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A B S T R A C T

Infrared imaging spectrometers are used to map and characterize wildland fire based on their sensitivity to fire-emitted thermal radiation and ability to resolve
spectral emission or absorption features. There is a general paucity of research on the use of space-borne imaging spectroscopy to study active fires in the North
American boreal forest. We used hyperspectral data acquired by the Hyperion sensor on the EO-1 satellite over three wildfires in Alaska's boreal forest to evaluate
three fire detection methods: a metric to detect an emission feature from potassium emitted by biomass burning; a continuum-interpolated band ratio (CIBR) that
measures the depth of a carbon dioxide absorption line at 2010 nm; and the Hyperspectral Fire Detection Index (HFDI), which is a normalized difference index based
on spectral radiance in the short-wave infrared range. We found that a modified version of the HFDI produces a well-defined map of the active fire areas. The CO2
CIBR, though affected by sensor noise and smoke, contributes a slight improvement to the fire detection performance when combined with HFDI-type indices. In
contrast, detecting a fire signal from potassium emission was not reliably possible in a practically useful way. We furthermore retrieved fire temperatures by
modeling the at-sensor radiance as a linear mixture of two emitted and two reflected spectral radiance endmembers. High-temperature fire areas (the high-intensity
fire front, modeled at 800–900 K) and low-temperature combustion (residual fire at 500–600 K), were mapped. High-temperature burning areas as small as half a
percent of a Hyperion pixel (approx. 5m2) were detectable. These techniques are of potential interest for fire characterization in the boreal areas of the circumpolar
North using current and future satellite-borne imaging spectrometers.

1. Introduction

Satellite-based infrared remote sensing has been in use since the
1980s as a cost-effective way to detect and investigate wildfires (e.g.
Flannigan and Haar, 1986; Robinson, 1991; Prakash et al., 2011; Ichoku
et al., 2012). Multispectral sensors, which typically offer a small
number of carefully placed spectral bands, are widely used. For the
detection of radiation emitted by active fire, the mid- and thermal in-
frared (MIR and TIR) regions of the electromagnetic spectrum are of
particular interest (Kaufman et al., 1998; Briess et al., 2003; Giglio
et al., 2003, 2016; Schroeder et al., 2014) as the fire-emitted radiance
in the MIR range (approximately 4 μm) far exceeds background levels
even if fire only occupies a small portion of a pixel. Other techniques
employ shortwave infrared (SWIR) data from sensors with a spatial
resolution of approximately 30m and suitable sensitivity and saturation
behavior (Giglio et al., 2008; Schroeder et al., 2015).

In contrast, in imaging spectroscopy (also called hyperspectral re-
mote sensing), data is acquired in a large number of contiguous spectral
bands that typically span the visible and near-infrared (VNIR) as well as
the shortwave infrared regions of the electromagnetic spectrum. Given
that an imaging spectrometer produces a radiance or reflectance

spectrum at every pixel of the image, a frequently used approach con-
sists in unmixing these spectra using spectral libraries of relevant land
cover classes (Roberts et al., 1998). Imaging spectroscopy has been
applied to wildfire analysis with respect to pre- and post-fire research
topics such as vegetation classification (Goodenough et al., 2003;
Dennison et al., 2006; Dalponte, Łrka et al., 2013), fire danger (Roberts
et al., 2003), forest canopy fuel characteristics (Jia et al., 2006) and fire
severity (Lewis et al., 2011). Nearly all of these works use airborne
hyperspectral imagery. Studies of high-temperature events that are re-
levant to satellite-based hyperspectral remote sensing include applica-
tions to volcanology (Wright et al., 2010; Abrams et al., 2013), fire
detection (Dennison, 2006; Dennison and Roberts, 2009; Amici et al.,
2011) and fire characterization via fire temperature and fractional pixel
area retrieval (Dennison et al., 2006; Dennison and Matheson, 2011).
These studies rely on the spectral emission and absorption features,
sensitivity, and large number of data points produced by the hyper-
spectral instrument instead of MIR or TIR bands, which are generally
not available.

Active fire in the boreal forest is currently not well-studied using
imaging spectroscopy despite the fact that wildland fire is an important
factor in the boreal forest eco-region (Chapin et al., 2000). For Alaska,
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where a majority of the boreal areas of the United States of America is
located, wildfires consume an average of 7500 km2 annually (Kasischke
et al., 2010). The average annual burned area has been estimated to
increase by 2.4%/year (Calef et al., 2015, for 1943–2012) to 3.1%/year
(Giglio et al., 2013, for all of boreal North America, 1995–2011).

The Hyperion sensor on the National Aeronautic and Space
Administration's (NASA's) EO-1 (Earth Observation 1) satellite platform
(Pearlman et al., 2003; Ungar et al., 2003; Middleton et al., 2013) offers
an opportunity to fill this gap and develop methodologies that will be
more useful as future imaging spectrometers become available. Cur-
rently, planned missions are NASA's Hyperspectral Infrared Imager
(HyspIRI) (Middleton et al., 2010; Abrams et al., 2013; Lee et al., 2015),
the German Environmental Mapping and Analysis (EnMAP) instrument
(Kaufmann et al., 2006), the Italian Space Agency's (ASI's) PRecursore
IperSpettrale della Missione Applicativa (PRISMA) satellite (Labate
et al., 2009), and the Spaceborne Hyperspectral Applicative Land and
Ocean Mission (SHALOM) (Ben Dor et al., 2014; Feingersh and Dor,
2015), a collaboration of the space agencies of Israel and Italy. All of
these missions will offer a spatial resolution comparable to Hyperion, a
similar range of spectral channels, and reduced noise. The main ob-
jectives of both PRISMA and SHALOM include gathering information
about land cover, pollution and the carbon cycle. EnMAP is equipped
with pointing capability of± 30° to achieve a target revisit frequency of
3–4 days and aims to measure parameters related to biochemical pro-
cesses (Kaufmann et al., 2006). Wildfire is a factor in all these topics.
HyspIRI will also include a multispectral TIR instrument to enhance the
instrument's ability to investigate high-temperature targets (Roberts
et al., 2012; Realmuto et al., 2015). Its revisit frequency is 16 days for
VNIR/SWIR and 5 days for TIR globally, but less at high latitudes.
HyspIRI was designed to address science questions about wildfire in
relation to vegetation cover as well as global biomass burning
(Realmuto et al., 2015).

The operational community does not currently use hyperspectral
data for fire detection. While TIR sensors are traditionally the instru-
ment of choice for fire detection especially on a global scale, we find
that the detection of low-intensity active fire is often not satisfactory in
existing fire products (Waigl et al., 2017). The new hyperspectral sen-
sors in development will be capable of covering larger regions of the
earth with exceptional spatial, spectral, and temporal resolutions. They
will provide greatly enhanced signal-to-noise ratio and target revisit
capabilities. The main objective of this study is to evaluate existing fire
detection methods and the capabilities imaging spectroscopy. Our re-
search aims to identify spectral bands that can be proposed for future
hyperspectral and multispectral instruments.

We explore the application of satellite-based imaging spectroscopy
to the study of the properties of active fires in Alaska's boreal forest. In
the following sections, we introduce our three study areas, which are
located in interior Alaska, and provide an overview of the available
Hyperion data. We then describe three known fire detection methods
that have the potential to be applicable to our study scenes: the
Hyperspectral Fire Detection Index (HFDI), the detection of a potassium
(K) emission feature, and the carbon dioxide continuum-interpolated
band ratio (CIBR), which relies on the measurement of an absorption
feature to differentiate between emitted and reflected radiation. We
also describe how sub-pixel active fire temperatures and fractional
areas are retrieved using a linear combination of simulated atmo-
spherically corrected emission spectra and reflected background
spectra. The description of methods is followed by a summary of results
and their discussion. We conclude by evaluating our findings with a
view on how these methods could be applicable to future satellite-borne
hyperspectral sensors and which design features might be particularly
beneficial for active boreal forest fire remote sensing.

2. Study areas

We selected three study areas (Fig. 1) based on the availability of

EO-1 Hyperion data over large Alaskan wildfires. We searched the
catalog of available scenes in the United States Geological Survey
(USGS) data archive based on fire location and time data from the
Alaska Large Fires Database (ALFD) (Kasischke et al., 2002) and sub-
sequently selected all scenes that clearly showed several clusters of
contiguous pixels with active combustion that were not obscured by
smoke or clouds. The selected scenes represent the 2004 Boundary fire,
the 2004 Crazy fire, and the 2009 Wood River fire.

With a burned area of 2150 km2, the 2004 Boundary fire north of
Fairbanks, Alaska, was the largest wildfire of the most extreme Alaska
fire season on record: During the summer of 2004, a total of 27000 km2

burned in approximately 700 separate fire events (AICC, 2004). The
Boundary fire, discovered on June 13, 2004, was a highly destructive
lightning-caused event which greatly impacted air quality (Grell et al.,
2011) and aerial traffic across interior Alaska (Wendler et al., 2010),
and was sufficiently severe to affect the post-fire succession of tree
species in the boreal forest (Johnstone et al., 2010).

The 2004 Crazy fire was a smaller fire event (final burned area:
210 km2) whose active period overlapped with the Boundary fire. It
started from a lightning-caused ignition on July 4, 2004, approximately
75 km north-east of the Boundary fire.

The Wood River fire of 2009 also had air quality impact on
Fairbanks. It burned in an area reserved for military use south of the
town. Its final size is given as approximately 500 km2 (AICC, 2009), but
its burn perimeter includes considerable unburned areas. (The official
designation of this fire event is “Wood River 1”, but we omit the
number for the sake of readability.)

The land cover in all three study areas is dominated by highly
flammable black spruce forest. Stand density is much lower for the
Wood River fire, which burned through a mix of forest and open brush
land. The landscape is wetter and flatter than for the Boundary or the
Crazy fire, located in hilly areas at higher elevations (500–1000m
above mean sea level). The Boundary fire also affected mixed conifer
and hardwood stands.

Fig. 1. Map of study areas and corresponding final fire perimeters within in-
terior Alaska. The rectangular areas represent the three Hyperion study scenes.
Fire perimeters are from the Alaska Large Fires Database (ALFD), maintained by
the Alaska Interagency Coordination Center, and typically digitized from
Landsat data (30m resolution). Rivers and major roads are marked.
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3. Data

3.1. The Hyperion sensor on EO-1

The Hyperion sensor is a pushbroom instrument with a 7.7 km wide
imaging swath and a ground-sampling distance (GSD) of 30m (Ungar
et al., 2003). It is composed of two separate spectrometers: A VNIR
instrument (400–1000 nm) and a SWIR instrument (1000–2500 nm),
both with a spectral bandwidth of 10 nm (Fig. 2) (Barry, 2001). In total,
it has 242 spectral bands, with VNIR and SWIR channels overlapping
around 1000 nm. Due to the moderate signal-to-noise ratio (SNR),
which deteriorates in the SWIR region compared to the VNIR, only 198
unique calibrated usable channels – 50 VNIR and 148 SWIR – are
processed in the Level 1B product (Pearlman et al., 2003). The longest-
wavelength calibrated channel is band 224 (central wavelength
2395.5 nm). All throughout the extended mission phase, the Hyperion
mission has continued to support calibration and validation activities
such as improved lunar and terrestrial vicarious calibration technology
and noise characterization (Kerola et al., 2009; Middleton et al., 2010).

Originally conceived as a 1-year technology demonstration, the EO-
1 mission went through several extensions (Middleton et al., 2013) after
its initial operational phase (11/2000 to 2/2002) was completed. Or-
bital parameters were not preserved throughout the extensions. The
data for the 2004 Boundary and Crazy fires were acquired during the
initial extended phase that ended in late 2005, during which the EO-1
spacecraft was maintained in a 705 km orbit. In 2006, EO-1 was low-
ered until it reached an orbital height of 690 km, at which point, in
2007, the mission was revived (Middleton et al., 2013). The 2009 Wood
River study scene was acquired during the phase that followed. 2016
was EO-1's last operational year.

Hyperion data is distributed as 12-bit unsigned integer raster data,
which is radiometrically and terrain-corrected (Simon, 2006).

3.2. Hyperion scenes

For all three study scenes, the Hyperion scene reference, scene start
time stamp, sensor look angle and latitude/longitude of the center of
the used subset are summarized in Table 1. All overpasses took place
within 20min of 1 pm Alaska Daylight Time, on a descending node.

The Hyperion scene available for the Boundary fire was acquired on
July 19, 2004 and captures a small portion of the fire close to the
western boundary of the final fire perimeter (Fig. 1). Between the peak

of the fire event on July 17 and the overpass of the EO-1 satellite two
days later, traces of precipitation halted its progress. The Hyperion
imagery for the Crazy fire was acquired on July 10, 2004, when it was
highly active.

The third study scene was acquired over the Wood River fire on
August 2, 2009, during a high-intensity phase of the fire event.
Unfortunately, the Hyperion swath missed the most active portions of
the fire front and only captured a number of relatively small fire pixel
clusters, which are also spread over a larger area than in the 2004 Crazy
and Boundary fire scenes. The 2009 data also appears to contain more
noise and more pronounced pushbroom stripes than the earlier scenes.
Therefore, we do not present any detailed maps of fire detection or
temperature retrieval over this scene. However, the Wood River data
was included in the evaluation of fire detection indices.

4. Methods

Our Hyperion processing steps are summarized in Fig. 3. After
subsetting the swaths to the study areas, the digital numbers were
converted to spectral radiance by dividing them by the scaling factors of
40 for the VNIR bands and 80 for the SWIR bands, specified in the scene

Fig. 2. Wavelength range of the VNIR and SWIR instruments of the Hyperion
sensor. Some blackbody spectra are superimposed for comparison.

Table 1
EO-1 Hyperion scenes and central latitude/longitude (WGS 84) of the subsets used.

Fire name Fire start date Hyperion scene Scene start time (UTC) Sensor look angle Latitude Longitude

Crazy 2004-07-04 EO1H0680132004192 2004-07-10 21:07:57 10.358° 65.74979° −145.0569°
Boundary 2004-06-13 EO1H0690142004201 2004-07-19 21:02:11 −2.4442° 65.28703° −147.7966°
Wood River 2009-07-12 EO1H0690142009214 2009-08-02 20:40:37 −16.446° 64.44595° −147.8978°

Fig. 3. Hyperion processing flow.
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metadata (Simon, 2006). The theoretical upper limits for measurable
radiance are 819.2W/(m2 μm sr) (VNIR) and 409.6W/(m2 μm sr)
(SWIR), respectively.

4.1. Fire-related feature extraction

The evaluation and comparison of fire detection methods requires
labeled fire and non-fire pixel data, which we generated by applying
supervised classification to the study scenes. We used a false natural-
color RGB image of each scene (bands 150-50-23, with central wave-
lengths of 1648.9 nm, 854.18 nm, and 579.45 nm) to manually sample
20 pixels from each of the following four classes: fire, fresh fire scar,
vegetation (forest or forest/shrubland), smoke/cloud. We carefully se-
lected areas that were as pure as possible, avoiding mixed land cover
classes and data anomalies such as saturation effects. By “fire” we mean
pixels that contain actively burning areas. The Crazy fire imagery
contained enough of both smoke and cloud that 20 pixels from each
class were sampled, whereas the Wood River imagery is virtually
smoke/cloud free, so the class was not sampled.

We further constrained the study areas more narrowly to the fire-
adjacent region with the help of a mask: We first applied a spectral
radiance threshold of 5W/(m2 μm sr) in band 220 (2355.21 nm) based
on the observation that the spectral radiance of known non-fire pixels
remains below this value. For the Crazy fire scene, we also excluded
cloud pixels, which are highly reflective in the SWIR. Then we drew a
convex shape around the set of all pixels exceeding the threshold, with
an added 20 pixel wide buffer. The resulting mask ensures that only
data located in the vicinity of active fire was processed. The pixels
contained in these irregularly shaped subsets were classified with a
Random Forest classifier (Breiman, 2001), a supervised classification
method that has been successfully applied to Hyperion data (e.g. Ham
et al., 2005). The manually labeled sample pixels served as training
data. To assess the stability of the classifier and confirm the adequacy of
using 20 training samples per class, we carried out a K-fold cross-vali-
dation (K=10) (Friedman et al., 2001).

The pixels in the “fire” class served as a data source for labeled fire
pixels to evaluate fire detection methods, while the “vegetation” and
“fire scar” classes represented the non-fire background. The “fire” class
also was used as the input for fire temperature retrieval.

4.2. Fire detection

Fire detection in imaging spectroscopy data can use a number of
different approaches. One is to rely on the same methods as fire de-
tection in multi-spectral imagery: to identify thermal anomalies based
on the electromagnetic radiation emitted by a burning source. If we
represent the fire as a blackbody held at a constant temperature, the
emitted spectral radiance is given by Planck's law:

= ( )L hc

e

2

1

2

5 hc
k T
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with T the absolute temperature, λ the wavelen-
gth, h=6.62607004×10−34m2 kg/s Planck's constant,
k=1.38064852×10−23m2 kg/(s2 K) Boltzmann's constant and
c=2.99792458×108m/s the speed of light. With increasing temperature,
the maximum of the emission curve moves towards shorter wavelengths, in
a relation that is inversely proportional to the temperature (Wien's law):

= b
T

,max (2)

in which b=2897.7729 μmK is Wien's displacement constant.
Compared to a fire-free pixel, the overall spectral radiance in the

longer SWIR wavelengths is therefore elevated whenever a pixel con-
tains fire activity.

Alternatively, hyperspectral remote sensing can make use of

features that are caused by potassium emission and carbon dioxide
absorption (Vodacek et al., 2002; Dennison and Roberts, 2009; Amici
et al., 2011; Dennison, 2006).

We tested and, where necessary, adapted three known fire detection
indices for hyperspectral data, each time proceeding in an identical
fashion: Between all test scenes, we randomly sampled 250 fire pixels
(from the “fire” class) and 250 background pixels (from the “vegeta-
tion” or “fire scar” class), calculated each index for all sample pixels and
statistically analyzed the result for its ability to differentiate fire and
background. We calculated all fire detection indices based on at-sensor
spectral radiances that were uncorrected for atmospheric effects as a
first approximation. During our analysis we also tested combinations of
two or all three indices to maximize detection accuracy and minimize
false detections (errors of commission).

4.2.1. Potassium (K) emission
This method uses the potassium (K) emission lines at 766.5 and

769.9 nm (Vodacek et al., 2002) characteristic for biomass burning. In
Hyperion data, both emission lines fall within band 42 with a central
wavelength of 772.78 nm. Its spectral radiance would be elevated in the
presence of fire-stimulated potassium emissions (Cahill et al., 2008),
but the neighboring band at 780 nm would not be.

Dennison and Roberts (2009) define a K-emission index as the ratio
L770 nm/L780 nm and use it with data from the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS), while Amici et al. (2011) examine high
spectral resolution as well as simulated and real Hyperion data using a
metric called the Advanced K-Band Difference (AKBD). In Hyperion
data the AKBD metric translates to the band difference
L770 nm− L780 nm.

Values for the K-emission ratio are expected to be 1, and AKBD
values< 0. This is because the 770 nm band is also the location of
multiple oxygen absorption lines which overlap with the K-emission
features (Vodacek et al., 2002) and, averaged over the width of the
770 nm Hyperion band, lead to a distinctly visible absorption feature
(Amici et al., 2011).

4.2.2. Carbon dioxide Continuum-Interpolated Band Ratio (CO2 CIBR)
The second fire detection method makes use of the CO2 absorption

feature at 2010 nm. It takes advantage of the principle that radiation
emitted by a fire only has to travel through the atmosphere once to
arrive at a satellite-borne sensor, whereas reflected sunlight traverses
the atmosphere twice. Emitted radiation at this spectral location
therefore undergoes less absorption than reflected radiation. Therefore,
for fire pixels, the CO2 absorption line should appear less pronounced
than for background pixels. Mathematically, the depth of the absorption
line is captured by defining an index called the carbon dioxide con-
tinuum-interpolated band ratio (CO2 CIBR) (Dennison, 2006; Dennison
and Roberts, 2009), used successfully for fire detection with Hyperion
and AVIRIS data. As the absorption feature is located on an upslope
section of the radiance spectrum, the two shoulders of the feature are
not typically at the same value. This situation is reflected via inter-
polation factors used in the formula provided by Dennison (2006):

=
+

L
L L

CIBR
0.666 0.334

2010 nm

1990 nm 2040 nm (3)

4.2.3. Hyperspectral Fire Detection Index (HFDI)
The third approach uses a normalized difference index calculated

from the spectral radiance values in two suitable SWIR bands, which
enables the detection of pixels that contain thermal anomalies
(Dennison and Roberts, 2009). Dennison and Roberts (2009) found the
following HFDI performing the best on AVIRIS data for daytime de-
tection of the Simi Fire in California:

=
+

L L
L L

HFDI 2430 nm 2060 nm

2430 nm 2060 nm (4)
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A threshold for detection is determined at a value that optimally
separates fire pixels from non-fire pixels; it is typically close to zero, or
has a small negative value (Dennison and Roberts, 2009).

The original HFDI cannot be used without modification as the
longer wavelength (2430 nm) exceeds the longest wavelength available
in Hyperion's L1B calibrated spectral radiance product. After inspecting
the spectra for saturation behavior, we identified ranges of candidate
bands in the vicinity of the shorter and longer wavelengths of Eq. (4)
and constructed a modified HFDI from the average of normalized dif-
ference values of band combinations that best separate fire from non-
fire pixels.

4.3. MODTRAN for atmospheric correction

Active fire temperature retrieval requires atmospherically corrected
sources of emitted infrared radiation. We used MODTRAN 5.3 (Berk
et al., 2006) to generate transmittance profiles for each study scene
across the wavelength region between 350 and 2500 nm. The MOD-
TRAN input was based on user-specified model atmosphere from
radiosonde data acquired at noon on the day of the respective overpass
at Fairbanks International Airport (PAFA station) distributed by the
University of Wyoming Atmospheric Sciences Department (http://
weather.uwyo.edu/upperair/sounding.html). Due to the presence of
active fire, and therefore smoke, in the study scene, we selected the
predefined option “rural extinction, visibility 5 km”. Additional MOD-
TRAN input parameters are summarized in Table 2.

The transmittance profiles were then used to generate a set of si-
mulated atmospherically corrected blackbody radiance spectra to serve
as temperature endmembers in a linear model.

4.4. Temperature retrieval

The spectrum measured at the pixel that is the site of active fire can
be modeled as a linear mixture of emitted and reflected components
(Dennison et al., 2006). We represented the measured at-sensor spectral
radiance Lλ,m as the sum of signals that originate from a number n of
fractional areas each of which burns at a constant temperature Ti, plus
uniform background components:

= +
= =

L p L T p L( )m
i

n

i i
j

m

j j,
1

,fire
1

,background ,reflected
(5)

Lλ(Ti) is the atmospherically corrected spectral radiance of the tem-
perature component Ti, Lj,reflected is the jth background component, and
the pi and pj are the corresponding fractional pixel areas, which have to
add up to 1. Atmospheric scattering was taken into account via the
IHAZE parameter in the MODTRAN transmittance calculation (Section
4.3, Table 2). Otherwise, path radiance was neglected (following e.g.
Dennison and Matheson, 2011). This approach is similar to the two-
component sub-pixel temperature and fractional area retrieval method

developed by Dozier (1981) using mid- and thermal infrared data; the
uncertainties in retrieved fire temperature and fractional area increase
substantially when the fractional fire area becomes very small (Giglio
and Kendall, 2001).

In order to select suitable background components Lj,reflected we
considered that the reflected contribution dominates in the VNIR
spectral range. To reduce the influence of the reflected radiation com-
ponents and scattering by smoke at shorter wavelengths we limited the
analysis to all wavelengths λ > 1400 nm (100 calibrated Hyperion
channels). In the vicinity of active fires, we are likely to find two
physically distinct background landcover types: vegetation and fire
scar. After inspecting SWIR spectra from the “vegetation” and “fire
scar” classes, we found them to be quite distinct, at least in the shorter
wavelength part of the SWIR range (between 1400 and 1800 nm) and
therefore opted for two separate background contributions (m=2).
The pj,background become the fractional areas pveg and pscar.

For the emitted components Lλ(Ti) we used Planck blackbody
spectra which we atmospherically corrected using the MODTRAN 5.3
transmittance profiles calculated for each acquisition date. For each
study case, a catalog of these temperature endmembers was generated
covering the temperature range between 40 K and 1200 K in steps of
10 K.

To determine the parameters Ti and pi we used least-squares curve
fitting for the set of all pixels in the “fire” class. The best-fitting n
temperature endmembers are retained as modeled temperature com-
ponents. Regarding the choice of n, Dennison et al. (2006) used a single
temperature component, but at a much higher spatial resolution
(AVIRIS GSD of 5m instead of 30m for Hyperion) which is more likely
to be adequately described by a single fire temperature. A different
example comes from an application to lava temperatures using Hy-
perion data (Wright et al., 2010; Abrams et al., 2013), where an n of 2
or 3 yielded a satisfactory fit. We started with a single temperature
component followed by an increase of n to 2, checking whether the RMS
error improved.

In our model, m=2 and n=2 means fitting five parameters to 100
Hyperion SWIR data points (T1, p1,fire, T2, p2,fire and pveg, with pscar
determined via the constraint that the sum of all fractional areas must
be 1). Even though it would appear that there is no risk of overfitting,
there are strong arguments against further increasing n: The spectral
radiance values of a Hyperion SWIR spectrum are not arbitrary, but
correlated with each other. They are also affected by sensor noise, and
we made a number of simplifying assumptions (that the fire targets are
blackbody radiators, that path radiance is minimal and can be ne-
glected, that the composition of the background is uniform). For the
area footprint (900m2) of a Hyperion pixel, model output with two
temperature components would appear to reasonably describe a phy-
sical reality, but this becomes less true when the number of temperature
endmembers increases.

5. Results

5.1. Fire detection and comparative analysis

Fire, fire scar, vegetation and smoke/cloud areas (Fig. 4) were de-
lineated for each study area using a Random Forest classifier. We set the
number of decision tree estimators in the classifier to 100 and verified
the stability of the classification by repeat runs, observing that pixel
counts in all classes remained roughly equal. Furthermore, a 10-fold
cross-validation, each time with a different 60/40 split of the labeled
input data into training and test sets, yielded both accuracy and F1
(macro) scores (that is the harmonic average of true positive rate and
positive predictive value) of 0.97 ± 0.11. This is a good result and
confirms that selecting 20 labeled training samples in each class was
sufficient. The final classifications have 1019 pixels in the “fire” class
for the Crazy fire test site, 662 for the Boundary fire scene, and 197 for
the Wood River scene. Across the classified scenes, we randomly

Table 2
Configuration used with MODTRAN 5.3.

Parameter Comment

MODEL=7 User-specified model atmosphere from radiosonde data (PAFA
station, noon)

ITYPE=2 Vertical or slant path between two altitudes
IHAZE=2 RURAL extinction, default VIS= 5 km
IEMSCT=0 Spectral transmittance mode only
CO2MX=390.0 CO2 mixing ratio
H1/GNDALT Determined from altitude of center of subset
H2 Determined from highest level available in radiosonde profile
ANGLE Determined from sensor look angle
V1=350 Initial wavelength (nm)
V2=2500 Final wavelength (nm)
DV=1 Wavelength step (nm)
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sampled 500 pixels for use as a labeled test set to evaluate fire detection
indices (200 each from the Crazy and Boundary fire scenes and 100
from the Wood River scene, given the smaller number of fire pixels in
this scene). Half the samples were drawn from the “fire” class and half
from “fire scar” or “vegetation”, which together represent the “back-
ground” class for the purpose of fire detection.

Spectra from the “fire” class that are free from anomalies or sa-
turation effects can be distinguished from background pixels by ob-
serving the spectral radiance values in the SWIR range: Unlike in pure
background pixels, whose spectrum would continue to fall off, a con-
tribution from emitted SWIR radiation is apparent (Fig. 5a). At higher
fire intensities the longer-wavelength SWIR part of the spectra satu-
rates, reaching spectral radiances close to the theoretical maximum of
409.6W/(m2 μm sr) (Fig. 5b) However, we observe that not all sa-
turation effects manifest as a range of radiance values pinned to the
theoretical maximum: in some pixels, and even at radiance levels below
those of the most intense fires, individual bands exhibit spikes (which
may or may not extend all the way to the saturation maximum) even
when neighboring bands do not. This may be due to potential differ-
ences in the lag time between saturation and becoming operational
again for individual Hyperion detector elements.

The CO2 absorption feature used for calculating the CO2 CIBR index
is markedly present at approximately the expected location (Fig. 5c).
After data inspection, we used bands 183 at 1981.86 nm and 188 at
2032.35 nm for the shoulders of the absorption line, and band 185 at
2002.06 nm, where the minimum of the absorption feature was con-
sistently located, for its center. In contrast, no K-emission feature in
band 42 is discernible with the naked eye (Fig. 5d).

We then evaluated all three indices over the labeled test set of 500
sample pixels (Fig. 6). For the HFDI, band 224, with a central wave-
length of 2395.5 nm, is the longest-wavelength calibrated band, and we
found the top of the Hyperion band range, beyond approximately band
220, to be extremely noisy. As for the shorter wavelength used to
construct the published HFDI (Dennison and Roberts, 2009), 2060 nm is
closest to Hyperion's band 191. To consider a range of candidate bands
for a Hyperion-based HFDI we selected all combinations of shorter-

wavelength and longer-wavelength bands that can be generated from
any of the bands 190, 191, 192, 193, 194, 195, and 196 as the shorter-
wavelength band and any of the bands 217, 218 and 219 as the longer-
wavelength band. We thereby avoided the bands in the middle of the
spectral radiance “plateau”, which are often affected by anomalies and
saturation effects (Fig. 5).

It was apparent that for an HFDI calculated with band 190 as the
shorter-wavelength band, both the variance of HFDI values and the
separation of fire and background HFDI values was worst, likely due to
sensor noise in band 190. To further quantify the available choices for a
Hyperion-specific HFDI, we modeled the distribution of HFDI values in
both the fire and background class for each combination as normal
distributions and calculated their overlap (which represents the sum of
all errors of commission and of omission), the optimal cut-off value to
separate fire from background, as well as the positive predictive value
and the F1 score (Table 3), which takes into account both errors of
commission and of omission.

Several potentially “best” combinations obtain very similar results
in positive predictive value and F1 score and there is no clear cut-off
other than removing band 190 from consideration. We therefore dis-
carded the three combinations of band 190 with bands 217 to 219 and
averaged the remaining 18 HFDI combinations. Averaging the indices
calculated from multiple bands has the advantage of reducing the in-
fluence on single-band noise on the resulting mean index value. For this
“average HFDI” (Fig. 6), we found an optimal cut-off value to separate
fire from background of −0.13, based on our data.

The CO2 CIBR index is also capable of separating fire from back-
ground (Fig. 6), albeit with notable differences between the three study
areas (Figs. 6 and 7 ). This index also produces some extreme outliers.
Between all 500 samples, the optimal CO2 CIBR value to separate fire
from background was determined to be 0.21. As for the K-emission
index, we found no statistical ability to distinguish fire from back-
ground (Fig. 6). For two of the test scenes, the median index value is
even (slightly) greater for the background pixels than for the fire pixels.

We tested whether fire detection could be improved by retaining all
18 HFDI combinations separately and adding the CO2 CIBR as well,

Fig. 4. Crazy fire (top) and Boundary fire (bottom). Left: Overview plot from the Moderate-resolution Imaging Spectroradiometer (MODIS) on the Terra satellite,
acquired the same day as the Hyperion scene. RGB composite using bands 7-2-1. The extents of the Hyperion scenes are marked by yellow rectangles (same locations
as in Fig. 1). Middle: Hyperion RGB composite using bands 150-50-23 in RGB (1648.9 nm, 854.18 nm, and 579.45 nm), with manual samples marked. (Pixel color
designations: yellow – fire, brown – firescar, green – vegetation, turquoise – smoke or cloud.) Right: classification output (same colors as in the middle). The irregular
shape of the classified subsets (right) reflects the final subset masks, which delineate the fire-adjacent zones using a simple SWIR radiance threshold. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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effectively calculating a data vector of length 19 for each pixel. To
evaluate the potential improvement over the averaged HFDI, we

constructed a new Random Forest classifier using the 500 labeled test
pixels. After executing a 10-fold cross-validation (60/40 split of the
labeled samples in training and test sets) we determined a classification
accuracy of 0.85 (std: 0.02) for the mean HFDI and 0.87 (std: 0.02) for
the combined multi-HFDI-plus-CIBR classifier.

5.2. Temperature retrieval

The need for two separate background components was confirmed
as we found that SWIR spectra from the “fire scar” and “vegetation”
classes were quite distinct (Fig. 8a). The distinction between the two
classes was most pronounced in the shorter-wavelength SWIR region
between 1400 and 1800 nm, while they vary much less in the longer-
wavelength SWIR region above 1900 nm. For each study case, we used
the sample-averages of the “fire scar” and “vegetation” spectra as re-
flective endmembers.

With a single emitted component (corresponding to three in-
dependently fitted parameters p, T, and pveg), we found that the fit of
fire spectra was often unsatisfactory. We therefore added a second
temperature component (five independently fitted parameters, p1, T1,
p2, T2, and pveg), which greatly improved the result. There was no jus-
tification for adding a third temperature component.

Typically, the fit to the measured spectra was excellent, such as in
cases of pixels that are dominated by a mix of vegetation and fire scar
plus either a very small fraction of relatively high-temperature fire
(Fig. 8d) or a slightly larger fraction of low-temperature fire (Fig. 8e).
Both these cases yield spectra that are essentially identical to pure
background spectra in the shorter-wavelength part of the SWIR range,
but deviate strongly in the longer-wavelength part. Some pixels with
saturation effects are also reasonably well fitted (Fig. 8f). In contrast,
Fig. 8b and c illustrate cases of relatively poor curve fit.

The retrieved temperature T1 that corresponds to the larger active
fire fraction and the total fractional fire area (p1+ p2) are plotted in
Fig. 9 for the Crazy and Boundary fire scenes. (We labeled the indices so
that p1 > p2.)

6. Discussion

The performance of the three fire detection methods varies. Using K-
emission, we were unable to tell fire and background pixels apart.
Amici et al. (2011), on the other hand, approach the method from a
different angle and only look at pixels for which AKBD values are ex-
ceptionally high, which indeed, in one of the two sample scenes they
examine (the 2007 Witch fire in California), enables them to detect a
fire signal using Hyperion data. Following their approach, we also
found an area within the 2004 Boundary fire scene for which outliers in
the AKBD metric correspond to locations of intense combustion (Fig. 7,
bottom row). However, the same does not apply to the 2004 Crazy or
the 2009 Wood River fire, even though the Crazy fire scene contains the

Fig. 5. Examples of fire pixel radiance spectra. (a) and (b) represent a selection
of fire pixel spectra (taken from the Crazy fire study area at the indicated pixel
locations). (c) and (d) show the theoretical absorption or emission feature lo-
cation and relevant bands used for fire detection with the the CO2 CIBR and K-
emission methods, respectively.

Fig. 6. Comparison (box plots) of the distributions of average HFDI, carbon dioxide CIBR and K-emission band difference index across fire and background pixels for
each fire event. The whiskers extend to the highest and lowest datum still within 1.5 times the inter-quartile range. Data points beyond this range are plotted as
outliers.
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most intense fire across our three study sites.
Thus, even though we were able to reproduce the detection of a

weak K-emission signal in one of three study cases, we cannot consider
the K-emission method useful for fire detection in the Alaska boreal
forest. It should be pointed out that the 2007 Witch fire was a very high
intensity event that burned in chaparral shrubland near Escondido,
California. This eco-region has a fire regime very different from that of
a boreal forest fire in a black spruce dominated ecosystem. In the Alaska
case, a large percentage of the biomass consumption comes from the
sub-surface layers of organic matter (Randerson et al., 2006) rather
than from quick-burning surface fuels. Furthermore, the absence of a K-
emission signal even in the highest-intensity fire pixels of the Crazy fire
may be related to the presence of large amounts of smoke in the scene.
The active fire pixels of the 2009 Wood River fire were generally of low
intensity, and a signal was not expected in this case. The main factors
limiting the usefulness of K-emission with Hyperion are the much
coarser spatial resolution of the satellite-borne sensor, which leads to a
lowered sensitivity, and the strong sensor noise.

The carbon dioxide CIBR, which is based on an absorption feature,
shows a clear statistical difference between fire and background pixels.
Fire areas are discernible in a map of CO2 CIBR values (Fig. 7), but on a
background of substantial noise. The Crazy fire test scene is particularly
hard to map using the CO2 CIBR, and the plot suggests that areas
containing smoke or clouds, and to a lesser degree burn scars, introduce
a large number of false detections. The optimal CO2 CIBR threshold to
distinguish fire from background appears to vary from scene to scene.
Zooming into known fire areas, we see that high CIBR values follow the
outline of the fire front (Fig. 7, bottom row). The CO2 CIBR quantifies
the proportion of emitted radiation in the measured spectral radiance
value at a specific wavelength. To make it more useful standing on its
own the image would have to be de-striped and cloud-masked, which
would come at the cost of losing further detail in the signal.

An average of 18 HFDI band combination produces crisp fire maps
with HFDI values that appear to correlate with fire intensities.
Averaging helps reduce the noise inherent in Hyperion data. The
Hyperion-specific averaged HFDI provided a reasonably stable detec-
tion threshold that did not vary greatly between three fire events in the
Alaska boreal forest. A downside of band-averaging is that it effectively
lowers the spectral resolution of the imaging spectrometry data, from
10 nm to 60 nm (six shorter-wavelength bands) and 30 nm (three
longer-wavelength bands). Even a 60 nm bandwidth is still relatively

small compared to common satellite-borne multispectral sensors (for
example Landsat 8 OLI SWIR band 7: 187 nm). Essentially, opting for a
band-averaged index rather a than single-band index reflects a neces-
sary choice to avoid noisy or sub-optimally located Hyperion bands. In
general, a normalized-difference based index is likely to be less sus-
ceptible to spectral resolution than an index that relies on an individual
spectral feature. Opportunities for better fire detection using the HFDI-
type normalized detection indices will require improved performance
of future sensors in the 2400–2500 nm range, beyond the end of
Hyperion's range of calibrated channels, and reduced noise across the
SWIR range, rather than a finer spectral resolution.

Dennison and Roberts (2009) indicate that an HFDI-type index does
not increase monotonically with fire intensity for very hot fires
(T > 1400 K), for which the emitted radiance at the shorter wave-
length (approximately 2060 nm) will begin to exceed the radiance at
the longer wavelength (approximately 2400 nm). For Hyperion, how-
ever, we do not find non-saturated pixels with usable data in this
temperature range and can therefore assume that for our data, higher
HFDI values correspond to higher fire intensities. The HFDI values
found in the Crazy and Boundary fire data appear to be consistent with
this principle (Fig. 7): the HFDI reveals rich fire intensity patterns,
which are an improvement over the result we obtained from supervised
classification. A mixed approach that relies on all 18 HFDI band com-
binations plus the CO2 CIBR was able to achieve a small improvement
in classification accuracy, but at the cost of losing a single meaningful
scalar index.

The linear spectral mixture analysis yields an overall excellent result
for retrieving active fire temperatures based on two constant back-
ground components (vegetation and fire scar) and two active fire
components whose temperatures were allowed to vary freely from pixel
to pixel. Measured spectra with very small fractional areas (< 1%, that
is, 5–9m2) of high-temperature active fire on a mixed vegetation and
fire scar background were fitted extremely well (Fig. 8d). The same is
true for pixels that contain a somewhat larger fractional area of low-
temperature fire (Fig. 8e). Even pixels with 20–25% (approximately
200m2) of high-intensity active fire (Fig. 8e) were modeled quite well
even though the Hyperion sensor saturates in the SWIR region at such
signal intensities. Typical temperatures for high-temperature fire com-
ponents ranged from 800 K to 900 K. This value, which is not very high
for wildfire, is limited by the saturation behavior of the Hyperion
sensor: beyond 900 K, the spectral radiance contribution in the longer-

Table 3
HFDI band combinations evaluated for 500 labeled sample pixels (fire and background). The cut-off column refers to the optimal HFDI value to separate fire from
non-fire. The overlap column represents the modeled overlap between the fire and non-fire distribution. The true detection rate is the true positive rate calculated for
fire detection. PPV represents the positive predictive value for fire detection.

Bands Central λ (nm) Cut-off Overlap True detection rate PPV F1 score

196, 217 2113.04, 2324.91 −0.172 0.138 0.868 0.879 0.873
196, 218 2113.04, 2335.01 −0.192 0.146 0.864 0.882 0.873
195, 218 2102.94, 2335.01 −0.192 0.143 0.86 0.885 0.872
195, 217 2102.94, 2324.91 −0.152 0.149 0.84 0.901 0.87
196, 216 2113.04, 2314.81 −0.172 0.134 0.84 0.897 0.868
195, 216 2102.94, 2314.81 −0.172 0.144 0.836 0.889 0.862
194, 218 2092.84, 2335.01 −0.172 0.169 0.836 0.878 0.857
193, 218 2082.75, 2335.01 −0.152 0.177 0.84 0.868 0.854
193, 217 2082.75, 2324.91 −0.111 0.185 0.812 0.894 0.851
194, 217 2092.84, 2324.91 −0.131 0.161 0.816 0.887 0.85
194, 216 2092.84, 2314.81 −0.152 0.149 0.824 0.873 0.848
192, 216 2072.65, 2314.81 −0.051 0.175 0.812 0.886 0.848
193, 216 2082.75, 2314.81 −0.131 0.172 0.828 0.855 0.841
192, 218 2072.65, 2335.01 −0.071 0.18 0.82 0.861 0.84
192, 217 2072.65, 2324.91 −0.051 0.184 0.828 0.848 0.838
191, 218 2062.55, 2335.01 0.03 0.215 0.82 0.82 0.82
191, 216 2062.55, 2314.81 0.051 0.21 0.804 0.824 0.814
191, 217 2062.55, 2324.91 0.071 0.222 0.792 0.822 0.807
190, 218 2052.45, 2335.01 0.071 0.313 0.792 0.692 0.739
190, 216 2052.45, 2314.81 0.111 0.318 0.728 0.728 0.728
190, 217 2052.45, 2324.91 0.111 0.334 0.764 0.687 0.723
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wavelength part of the SWIR region (> 1900 nm) saturates the sensor;
a meaningful temperature retrieval becomes impossible. The low tem-
peratures of fire components were typically at values of 500–600 K,
which falls within the region of smoldering combustion of organic
forest soil matter (Rein et al., 2008). The model therefore provides a
pixel-by-pixel characterization of fire behavior properties. We were
able to map hotter and cooler fire areas, and regions in which active fire
occupies a larger or smaller fractional pixel area (Fig. 9).

There are two limitations for temperature retrieval in our study:
first, pixels with severe SWIR data anomalies such as drop-outs and
some saturation behavior cannot be fitted well (Fig. 8b). Second, some

fire pixels are dominated by a reflected radiance component that ex-
ceeds the typical vegetation-type background at the shorter-wavelength
end (1400–1800 nm). These pixels contain a source of reflected solar
radiation that was not adequately captured by our choice of an aver-
aged vegetation background spectrum (Fig. 8c). Due to the small size of
the study area (and the narrowness of the Hyperion swath) we con-
sidered it sufficient to use per-scene constant vegetation and fire scar
endmembers; the unsatisfactory fit of some pixels highlights the lim-
itation of this assumption. We could overcome it by applying a con-
textual selection and averaging mechanism to determine pixel-by-pixel
background contributions. Such background contributions should

Fig. 7. Values of average HFDI and CO2 CIBR for the Crazy and Boundary fire study areas. The stripes stem from uncorrelated striping noise typical for pushbroom
sensors (Rogass et al., 2014). For the Boundary fire, the sub-region, marked by a rectangle, is enlarged (bottom row). For the enlarged region, we added the K-
emission (AKBD) metric (extreme outlying values only). The colors correspond to the supervised classification, identical to Fig. 4: fire (yellow), fire scar (brown) and
vegetation (green). The gray (including white) values are the fire detection metrics on the same color ramp as the zoomed-out plots. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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continue to further distinguish between fire scar and vegetation and
would provide improved information on the fractional areas of a pixel
that are unburned versus already-burned.

7. Conclusions, recommendations, and future work

We have demonstrated the usefulness of a Hyperion-type hyper-
spectral sensor to detect, map, and characterize active fire in Alaska's
boreal forest as well as the land cover changes introduced by fire (fire
scar and unburned vegetation). We detected both high-intensity flaming
fire and low-temperature combustion likely associated with smoldering
fire. Sensors like Hyperion have great potential to further identify classes
of fuel type (Dennison et al., 2006) and condition, as well as the prop-
erties of both fresh and older burn scars. One area for future research
includes fire severity, which, in the Alaska boreal forest, is associated
with the degree to which the sub- surface layers of organic matter are
consumed (Lentile et al., 2006). Such work requires a field component.

Future instruments are already being designed with an emphasis on
enhanced SNR, as is the case for HyspIRI at 500:1 (2200 nm) (Lee et al.,
2015), PRISMA at> 200:1 (VNIR and SWIR) (Labate et al., 2009), and
EnMAP at> 150:1 (SWIR) (Kaufmann et al., 2006), compared to Hy-
perion's SNR of 38:1 at 2125 nm (Pearlman et al., 2003). Areas of active
combustion represent a larger percentage of total pixel area as spatial
resolution is increased, so finer spatial resolutions could make the de-
tection of weak spectral features, such as the K-emission line, more
likely. Such a requirement, though, is in conflict with a shorter repeat
interval, which would be highly desirable for monitoring relatively
rapid landscape processes such as a change in pre-fire fuel conditions or
fire effects. Similarly, improved saturation behavior needs to be con-
sidered as a trade-off with sensor sensitivity (Realmuto et al., 2015).
Design goals such as a short recovery lag before saturated sensor ele-
ments are operational again or a well-documented signature of sensor
saturation are likely to be preferable to a high saturation threshold on a
sensor that is incapable of picking up weak heat signals.

Fig. 8. Example spectra for T-retrieval. (a) Sample spectra from vegetation and fire scar classes (green and brown), and average spectra (green, red-orange, black).
(b)–(f) Examples of temperature and fractional area fit to individual Hyperion radiance spectra. (b) and (c) illustrate unsatisfactory fit in pixels with large reflective
radiance contribution in the lower SWIR region, or due to data anomalies. (d)–(f) illustrate very good fit. In (d) and (e), even small fractional active fire areas are
clearly distinct from pure vegetation spectra (green curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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We hope that new and enhanced satellite-borne imaging spectro-
meters will become available in order to expand our ability to under-
stand active wildfire in its biophysical context. As our work showed,
spectral bands from the atmospheric windows of the SWIR portion of
the electromagnetic spectrum (combining both the 1500–1800 nm and
the 2000–2500 nm range) are suitable to detect active fire, characterize
it (T-retrieval), and classify the pre- and post-fire land cover. Our re-
search demonstrated a repeatable process to define a modified HFDI
using specific ranges of spectral bands, which, either alone or in com-
bination with the CIBR, resulted in high-quality detection of active fire.
Future instruments would enhance the investigation of climate and
environmental change, the carbon cycle, and, ultimately, might even
open new avenues for operational fire monitoring
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