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A B S T R A C T

Woodland ecosystems, dominant on nearly 4% of all terrestrial land globally, are faced with a variety of threats,
including increasingly prolonged and severe droughts, invasive insect outbreaks, and the rapid spread of pa-
thogens. While many remote sensing methods have been developed for the detection and quantification of
mortality in forested environments, woodland ecosystems present unique challenges to accurately mapping tree
die-off due to relatively lower canopy covers, smaller and irregularly-shaped tree crowns, and greater influence
of understory vegetation and soil cover on reflectance. To address these challenges, we developed a multi-sensor,
multi-scale approach combining the analytical strengths of centimeter-resolution unmanned aerial system
imagery for interpreting individual tree-level mortality, airborne lidar for crown mapping and quantifying
percent canopy mortality, and Landsat imagery for upscaling mortality estimates to a regional scale. This ap-
proach utilizes a new algorithm for delineating the shapes of small, irregular woodland tree crowns using lidar.
To demonstrate the application of this method, we map the extent and severity of a recent tree mortality event in
piñon-juniper (PJ) woodlands of southeastern Utah. Our results suggest that 39% of PJ in this region has ex-
perienced some level of mortality, with patches exceeding 50% mortality. An analysis of potential mortality
drivers revealed that canopy cover, terrain, and recent winter precipitation conditions are most directly linked
with mortality, although the explanatory power of the mortality driver model was low. Our approach demon-
strates a methodology that could be used for tree mortality mapping and scaling in a variety woodland eco-
systems, and can provide a strong basis for further ecophysiological, ecological, and carbon cycle studies in-
volving woodland tree mortality.

1. Introduction

Woodland ecosystems are widely distributed throughout the world,
often found in semiarid regions where precipitation totals are sufficient
to support some arboreal vegetation, yet insufficient to promote a high
density of trees. Although specific definitions can vary, woodland
ecosystems are generally considered to be areas that possess low-to-
moderate tree cover, existing on a spectrum between forest ecosystems,
with relatively high tree cover, and savanna ecosystems, with relatively
low tree cover (Ratnam et al., 2011; Taft, 1997). Open-canopy dryland
woodland ecosystems with canopy covers between 10% and 40%

dominate on approximately 550 Mha globally (nearly 4% of all ter-
restrial land), spanning every continent besides Antarctica (Bastin et al.,
2017). Semiarid ecosystems are one of the major drivers of interannual
variability in the global land carbon sink, and thus their response to
climate plays a critical role in the Earth system (Ahlström et al., 2015).
Although woodland trees may be well-adapted to the semiarid condi-
tions in which they dominate, changes in the frequency, length, and
severity of drought events linked to climate change place woodland
ecosystems at particular risk in the decades to come (Clifford et al.,
2011; Matusick et al., 2012). In order to enhance our understanding of
how woodland environments may respond to projected climatic
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changes, we need to leverage all of the information and analytical tools
at our disposal, including remote sensing (Allen et al., 2015). The un-
ique capacity of remote sensing for providing spatially-explicit maps of
tree mortality can provide an invaluable basis for studying potential
mortality drivers (Anderegg et al., 2016). Furthermore, regional maps
of climate-driven tree mortality are essential tools for improving ve-
getation models and climate‑carbon cycle feedback projections, pro-
viding critical validation and benchmarking datasets for poorly-con-
strained tree mortality algorithms (Hartmann et al., 2018).

Approaches for using remote sensing to quantify tree mortality
generally fall into two categories: (1) individual tree-based mortality
mapping driven by high spatial resolution data (Clark et al., 2004;
Garrity et al., 2013; Guo et al., 2007; Waser et al., 2014); and (2) stand-
level mortality mapping driven by moderate spatial resolution data
(Bullock et al., 2020; Coops et al., 2009; Fortin et al., 2020; Fraser and
Latifovic, 2005; Macomber and Woodcock, 1994; Meigs et al., 2011;
Van Gunst et al., 2016). Generally, high spatial resolution data come at
the expense of high temporal resolution, due to the opportunistic nature
of data capture (e.g. from an aircraft or pointable satellite), and tend to
be collected over relatively smaller areas, limiting the ability to de-
termine when morality occurred and its spatial extent. The strengths
and weaknesses of the second approach are inverse – the ability to map
individual tree-level mortality is compromised in favor of knowing
when the mortality occurred and being able to map mortality at a
broader spatial scale.

A few studies in higher-cover, forested environments have sought to
leverage the benefits of both high and moderate spatial resolution data
for mapping tree mortality by fusing individual tree-level mortality
mapping with stand-level mortality mapping (Hart and Veblen, 2015;
He et al., 2019; Meddens et al., 2013). Meddens et al. (2013) and Hart
and Veblen (2015) used a combination of aerial imagery and time-
series Landsat satellite imagery to classify various stages of beetle kill in
high-altitude mixed conifer forests of Colorado. He et al. (2019) used a
combination of high spatial resolution aerial imagery, hyperspectral
aerial imagery, and Landsat to map sudden oak death in higher-density
chaparral environments of coastal California.

Remote sensing of tree mortality in open-canopy woodland eco-
systems poses significant challenges to multiscale approaches that have
not been addressed in the previous literature. Within an image pixel,
the spectral contribution of tree mortality can be diluted due to rela-
tively small, irregular, and widely-spaced tree canopies (Smith et al.,
2019). Understory vegetation, soil, and rock can provide significant or
even dominant contributions to spectral measurements at the scale of
high spatial resolution imagery used by previous studies. Figure de-
monstrates how an approach using approximately 3 m spatial resolu-
tion imagery that has successfully been applied in a closed-canopy
forest (Hart and Veblen, 2015; Meddens et al., 2013) would be severely
limited due to the spatial and spectral characteristics of an open-canopy

woodland. Even at 1 m spatial resolution, it is not possible to determine
mortality of individual woodland trees (Fig. 1). Accordingly, a new
approach is needed to fuse high and moderate spatial resolution ima-
gery for detecting and mapping tree mortality in sparse, open canopy
woodlands. Such an approach could provide insight into the extent and
severity of mortality events in these critical, widespread, and threa-
tened ecosystems.

The objectives of this study are to 1) Develop a multi-sensor, multi-
scale approach to mapping tree mortality that is appropriate for sparse,
open canopy woodlands in semiarid environments; 2) Demonstrate the
application of this multi-sensor, multi-scale approach to a recent mor-
tality event in piñon-juniper (PJ) woodlands in southeastern Utah; and
3) Use the resulting map to relate percent mortality at 30 m scales to
environmental drivers of mortality. We introduce a new approach to
mapping tree mortality that leverages the benefits of high-resolution
unmanned aerial systems (UAS) imagery for use in interpreting tree
mortality, lidar for use in delineating individual tree crowns and
quantifying proportional mortality cover, and Landsat imagery for
scaling up mortality estimates to a broad spatial scale. As in Meddens
and Hicke (2014), our method results in a Landsat pixel-level quanti-
fication of percent mortality using relative canopy mortality (RCM),
rather than a categorical label (e.g. “live” vs. “dead”). The resulting
mortality map is compared to a range of vegetation, terrain, climate,
and soil spatial datasets with the intent of illuminating potential drivers
of mortality.

2. Background

Piñon-juniper (PJ) woodlands are one of the most widespread
woodland-type ecosystems in the North America, spanning ten south-
western US states and occupying over 178,000 km2 of land (Fig. S1).
They are characterized by a dominance of one or more species of piñon
pine and one or more species of juniper (Table S1). Given their wide-
spread distribution, these ecosystems represent an important source of
woody biomass and carbon storage (Huang et al., 2009), they act as
valuable habitat for a wide range of animal species (Short and
McCulloch, 1977), and they provide firewood for heating homes and
cooking food among dependent populations in the region (Samuels and
Betancourt, 1982). Recent evidence suggests that a major mortality
event is underway in PJ woodlands. In summer 2018, while conducting
field work in the region, we observed significant amounts of tree
mortality occurring within PJ woodlands in southeastern Utah.

PJ woodland cover has expanded since the 1800s (Clifford et al.,
2011; Filippelli et al., 2020; Miller and Rose, 1999). Throughout this
time frame, juniper trees in particular have encroached into areas that
were historically dominated by grasses and shrubs, due to a variety of
factors including reduction in fire frequency, increase in livestock
grazing activity, and periods of elevated precipitation totals (Miller and

Fig. 1. Comparison between a 4 cm (A), 1 m (B), and 3 m (C) spatial resolution images of a piñon-juniper woodland stand with several dead, predominantly piñon
trees.

M.J. Campbell, et al. Remote Sensing of Environment 245 (2020) 111853

2



Rose, 1999). This process can have significant effects on hydrologic and
erosional processes, as large lateral root systems of PJ trees outcompete
grasses and shrubs, resulting in increased bare soil cover between trees
which, in turn, decreases water infiltration, and increases runoff and
erosion (Pierson et al., 2010). These changes in ecosystem structure can
also alter faunal habitat suitability, including the well-documented ef-
fects of decreasing sagebrush steppe extent on threated species such as
the greater sage-grouse (Centrocercus urophasianus) (Coates et al.,
2017).

Although the long-term trend has been one of PJ expansion, epi-
sodic periods of drought combined with anomalously-high tempera-
tures in recent years have been linked to widespread PJ mortality in the
region (Breshears et al., 2005; Clifford et al., 2013). Mortality can occur
directly from the lack of sufficient water to maintain plant water
transport and photosynthesis, or more indirectly by increasing sus-
ceptibility to attack by pests and/or pathogens (Greenwood and
Weisberg, 2008; Shaw et al., 2005). One such major climate-driven
mortality event occurred in the 2002–2003 time frame on PJ-domi-
nated landscapes throughout the American Southwest, where vast
swaths of piñon pines died off (Shaw et al., 2005). Rates of juniper
mortality during that event were negligible by comparison due to their
relatively higher drought tolerance (Linton et al., 1998). Particularly in
an ecosystem dominated by relatively few tree species such as PJ, major
mortality events like these can have dramatic effects on biodiversity
(e.g. loss of one or more widespread tree species), ecosystem structure
(e.g. shifting from a tree-dominated system to a shrub-dominated
system), function (e.g. changes in soil-water interactions), and services
(e.g. loss of firewood resources) (Anderegg et al., 2013).

PJ woodlands exist at the edge of the climatic range within which
trees can survive in the southwestern US – areas at lower elevations,
with higher temperatures, and/or lower annual precipitation totals are
dominated by shrubs and grasses, or are lacking vegetation cover al-
together (Gori and Bate, 2007). On top of their precarious existence at
this critical climatic/environmental threshold, PJ woodlands have ex-
perienced significant drought in the last few years. A comparison be-
tween recent (2017–2019) monthly temperature and precipitation and
long-term (30-year) average monthly temperature and precipitation on
CPPJ lands reveals that the majority of recent months have experienced
significant drought conditions (Fig. S2).

3. Materials and methods

3.1. Study area

This study is focused on PJ lands in San Juan County (SJC), Utah,
USA (Fig. 2). This area was chosen for a few reasons: (1) there is an
abundance of PJ vegetation type within this region; (2) it is situated
within the core of the PJ range, suggesting that it may be representative
of mortality conditions occurring within the broader distribution of this
vegetation type; (3) this is where the PJ mortality was first observed in
summer, 2018; and (4) airborne lidar data were captured over this area
in summer, 2018. SJC is a large county, totaling 20,537 km2 in area (an
area larger than the entire US state of New Jersey), that features a wide
range of elevations (1115–3880 m), climatic conditions, and vegetation
types. According to PRISM 30-year averages, this semiarid county re-
ceives a total annual precipitation of between 123 mm at the lower,
drier elevations to 1074 mm at the higher, wetter elevations. Average
annual temperatures range from 16 °C at the lower, warmer elevations
to 2 °C at the higher, cooler elevations. PJ is the most widespread
ecosystem in the county, occupying a total area of 5934 km2.

3.2. Lidar data

Lidar data were collected prior to the start of obvious mortality by
the National Center for Airborne Laser Mapping (NCALM) on June 2nd,
2018. The data were collected in five areas throughout SJC within PJ

lands, designed to capture the full elevation range of PJ in this area,
from 1654 m to 2762 m (Fig. 3). Lidar data were collected from an
airborne platform using an Optech Titan sensor, which emits lidar
pulses in three wavelengths: green (532 nm), near infrared (1064 nm),
and shortwave infrared (1550 nm). The pulses were emitted at 125 kHz,
with a scan angle range of± 23°. The nominal flying height was 600 m
above ground level at a nominal speed of 72 m/s. In all, 4.9 billion
pulses were emitted over a total collection area of 229 km2, producing
an average pulse density of approximately 21.4 pulses/m2. The point
cloud data were processed by NCALM in order to classify ground points
vs. non-ground points. Ground point three-dimensional positional ac-
curacy was measured using 1358 kinematic GPS check points, which
yielded a standard deviation of 0.038 m and a mean error of−0.018 m.

3.3. UAS data

UAS data were collected after the start of the mortality event on
October 19th and October 26th, 2019 within the southernmost of the
five lidar data collection areas shown in Fig. 3. Data were collected
using a DJI Phantom 3 Pro in three areas that were selected opportu-
nistically for their accessibility and known presence of varying levels of
PJ mortality. In all, the three data collection areas encompass 83.6 ha in
area. Imagery was collected along automated flight path transects
preprogramed in Pix4Dcapture (Pix4D S.A., Prilly, Switzerland), with a
nominal flying height of 100 m above ground level. Image data were
collected using the built-in camera, which captures visible-spectrum
(RGB) imagery in 12.4 megapixels. Twenty-one ground control points
were captured throughout the three collection areas (south: 8; central:
7; north: 6) using a Trimble Geo7x GPS. Georeferenced orthomosaics at
a spatial resolution of 4 cm were generated for each of the three areas
from the raw data and the ground control points using Pix4Dmapper
software (Pix4D S.A., Prilly, Switzerland). The resulting imagery was
further georeferenced to ensure precise alignment with the lidar data by
manually placing 30 additional points in each of the three data col-
lection areas, resulting in positional root mean squared errors of 0.50 m
(south area), 0.34 m (central area), and 0.37 m (north area). An ex-
ample subset of the UAS imagery is shown in Fig. 1A.

3.4. Landsat data

Thirty-meter spatial resolution Landsat 8 Operational Land Imagery
(OLI) data were acquired for two time frames: (1) October 12th, 2017,
before the onset of the mortality event; and (2) October 2nd, 2019,
which was the most recent, cloud-free, near-anniversary imagery
available at the time of analysis. October images were selected because
semiarid environments such as PJ feature low tree canopy cover, and as
such the spectral influence from understory vegetation during peak
growing season (May–August) can outweigh that of piñon and juniper
canopies. Conversely, images captured much later than October feature
low sun angles, with high shadowing, and often feature snow cover, all
of which could degrade the ability to detect mortality. The solar ele-
vation angles for the 2017 and 2019 images used in this study were
42.1° and 45.6°, respectively. Although these moderate sun angles can
produce a relatively high shadow fraction, they are well within the
bounds of producing reliable surface reflectance information (US
Geological Survey, 2019). In order to cover the majority of SJC, two
Landsat tiles were needed (path 36, rows 33 and 34). A very small
portion of southwestern SJC was cut off from the extent of Landsat data
in path 36, representing only 1.6% of the county's area and less than
0.1% of the total PJ in the county. The data were acquired from the
United States Geological Survey (USGS) Earth Resources Observation
and Science (EROS) Center, who processed the data from its raw form
to surface reflectance using the Land Surface Reflectance Code (LaSRC)
algorithm (Vermote et al., 2016). In the interest of mapping changes in
vegetation cover resulting from tree mortality between these two time
frames, several vegetation indices (VI) were generated for each image
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date (Table 1). For each VI, an image difference was calculated between
the 2017 and 2019 data.

3.5. Tree crown delineation and reference data creation

The complex structure of piñon and juniper trees do not lend
themselves well to most traditional lidar-based tree crown delineation
algorithms, which often rely on the assumption that trees come to a
single height peak and take a conical or rounded form (Zhen et al.,
2016). By comparison, piñon and juniper trees are often multi-stemmed
and irregularly-shaped, necessitating a different approach for tree
crown delineation. One such effort comes from Krofcheck et al. (2016),
but their algorithm does not distinguish between individual trees that
overlap one another. Thus, we developed our own algorithm for de-
riving tree crown polygons from lidar point cloud data, adapted from
that of Rahman and Gorte (2009), which relies on point density, rather
than point height as a basis of delineation. The method assumes that,
even if a tree does not come to a singular high point, the bulk of the
biomass within a tree still lies towards its horizontal center point, with
decreasing biomass totals as you radiate out from that center point.
Based on that assumption we can also assume that lidar pulses will be
most likely to interact with the greater density of vegetative surfaces
towards the center of the tree, producing a higher lidar point density at

the tree's center. The focal sum of lidar points, reflecting the density of
points, should then decrease with increasing distance from the center of
the tree, and a simple watershed delineation algorithm can be applied
to the focal sum to delineate tree crowns.

There are two parameters to consider when employing this algo-
rithm. The first is the minimum height threshold above which points
will be counted in the focal sum analysis, and below which they will not
(Rahman and Gorte, 2009). The threshold should be selected to elim-
inate ground points and those that may have reflected off of low-lying,
non-tree vegetation surrounding or underneath the tree of interest. For
the sake of our study, a height cutoff of 25 cm was selected, since the
majority of the understory vegetation in this area is below 25 cm in
height. The second parameter to consider when employing this algo-
rithm is the size of the focal window that will be used as a basis for
computing the sum of lidar points. If the focal sum window is too small,
the resulting sum surface will contain many small peaks, each of which
will be delineated as individual tree crowns, resulting in over-seg-
mentation (Fig. 4A). Conversely, if the focal sum window is too large,
the resulting sum surface will fail to identify smaller point clusters as
they will be consumed by any adjacent, larger point clusters, thus re-
sulting in under-segmentation (Fig. 4D). To resolve the issue of window
size sensitivity, we took an average of all of the point sum rasters from
10 cm to 150 cm at an interval of 10 cm to produce an average point

Fig. 2. Map depicting the study area of SJC within the broader range of PJ woodlands throughout the Four Corners region of the US, according to the LANDFIRE
existing vegetation type data (Rollins, 2009).
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sum raster (Fig. 4E). By including these many focal window sizes si-
multaneously, we allow the subsequent tree crown delineation algo-
rithm to identify both large and small trees alike without having to
impose a single window size that might selectively benefit one or the
other. This is a key divergence from the approach presented by Rahman

and Gorte (2009), which imposes a single window size.
The remaining steps of the algorithm proceed as follows. The

averaged point sum raster was then smoothed using a 3 × 3 focal filter
to remove any remaining imperfections, which can cause additional,
erroneous tree crown slivers to be generated. The smoothed raster was

Fig. 3. Map depicting areas within which airborne lidar data were collected on June 2nd, 2018 within SJC. Also shown are points representing the centroids of the
three areas (north, central, and south) in which UAS data were collected.

Table 1
VI generated from Landsat 8 OLI imagery for 2017 and 2019 imagery, with abbreviations, formula, and sources. SWIR1 and SWIR2 are Landsat 8 bands 6 and 7,
respectively.

Index Abbreviation Formula Source

Normalized Difference Vegetation Index NDVI −

+

NIR Red
NIR Red

( )
( )

Rouse (1974)

Enhanced Vegetation Index EVI
×

−

+ × − × +
2.5 NIR Red

NIR Red Blue
( )

( 6 7.5 1)
Liu and Huete (1995)

Near Infrared Reflectance of Vegetation NIRV NIR × NDVI Badgley et al. (2017)
Soil Adjusted Vegetation Index SAVI

×
−

+ +
1.5 NIR Red

NIR Red
( )

( 0.5)
Huete (1988)

Modified Soil Adjusted Vegetation Index MSAVI
× + − × + − × −NIR NIR NIR Red(2 1 (2 1)2 8 ( ) )

2

Qi et al. (1994)

Normalized Difference Moisture Index NDMI −

+

NIR SWIR
NIR SWIR

( 1)
( 1)

Hardisky et al. (1983)

Normalized Burn Ratio NBR −

+

NIR SWIR
NIR SWIR

( 2)
( 2)

Key and Benson (1999)

Normalized Burn Ratio 2 NBR2 −

+

SWIR SWIR
SWIR SWIR

( 1 2)
( 1 2)

Miller and Thode (2007)

Tasseled Cap Brightness TCB 0.3029 × Blue + 0.2786 × Green + 0.4733 × Red
+0.5599 × NIR + 0.5080 × SWIR1 + 0.1872 × SWIR2

Baig et al. (2014)

Tasseled Cap Greenness TCG −0.2941 × Blue − 0.2430 × Green − 0.5424 × Red
+0.7276 × NIR + 0.0713 × SWIR1 − 0.1608 × SWIR2

Baig et al. (2014)

Tasseled Cap Wetness TCW 0.1511 × Blue + 0.1973 × Green + 0.3283 × Red
+0.3407 × NIR − 0.7117 × SWIR1 − 0.4559 × SWIR2

Baig et al. (2014)
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inverted to create a series of focal sum basins rather than focal sum
peaks, and then used as input to a watershed delineation algorithm. A
canopy height model was then created using the approach presented in
Khosravipour et al. (2015). Lastly, all cells above a defined height
threshold in the canopy height model were isolated and used to mask
out the watersheds, resulting in individual tree crowns. We im-
plemented this tree crown delineation algorithm in Python using Esri
ArcGIS geoprocessing tools (Esri, Redlands, California, USA) and ap-
plied it to lidar datasets clipped to the extent of our three UAS data
collection areas. The resulting polygons were overlaid on top of the UAS
imagery in ArcGIS and used as a basis of interpreting live vs. dead trees.
Each tree polygon was labeled as being either live (< 25% dead ve-
getation visible within the tree crown polygon), dead (> 75% dead
vegetation visible within the tree crown polygon), or partially dead
(25–75% dead vegetation visible within the tree crown polygon), ac-
cording to visual interpretation. Although the focus of this study is on a
recent mortality event, it is likely that trees that died prior to 2017 were
included in this interpretation. However, retention of needles seen in
the field suggests that nearly all of the dead trees within the UAS areas
had died in the two years prior to UAS image collection.

3.6. Tree mortality modeling and validation

To scale mortality from the ~84 ha of area surveyed by our UAS to
Landsat scale, we first created a grid of 30 × 30 m square polygons
aligned to the pixel grid of our Landsat data (Fig. 5). Each pixel in a
Landsat 8 L1T-corrected image has an average positional error of ap-
proximately± 12.6 m (Storey et al., 2014). Due to this spatial regis-
tration error – amounting to nearly half of a pixel – it is advisable to
avoid using a single pixel as a basis for reference data. Accordingly, we
then aggregated those polygons into a series of 90 × 90 m super-pixels,
per the recommendations of Congalton and Green (2008), and ran-
domly split those super-pixels into training (n = 25) and validation
(n = 25). Relative canopy mortality (RCM) was calculated within each
super-pixel as follows:

=
+ ×RCM A A

A
0.5 ,D PD

T (1)

where AD is total crown area of dead trees, APD is total crown area of
partially dead trees, and AT is total crown area of all trees (live, dead,
and partially dead).

We compared RCM values (dependent variable) to VI difference

values for each of the 11 VI outlined in Table 1 (independent variables)
within the training pixels using stepwise linear regression in R (R Core
Team, 2018). In order to enhance model parsimony, additional manual
independent variable removal was performed on the resulting stepwise
regression model. Variables with low significance and high collinearity
were removed to create the most robust, and best-fitting multiple re-
gression model. Collinearity among the resulting variables was eval-
uated by calculating the variance inflation factor for each variable.
Model fit was assessed using the coefficient of determination (R2).
Given the apparent spatial clustering of mortality, and given the
proximal nature of our sampling design, it was possible that spatial
autocorrelation between training samples could negatively impact the
reliability of our resultant model. To ensure that the assumption of
sample independence was met for our modeling procedure, we tested
the residual spatial autocorrelation using Moran's I using the lm.mor-
antest() function in the spdep library in R (Bivand et al., 2019).

We then used the 25 validation super-pixels to analyze the perfor-
mance of the model using R2 and mean absolute error (MAE). Given
that a countywide mortality map was generated using training and
validation data from a very localized subset of the county, we per-
formed a secondary validation as well using field data collected be-
tween 2018 and 2019 throughout SJC. These 15-m radius field plots
(n= 35) were strategically-placed within PJ, aimed at capturing a wide
range of elevations (1982–2511 m) and RCM (0–58%). RCM values at
these plots were compared to mortality map pixel values at plot center
and analyzed using R2 and MAE. The regression model coefficients were
then applied to the VI difference image data in order to create a map of
mortality throughout the study area, at a 30 m spatial resolution. Cell
values below 0 were coerced to 0 and cell values above 1 were coerced
to 1, as it is not possible to have either negative mortality or over 100%
mortality for a given pixel. The resulting map was masked to the extent
of PJ. In addition, a spatial data set provided by the Bureau of Land
Management (BLM) containing the extents of fires and fuel treatments
that took place between 2017 and 2019 was used to remove these
disturbed sites from the final mortality map. Lastly, descriptive statis-
tics were used to summarize the results.

3.7. Mortality driver analysis

In the interest of uncovering potential drivers of the mortality
throughout PJ in SJC, we compared a range of spatial variables to the
resulting mortality map. We selected variables in four categories: (1)

Fig. 4. Comparison of analysis window sizes on focal point sum raster surfaces, including 10 cm (A), 50 cm (B), 100 cm (C), and 150 cm (D), as well as an averaged
focal point sum raster surface 10–150 cm (E), all displayed using a hillshade to enhance visual interpretation.
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terrain; (2) climate; (3) soil; and (4) vegetation. For terrain data, 30 m
spatial resolution digital elevation models (DEM) were acquired from
the USGS 3D Elevation Program (3DEP), and used to generate deriva-
tive raster surfaces including slope, cosine of aspect, sine of aspect,
curvature, topographic position index (TPI) for a range of radii (10, 20,
30, 40, and 50 cells) (Weiss, 2001), and topographic wetness index
(TWI) (Sørensen et al., 2006). For climate data, 4 km spatial resolution
monthly temperature (mean, max, and min), precipitation, dew point,
and vapor pressure deficit (min and max) data were acquired from
PRISM for every month between 1/2017 and 10/2019. In addition,
800 m spatial resolution monthly 30-year normals for all of the same
climate variables were also acquired. For soils data, the following ras-
terized soil parameters from the Gridded National Soil Survey Geo-
graphic Database (gNATSGO) (USDA Natural Resources Conservation
Service, 2019) were obtained, at each depth range available: available
water capacity, available water storage, available water supply, bulk
density, calcium carbonate, cation exchange capacity, depth to re-
strictive layer, depth to water table, drainage class, effective cation
exchange capacity, electrical conductivity, gypsum, K factor, linear
extensibility, liquid limit, organic matter, percent clay, percent sand,
percent silt, pH, plasticity index, saturated hydraulic conductivity, so-
dium adsorption ratio, surface texture, T factor, water content, and
wind erodibility. For vegetation data, the 2016 National Land Cover
Database canopy cover dataset was obtained, as was the most recent
LANDFIRE fuel vegetation height dataset.

To statistically compare the terrain, climate, soil, and vegetation
data to the mortality map, 10,000 random points were created on PJ
land in SJC. At each point, mortality map values were extracted along
with each of the aforementioned potential mortality driver variables.
Point coordinates in the X and Y dimensions were also computed in
order to account for potential clustering and spatial autocorrelation in
the resulting model. Due to gaps in the gNATSGO data, many sample
points were missing soils data. Soil variables that were missing in more

than 20% of points were removed from consideration entirely. Those
missing 20% or fewer were approximated using the rfImpute() function
in the randomforest library in R, which uses a random forest to estimate
unknown values in a dataset (Breiman, 2001; Cutler and Wiener, 2018).
The resulting gap-filled data (independent variables) were compared to
mortality (dependent variable) using a random forest built with 1000
trees. Variable importance was computed in order to determine which
among the many potential drivers had notable effects on mortality.
Variables with the highest importance were further examined to de-
termine what specific value ranges were linked to higher mortality by
comparing kernel density distributions of high (≥ 10%) mortality
pixels vs. low (< 10%) mortality pixels.

4. Results

4.1. Individual tree-level mortality and tree crown delineation results

In all, 18,632 tree crowns were interpreted as live, dead, or partially
dead from the UAS imagery (Table 2). By count, the vast majority were
found to be alive (84%), but 16% of all trees were dead or partially
dead. Even though partially dead trees were smaller in proportion by
both count and area than dead trees, the relatively smaller difference in

Fig. 5. Map depicting the approach taken to link UAS-lidar canopy mortality estimates to Landsat 8 OLI data.

Table 2
Results of individual tree crown mortality interpretation.

Status Tree count Tree area
(ha)

Proportion by
count

Proportion by
area

Live 15,692 14.38 84% 83%
Dead 1782 1.51 10% 9%
Partially

Dead
1158 1.45 6% 8%

Total 18,632 17.34 100% 100%
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area suggests that partially dead tree crowns tended to be larger than
those of dead trees. Although no formal accuracy assessment of our tree
crown delineation algorithm was performed, a qualitative, visual as-
sessment reveals that crowns shapes and sizes were accurately re-
presented, though there were certainly examples of under- and over-
segmentation (Fig. 6A). Mortality tended to be very localized and
patchy in spatial distribution throughout the UAS collection areas
(Fig. 6B).

4.2. Stepwise regression model results

The results of the modified stepwise linear regression model for
predicting UAS/lidar-derived mortality using Landsat VI difference
images can be seen in Table 3. The model resulted in an adjusted R2 of
0.82, suggesting that the combined use of NBR2, TCB, and MSAVI can
account for roughly 82% of variance in RCM. Low variance inflation
factors among the three predictor variables (NBR2 = 1.77; TCB= 1.43;
MSAVI = 1.30) indicates that multicollinearity is low. The results of
the test for residual spatial autocorrelation revealed the effects of spa-
tial autocorrelation on our model were negligible. The observed Mor-
an's I value was −0.08 (p = .41), suggesting that any spatial auto-
correlation inherent to the model input data was accounted for by the
model terms in Table 3. This further suggests that the model diagnostics
and parameters are unaffected by spatial autocorrelation and can be
viewed as reliable (Gaspard et al., 2019).

The results of the model validation can be seen in Fig. 7. Fig. 7A
illustrates the validation results based on the 25 validation super-pixels
that were generated using the exact same approach as the training data.
According to these results, our model is able to predict RCM with a MAE
of 3.43%, meaning that, on average, our model can predict mortality
within a margin of error of± 3.43% canopy mortality. The regression
line comparing predicted mortality to measured mortality has a slope
greater than one and a y-intercept greater than zero, suggesting that, on

average, the model will tend to slightly overestimate mortality
(R2 = 0.78). Fig. 7B illustrates the validation results based on the 35
field plots collected throughout the county. Despite the fact that these
field plots did not necessarily spatially align with individual Landsat
pixels, measured and predicted mortality were still strongly correlated
(R2 = 0.71), although MAE increased to 6.92%. Unlike the image-based
validation, the field plot-based validation suggests that, on average, the
mortality map will likely underestimate true mortality, particularly at
higher-mortality sites.

It was impossible to determine the species of the dead trees using
the UAS data alone. However, while collecting the UAS data, we qua-
litatively observed that the majority of mortality within the UAS sample
areas was among piñon pines. The field plot validation data, however,
provided robust, quantitative insight into the relative species distribu-
tion of mortality. Across all 35 plots, the mortality was roughly evenly
distributed between piñon (9.9% average mortality) and juniper
(10.0% average mortality), with 18 of the plots featuring higher piñon
mortality and 17 featuring higher juniper mortality. There was no
readily observable spatial patterning of piñon vs. juniper mortality
among the plot locations. The relative abundance of juniper mortality
stands in contrast to recent historic PJ mortality events, where the
mortality was found primarily in piñon pines (Shaw et al., 2005).

4.3. Regional tree mortality results

The resulting mortality map based on the stepwise regression model
can be seen in Fig. 8. While most of the PJ throughout the study area
appears to have low mortality (as indicated by the blue colour), higher
mortality patches are evident. For example, in Fig. 8C, D, and E, three
distinct patches of mortality are displayed in higher detail, where some
pixels are modeled with mortality greater than 50%. Quantitative
mortality area and proportional summaries can be seen in Fig. 9. Ac-
cording to these results, nearly 39% of all PJ in SJC has experienced at
least 5% RCM, and over a quarter has experienced at least 10% RCM.
Very high mortality areas (> 50%) are very rare, representing less than
1% of all PJ in SJC.

4.4. Mortality driver results

The random forest model aimed at linking terrain, climate, soil, and
vegetation spatial variables to mortality resulted in relatively low ex-
planatory power, with only 16.8% of variance in mortality explained by
the large number of predictors (mean of squared residuals = 0.01).
Despite the low explanatory power, it is still informative to look at
which predictor variables had a comparably significant relationship

Fig. 6. Map featuring close-up view of tree crown delineation (A) and results of mortality image interpretation (B).

Table 3
Results of best-fitting, modified stepwise linear regression analysis for pre-
dicting relative canopy mortality using Landsat VI difference images. The model
has a residual standard error of 3.22% RCM on 21 degrees of freedom (F-sta-
tistic = 37.36 on 3 and 21 degrees of freedom, p < .001).

Model Term Estimate Standard Error t-Value p-Value

NBR2 7.496 0.760 9.859 < 0.001
TCB 4.294 0.532 8.066 < 0.001
MSAVI −11.740 1.914 −6.133 < 0.001
Intercept −0.015 0.030
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with mortality. Random forests allow for the calculation of variable
importance through the calculation of the relative increase in predictive
mean squared error that results when a given variable is removed from
consideration (Fig. 10). By this measure, four particular variables ap-
peared to have the most significant influence on mortality: canopy
cover, precipitation for January 2019, topographic position index at a
radius of 50 raster cells, and slope. Following the top four there is a
notable decrease in variable importance, with terrain variables

generally having the highest influence among the remaining variables,
including topographic position indices and curvature. Notably, neither
aspect nor topographic wetness index had a significant effect on mor-
tality. Also of note is the relatively low influence of elevation, though
this may be attributable to the fact that the climate datasets tested are
highly correlated with elevation. Over half of the top 30 most important
variables belong to the climate category, with winter precipitation to-
tals and vapor pressure deficits playing a dominant role in the

Fig. 7. Validation results of the mortality predictive model using the 25 validation super-pixels (A) and the 35 field validation plots (B). The 1:1 line is shown in
black. The regression line is shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Map of relative canopy mortality on PJ lands in SJC (A), with a focus on the central portion of the county (B), highlighting three areas of particularly high
mortality (C, D, and E).
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prediction of mortality. Soil variables were generally found to have
lower importance than climate, terrain, and vegetation, with only two
soil variables (organic matter 0–10 cm and available water supply
0–100 cm) in the top 30. Lastly, due to the clustered nature of the
mortality, both the X and Y coordinates of the sample points were in-
cluded in the most important variable list, suggesting some level of
spatial autocorrelation in the dataset.

Fig. 11 provides insight into the ranges of values among the top four
most important predictors where you are more likely to find high (≥
10%) mortality sites vs. low (< 10%) mortality sites based on a com-
parison of kernel density distributions. For example, high mortality
sites are more likely to be found in areas with low-moderate canopy
cover (5–25%), which contrasts with a prevailing view that high canopy
cover sites are more prone to mortality due to resource competition or
higher likelihood of pest invasion (Meddens et al., 2015). In addition,
higher mortality sites tend to be found within areas that featured re-
latively lower precipitation in January 2019. Given that the majority of
winter precipitation in this region comes in the form of snow, this
would suggest that a lower winter snowfall in this month may be linked
to mortality. Mortality tends to be higher where the TPI 50 is less than
zero. Since TPI is a measure of relative elevation in comparison to
surrounding elevations at a given radius (in this case, 50 × 30 m
cells = 1500 m), this can be interpreted as suggesting that high mor-
tality sites tend to be found in regional low points. Lastly, areas fea-
turing lower terrain slopes (< 10°) are more likely to feature high
mortality than steeper areas.

5. Discussion

Our use of centimeter-scale UAS imagery and lidar was necessary to
overcome the challenges of mapping mortality in a sparse, open canopy
woodland in a semiarid environment. UAS are capable of producing
sufficiently high resolution for the interpretation of live vs. dead trees
and distinction between ground, understory, and canopy. In addition to
being higher resolution than most traditional airborne surveys, UAS
data can be collected on-demand at a very low cost, which can be
greatly beneficial when attempting to map an acute and on-going
mortality event, as compared to traditional airborne surveys, which
capture data relatively infrequently. Lidar data provided crown deli-
neation, but did not need to be concurrent with UAS data. In environ-
ments featuring trees with more regular (e.g. conical or rounded) crown
shapes, the application of a structure from motion algorithm directly on
UAS imagery could potentially replace the need for lidar altogether
(Sankey et al., 2017); however, in PJ woodland our lidar point density-
based crown delineation algorithm proved necessary for accurate tree-
level mortality quantification.

The results of previous multi-scale, multi-sensor mortality mapping
efforts took the form of a classified map, with mortality map pixels
belonging to one of several discrete categories (e.g. “live”, “red stage
mortality”, or “gray stage mortality”) (Hart and Veblen, 2015; He et al.,
2019; Meddens et al., 2013). While this is certainly useful information
for mapping the extent of mortality, it does not provide a within-stand
(or, within-pixel) measure of quantitative mortality. Identification of
tree-level mortality through the use of combined UAS and lidar data
allowed scaling of percent mortality (as measured by RCM), which
should be a more useful parameter for use with spatial models such as
ecosystem demography models (Bugmann et al., 2019; Hartmann et al.,
2018; Meir et al., 2015). The additional precision in our mortality map
will also facilitate a more informed follow-up field campaign, allowing
a closer, ground-level examination of the factors that might be driving
high vs. low mortality.

It is important to carefully examine the results of the regression
analysis that allowed us to upscale the UAS/lidar-derived mortality
estimates to the Landsat level. Unlike some more complex methodolo-
gies, regression analysis benefits from its simplicity, and its ability to
directly assess the magnitude and direction of individual model coef-
ficients, which can reveal important physical processes. As Table 3
highlights, the coefficients for NBR2 and TCB are positive, suggesting
that with increasing canopy mortality comes an increase in NBR2 and
TCB. NBR2 is a normalized difference between SWIR1 and SWIR2 bands
(Table 1). A closer examination of our data reveals that, while SWIR1

reflectance increased from 2017 to 2019, SWIR2 saw little change in
this time frame. We attribute the stability in SWIR2 reflectance to the

Fig. 9. Histogram of PJ mortality totals by 5% mortality intervals, with area in
hectares, proportion of individual classes in red, and proportion of each class
and greater in blue. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. Variable importance as measured by increase in mean squared error of
the top 30 climate, terrain, vegetation, and soil variables used in a random
forest model aimed at estimating tree mortality. Variable definitions can be
found in Table S2.
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abundance of dead, dry needles, wood, and other non-photosynthetic
vegetation present in the post-mortality pixels causing lignocellulose
absorption in the SWIR2 region (2.10–2.30 μm), offsetting the effects of
decreasing live foliage (Souza et al., 2005). Thus, an NBR2 increase
between these time frames is attributed to a shift from photosynthetic
vegetation to non-photosynthetic vegetation cover due to tree mor-
tality. TCB is aimed at approximating the overall brightness (total re-
flectance) of the constituent materials found within a pixel. Thus, a
decrease in vegetation cover results in an increase in reflectance, due to
increased exposure of less absorptive materials such as non-photo-
synthetic vegetation, soil, and rock. Conversely, MSAVI has a negative
coefficient, suggesting that with increasing canopy mortality comes a
decrease in MSAVI. These results align with the conceptual basis of
MSAVI, which aims to quantify vegetation biomass in arid environ-
ments such as our study area.

We are using three small areas of UAS imagery (totaling 83.6 ha),
collected only in one portion of the study area, as a reference dataset
driving a regression analysis that is aimed at mapping conditions over a
diversity of all PJ in a large study area. While such an experimental
design could lend itself to problems associated with extrapolation, an
extensive field campaign resulting in 35 plots that capture mortality
conditions across ecological gradients throughout the broader study
area demonstrated that our model's predictive power and map accuracy
are still quite high (Fig. 7B).

Although the focus of this study is on PJ woodlands, the methods
described for mapping and quantifying tree mortality herein may be
applicable in a diverse range of semiarid woodland ecosystems. These
sparsely-canopied environments are particularly susceptible to in-
creasingly severe and extended droughts that are anticipated with
changes to the climate (Breshears et al., 2016). Given the extent of
woodland ecosystems worldwide, and with semiarid and other dryland
biomes expected to expand by as much as 23% by the end of the 21st
century, we anticipate that the methodology we have introduced could
have very broad and increasingly useful applicability in the future
(Huang et al., 2016).

The patchy and clustered nature of the mortality suggests that there
are perhaps some common drivers of mortality that are present in high-
mortality patches and absent in low/no-mortality patches. We used
modern machine learning tools and a whole suite of variables to at-
tempt to explain the spatial distribution of the mortality, but the ex-
planatory power was relatively low. This may be a result of one or both
of two things: (1) some other driver(s) that we did not test was/were
responsible for explaining the other 83.2% of mortality; or (2) the
drivers we analyzed were largely responsible, but the spatial datasets
that represent them are simply insufficient for characterizing mortality
at such a local scale. For instance, even under experimentally-con-
trolled drought conditions, PJ trees can survive due to conditions like
access to bedrock water, which could not be accounted for given the

coarseness of the soils data used in our study (McDowell et al., 2019).
At this point, it is impossible to know which of the two is more likely,
but due to past evidence linking drought to mortality and due to the
lack of any evidence in the field of pests or pathogens as mortality
drivers, we suspect that the second case is more likely.

It is important to note that terrain and vegetation variables – the
variables that had the highest importance in predicting mortality – were
also from the highest-resolution data sources. Thus, their importance
may be simply a result of their increased capacity for capturing the
local-scale variation in mortality as compared to the 4 km resolution
climate data and the soils data. A comprehensive review of piñon
mortality by Meddens et al. (2015) suggests that all four driver cate-
gories tested in our study (terrain, climate, soil, and vegetation), as well
as some additional factors, such as individual tree-levels metrics (e.g.
tree size) and presence of pests, likely interact in variable and complex
ways to cause mortality. Although our study area was limited to the
extent of SJC, the diverse range of environmental and climatic condi-
tions captured in this very large county – larger than several, individual
US states in area – provides valuable insight into broader regional
drivers of tree mortality.

6. Conclusions

In this study we present a novel approach to mapping the extent and
severity of tree mortality in a sparse, open canopy woodland using UAS
to map individual tree-level mortality and distinguish canopy from
understory within small areas, airborne lidar to delineate individual
tree crowns to enable accurate canopy cover and relative mortality
proportion calculations, and Landsat 8 OLI imagery to scale up local
estimates of mortality to a broad spatial scale. Although we are not the
first to utilize a multi-scale, multi-sensor approach to mapping tree
mortality, we have built upon previous research to develop an approach
that is better-suited to the complexities of woodland environments.
Given the widespread distribution of PJ and other structurally-similar
woodland types globally, and the critical roles that they play ecologi-
cally, it is of crucial importance to develop customized, yet broadly-
applicable, mapping solutions for these ecosystems, as we have pre-
sented here.

Between 2017 and 2019, 39% of PJ land in SJC has experienced
≥5% RCM, and over one quarter has experienced at least 10% RCM.
Importantly, due to the timing of this analysis, it remains unclear
whether this mortality event is going to continue into the future. But
even in the absence of continued tree die-off, the mortality totals we
have documented are quite significant. In an ecosystem as widespread
as PJ that provides a range of important ecosystem services, the loss of
these woodland trees can have a dramatic impact on much of the
southwestern US. Particularly when looking back to the major PJ
mortality event that occurred in the early 2000s, it becomes

Fig. 11. Comparison of mortality predictor variable distribution between high (≥ 10%) and low (< 10%) mortality areas. Areas above the horizonal line for each
plot indicate that high mortality sites are more likely to be found than low mortality sites. Areas below the horizontal line indicate the opposite.
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particularly concerning to think that this recent mortality event may
not be an outlier, but perhaps one in a sequence of continued climate-
driven mortality events that will continue into the future (Williams
et al., 2013).

Although our study did not definitively explain the causes of this
mortality event, recent historical evidence suggests that drought, as
manifested by a unique combination of climate, terrain, vegetation, and
soil parameters, is driving the die-off. Among these parameters, we
were able to determine that regional low points featuring low-moderate
canopy covers and low slopes that had a relatively dry January 2019
were most likely to feature high mortality sites within our study area,
although this model had low explanatory power. Future field data
collection measuring variables within the high-mortality areas mapped
in this study could be used to inquire into mortality drivers with a finer
precision than can be afforded using coarse spatial datasets alone.
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