 
Current status of Landsat program, science, and applications. Remote Sens. Environ. 
225, 127–147. https://doi.org/10.1016/j.rse.2019.02.015. 

Xu, L., Saatchi, S.S., Shapiro, A., Meyer, V., Ferraz, A., Yang, Y., Bastin, J.-F., Banks, N., 
Boeckx, P., Verbeeck, H., Lewis, S.L., Muanza, E.T., Bongwele, E., Kayembe, F., 
Mbenza, D., Kalau, L., Mukendi, F., Ilunga, F., Ebuta, D., 2017. Spatial distribution of 

M.J. Campbell et al.                                                                                                                                                                                                                            

https://doi.org/10.3390/rs11091092
https://doi.org/10.1016/j.rse.2017.12.020
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0385
https://doi.org/10.2737/INT-RP-273
https://doi.org/10.2737/INT-RP-273
https://doi.org/10.1016/j.rse.2006.12.006
https://doi.org/10.1098/rstb.2012.0406
https://doi.org/10.1016/j.rse.2005.09.011
https://doi.org/10.1016/S0034-4257(01)00290-5
https://doi.org/10.1016/j.rse.2008.03.004
https://doi.org/10.3390/rs11121503
https://doi.org/10.1016/j.jag.2019.101952
https://doi.org/10.1016/j.jag.2019.101952
https://www.nationalgeographic.com/environment/article/biden-expected-to-reverse-trump-order-to-shrink-utah-national-monuments
https://www.nationalgeographic.com/environment/article/biden-expected-to-reverse-trump-order-to-shrink-utah-national-monuments
https://www.nationalgeographic.com/environment/article/biden-expected-to-reverse-trump-order-to-shrink-utah-national-monuments
https://doi.org/10.1016/j.rse.2020.112013
https://doi.org/10.1016/j.rse.2020.112013
https://doi.org/10.1016/S0034-4257(01)00207-3
https://doi.org/10.1016/j.rse.2013.05.033
https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.1016/j.rse.2011.01.026
https://doi.org/10.1038/nature13376
https://doi.org/10.1029/2019JG005083
http://prism.oregonstate.edu/
https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1016/j.rse.2019.111283
https://doi.org/10.1016/j.rse.2019.111283
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0485
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0485
https://doi.org/10.1111/j.1466-8238.2010.00634.x
https://doi.org/10.1111/j.1466-8238.2010.00634.x
https://doi.org/10.1016/j.rse.2005.05.002
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0500
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0505
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0505
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0505
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0505
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0505
https://doi.org/10.3390/rs10111832
https://doi.org/10.1073/pnas.1019576108
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0520
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0520
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0525
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0525
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0525
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0525
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0525
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0525
https://doi.org/10.1111/j.1523-1739.2012.01869.x
https://doi.org/10.1016/j.isprsjprs.2012.09.009
https://doi.org/10.1016/j.rse.2019.111401
https://doi.org/10.5849/forsci.12-541
https://doi.org/10.5849/forsci.12-541
https://doi.org/10.3390/rs61111127
https://doi.org/10.3390/rs61111127
https://doi.org/10.1007/978-1-4757-0656-7_2
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0560
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0560
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0560
https://doi.org/10.1080/01431161.2018.1492176
https://doi.org/10.1016/j.geoderma.2016.12.017
https://doi.org/10.1016/j.geoderma.2016.12.017
https://doi.org/10.1016/j.rse.2016.04.008
https://doi.org/10.1016/j.rse.2016.04.008
https://doi.org/10.3390/rs4020509
https://doi.org/10.3390/rs4020509
https://doi.org/10.1109/IGARSS.2012.6351204
https://doi.org/10.1109/IGARSS.2012.6351204
https://doi.org/10.1080/01490410701295962
https://doi.org/10.1080/01490410701295962
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0595
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0595
http://refhub.elsevier.com/S0034-4257(21)00231-5/rf0595
https://doi.org/10.1016/j.rse.2019.02.015


Remote Sensing of Environment 262 (2021) 112511

20

carbon stored in forests of the Democratic Republic of Congo. Sci. Rep. 7, 15030. 
https://doi.org/10.1038/s41598-017-15050-z. 

Yang, J., Weisberg, P.J., Bristow, N.A., 2012. Landsat remote sensing approaches for 
monitoring long-term tree cover dynamics in semi-arid woodlands: comparison of 
vegetation indices and spectral mixture analysis. Remote Sens. Environ. 119, 62–71. 
https://doi.org/10.1016/j.rse.2011.12.004. 

Zald, H.S.J., Wulder, M.A., White, J.C., Hilker, T., Hermosilla, T., Hobart, G.W., 
Coops, N.C., 2016. Integrating Landsat pixel composites and change metrics with 
lidar plots to predictively map forest structure and aboveground biomass in 
Saskatchewan, Canada. Remote Sens. Environ. 176, 188–201. https://doi.org/ 
10.1016/j.rse.2016.01.015. 

Zhang, J., 2010. Multi-source remote sensing data fusion: status and trends. Int. J. Image 
Data Fusion 1, 5–24. https://doi.org/10.1080/19479830903561035. 

Zhu, Z., Wulder, M.A., Roy, D.P., Woodcock, C.E., Hansen, M.C., Radeloff, V.C., 
Healey, S.P., Schaaf, C., Hostert, P., Strobl, P., Pekel, J.-F., Lymburner, L., 
Pahlevan, N., Scambos, T.A., 2019. Benefits of the free and open Landsat data policy. 
Remote Sens. Environ. 224, 382–385. https://doi.org/10.1016/j.rse.2019.02.016. 

Zolkos, S.G., Goetz, S.J., Dubayah, R., 2013. A meta-analysis of terrestrial aboveground 
biomass estimation using lidar remote sensing. Remote Sens. Environ. 128, 289–298. 
https://doi.org/10.1016/j.rse.2012.10.017. 

M.J. Campbell et al.                                                                                                                                                                                                                            

https://doi.org/10.1038/s41598-017-15050-z
https://doi.org/10.1016/j.rse.2011.12.004
https://doi.org/10.1016/j.rse.2016.01.015
https://doi.org/10.1016/j.rse.2016.01.015
https://doi.org/10.1080/19479830903561035
https://doi.org/10.1016/j.rse.2019.02.016
https://doi.org/10.1016/j.rse.2012.10.017

	Scaled biomass estimation in woodland ecosystems: Testing the individual and combined capacities of satellite multispectral ...
	1 Introduction
	2 Methods
	2.1 Study area
	2.2 ALS data
	2.3 Analysis overview
	2.4 Field data and biomass allometry
	2.5 Local-scale AGB modeling (Field – ALS)
	2.6 Regional-scale AGB modeling (ALS – Landsat/GEDI)
	2.7 Testing the role of ancillary data in regional model performance
	2.8 Regional-scale uncertainty analysis
	2.9 Regional-scale spatial autocorrelation analysis

	3 Results
	3.1 Local-scale AGB modeling (Field – ALS)
	3.2 Regional-scale AGB modeling (ALS – GEDI/Landsat)
	3.3 GEDI footprint size and variable importance
	3.4 The role of ancillary data in regional model performance
	3.5 Regional-scale uncertainty
	3.6 Regional-scale spatial autocorrelation

	4 Discussion
	5 Conclusions
	Funding
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


