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Abstract. Wildfire evacuation triggers refer to prominent geographic features used in
wildfire evacuation practices, and when a fire crosses a feature, an evacuation warn-
ing is issued to the communities or firefighters in the path of the fire. The existing

wildfire trigger modeling methods consider evacuation time as an input from a deci-
sion maker and employ fire spread modeling and GIS to create a trigger buffer
around a threatened asset. This paper substantially improves on previous methods by

coupling fire and traffic simulation models to set triggers, which allows us to estimate
evacuation time using a traffic simulation model rather than relying on expert judg-
ment. Specifically, we propose a three-step method within a spatiotemporal GIS

framework to couple these models and to evaluate the value of the generated trigger
buffers. The first step uses traffic simulation to estimate the total evacuation time for
a threatened community. The second step derives the cumulative probabilities for dis-
tinct evacuation times from multiple simulations and generates corresponding proba-

bility-based trigger buffers. In the last step, we evaluate the value of the generated
buffers by coupling fire and traffic simulation models to examine the spatial configu-
rations of fire perimeters and evacuation traffic. A case study of Julian, California is

used to test the proposed method. The results from two evacuation scenarios with
different travel demand indicate that a larger trigger buffer (more lead time) will be
needed for higher levels of evacuation travel demand. For example, the time required

to guarantee that 95% of the evacuating residents arrive at the safe area as a fire
approaches a community is estimated at 160 min for one scenario but 292 min if the
travel demand is doubled. The resulting framework advances the dynamic representa-
tion of evacuation traffic in wildfires and improves our understanding of wildfire

evacuation timing and decision making. The paper concludes with a discussion of the
strengths and limitations of the proposed method, as well as future research direc-
tions.
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1. Introduction

Wildfire is a common hazard in the American West due to fuel accumulation, sea-
sonal precipitation variability, and frequent droughts. For this reason, the number
and size of wildfires has increased in recent decades [1, 2]. The Wildland-Urban
Interface (WUI) is defined as the region where wildlands and populated areas
meet or intermix [3]. In the western U.S., with a rapidly growing WUI population,
wildfires pose a significant risk to these residents [4], and public safety has become
a concern for fire-prone WUI communities [5–8]. It is important to recommend
timely and effective protective actions to the right population when a wildfire
threatens life and property. Evacuation and shelter-in-place are the most common
protective actions in wildfires, and the latter can be further divided into shelter-in-
refuge and shelter-in-home [9]. Due to the ‘‘Stay and defend or leave early’’ pol-
icy, ‘‘stay and defend’’ is a popular protective action in wildfires in Australia [10,
11]. However, in the U.S., evacuation is the primary protective action, and shelter-
in-place recommendations are rare [12, 13].

Incident commanders (ICs) must consider fire behavior, the population in the
risk area, and the evacuation routing system to issue the most effective warnings
to at-risk residents. Evacuating the right population at the right time is a critical
and challenging problem. Evacuating residents too early might cause unnecessary
community disruption, which can have adverse economic and social impacts. Con-
versely, late evacuation might lead residents to be trapped in-transit [14]. The rea-
son evacuation timing is a complex problem is two-fold. On one hand, the total
clearance time for a community at risk must be estimated before ICs can issue
evacuation orders to the threatened residents. The total network clearance time
includes the households’ warning receipt time, preparation time, and vehicular tra-
vel time [15]. On the other hand, ICs also need to estimate the available time that
communities have to take a protective action before the fire reaches the residences.
This is primarily determined by the fire’s ignition point, anticipated spread rate
and direction. Thus, the complexity of evacuation timing requires decision makers
to make accurate time estimates regarding both a human and natural system.

In wildfire evacuation practice, it is common to use prominent geographic fea-
tures such as ridges, rivers and roads as trigger points to facilitate evacuation tim-
ing and warning [16]. For example, the firefighters used a ridge line as the trigger
point above the Mountain Shadows Community in the Waldo Canyon Fire in
Colorado on June 26, 2012 [17]. When a fire crosses a trigger point, the commu-
nity or firefighters threatened by the fire will be notified to evacuate. Thus, wild-
fire evacuation triggers can be considered as an evacuation timing mechanism that
takes into account both spatial and temporal dimensions of the risk fire poses to
the residents, as well as the time it will take for the community to evacuate to
safer places. Current trigger modeling methods employ fire spread modeling and
geographic information systems (GIS) to derive a buffer around a place P with a
given time T based on the shortest path algorithm [18–20]. If a fire crosses the
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boundary of the trigger buffer, the threatened residents should be notified to evac-
uate, and they will have time T for their evacuation. Trigger modeling can help
ICs develop a better understanding of evacuation timing and the most effective
trigger features [21]. However, one limitation of existing methods is that evacua-
tion time T is treated as an input from a decision maker, and this parameter
could be estimated using a more systematic method.

2. Background

2.1. Evacuation Traffic Simulation

Regional evacuation modeling was formulated by Southworth [22] as a five-step
process: (1) trip generation; (2) evacuee mobilization; (3) destination selection; (4)
evacuation route selection; and (5) evacuation plan setup, analysis, and revision.
Travel demand modeling concerns modeling the number of trips generated from
the origins in a given time period [23]. Risk area delineation should be performed
before travel demand modeling [24]. In general, travel demand models in evacua-
tions can be categorized into two types: sequential and simultaneous models [23].
Sequential travel demand methods model travelers’ departure time choice by
applying a response curve to determine the percentage of trips for each time inter-
val. Certain probability distributions can be used for trip generation, e.g., the
Poisson distribution [25]. ‘‘S-shaped’’ departure time curves have been widely used
in evacuation travel demand modeling [26]. For example, Tweedie et al. [27] used
a Rayleigh probability distribution function to estimate mobilization time. As for
simultaneous travel demand models, some specific binary logit models are usually
used to calculate the share of households that choose to evacuate over time, and
the accuracy of these models often relies on the utility functions used in evacua-
tion decision-making modeling [23]. Traffic simulation models can be divided into
macroscopic, mesoscopic, and microscopic models based on their levels of detail
[23]. With the rapid development of computing power, microscopic traffic simula-
tion has enjoyed great popularity in evacuation modeling and simulation in recent
years [25, 28]. The primary advantage of microscopic traffic simulation lies in that
it can model the detailed behaviors of a vehicle agent over the road network,
which can be used to discover new knowledge concealed by macroscopic approa-
ches [29]. In this work, we use microscopic traffic simulation to estimate the total
evacuation time of a community to provide input for trigger modeling.

2.2. Wildfire Spread and Trigger Modeling

Wildfire spread is a complex spatiotemporal process. Since it is not realistic to
conduct experiments using a real fire to examine its impacts on other ecological or
human systems, computerized modeling of wildfire spread can be used to perform
simulations. The Rothermel fire behavior model [30], a semi-physical model that
uses mathematical equations calibrated by empirical experiments to model fire
spread rates and fire intensity, has been widely used in many fire spread modeling
software systems, e.g., FlamMap [31] and FarSite [32]. The elliptical fire shape
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model has been widely employed to model fire spread rates on a two-dimensional
plane [33]. Fire growth models such as the minimum fire travel time model [34]
and the cellular automata (CA) model [35] can be used to model fire propagation
in the landscape. Based on the mechanism of triggers in hurricane evacuations,
Cova et al. [18] introduced the idea of modeling wildfire evacuation triggers and
proposed a method to set triggers using fire spread modeling and GIS. Trigger
modeling was formulated into a three-step procedure by Dennison et al. [19]: (1)
fire behavior modeling; (2) construction of the fire travel-time graph; and (3) cre-
ation of trigger buffers using the Dijkstra’s shortest path algorithm [36]. Previous
studies have shown that trigger modeling could be potentially used in protecting
firefighter crews [18, 20, 21], community evacuation planning [19, 37], wildfire
evacuation warning [38], and pedestrian safety protection in the wildlands [39]. A
recent study also examines how to use reverse geocoding and viewshed analysis to
retrieve prominent geographic features and use them as trigger points during wild-
fire evacuation [21].

2.3. Spatiotemporal GIS

Many geographic phenomena are complex spatiotemporal processes, which calls
for more advanced GIS capabilities to represent, model, and analyze both the spa-
tial and temporal dimensions of these phenomena [40]. Space–time representation
and modeling in GIS can be generally divided into two types: the discrete and the
continuous view [41]. The discrete view represents and models the movements of
discrete objects in the space over time, and this line of research is characterized by
time geography [42], which has enjoyed great popularity in mobility studies in the
past few years [43]. Specifically, the evacuees in wildfire evacuations can be repre-
sented as moving objects within the road network over time. The continuous view
concerns representing objects as attributes attached to a location [41]. In this
regard, wildfire spread and trigger buffer can be represented and modeled as a ras-
ter polygon with fire travel time as an attribute.

3. Research Questions

Protective-action triggers in environmental hazards take into account both human
and environmental systems during an evacuation and can help us develop a better
understanding of evacuation timing and warning [44]. This work focuses on devel-
oping a GIS framework to study the space–time coupling of fire and traffic simu-
lation models for wildfire trigger modeling. Many space–time methods have been
developed to support spatiotemporal queries [45–47], and these methods could be
employed to perform spatiotemporal queries and computation in the model cou-
pling process in this work.

The purpose of this research is to couple fire and traffic simulation models
using a spatiotemporal GIS framework to improve our understanding of wildfire
evacuation timing and decision support. Specifically, the research questions
include: (1) How can the uncertainty in evacuation time estimates (ETEs) be rep-
resented when coupled fire and traffic models are used to set triggers? (2) How can
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we evaluate the value of trigger buffers generated using the ETEs derived from
traffic simulation models? Addressing these questions will make a significant con-
tribution to the theories and methodologies in wildfire evacuation modeling and
help us develop a better understanding of wildfire evacuation from a system cou-
pling perspective.

4. Methods

Spatial representation to a large degree determines the methods used in subse-
quent modeling and analysis [48]. The raster data model is used to represent the
landscape in trigger modeling. As illustrated in Fig. 1a, the fire starts from the
ignition point and spreads outwards to create a series of perimeters in wildfire
spread modeling. In trigger modeling, the fire spread rates in eight directions for
each raster cell are reversed and a fire travel time graph is constructed. Then a
shortest path algorithm is performed to traverse the graph from the input commu-
nity outwards to create a raster trigger buffer, as shown in Fig. 1b. Note that this

Figure 1. Illustration of wildfire spread and trigger modeling: (a) A
demonstration of wildfire spread modeling; (b) A demonstration of
trigger modeling [51]. Wildfire spread modeling uses the shortest
path algorithm and the fire spread rates in eight different directions
in one cell to derive fire travel times for each raster cell. Trigger
modeling reverses edges in opposite directions and also employs the
shortest path algorithm to create a raster buffer for a threatened
community.
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example assumes that uniform topographic and fuel model inputs are used, and
the wind is from the south. Thus, the fire perimeter is skewed towards the wind
direction, while the trigger buffer is skewed against the wind. In transportation
geography, time–space convergence refers to the phenomenon that the travel-time
between two places will decrease and distance will become less significant as a
result of transport innovations [49]. Similar to the time–space convergence con-
cept, wildfire spread and trigger modeling are based on fire travel time rather than
Euclidean distance [50].

From a wildfire risk perspective, trigger modeling can be considered an evacua-
tion timing and warning mechanism based on fire risk. Yuan [52] gives a summary
of the spatiotemporal scales and sizes of resolution of different wildfire studies
such as fire forecasting, analysis of fire phenomena, fire behavior/growth model-
ing, fire effect assessment, fire history, and fire management. The two key pro-
cesses during wildfire evacuation include wildfire spread and the evacuation of the
residents. These processes are both complex spatiotemporal processes, and we
need to take into account their spatiotemporal scales as well as sizes of resolution
when coupling them. In this work, a spatiotemporal GIS framework is proposed
and used to couple fire and traffic simulation models, as shown in Fig. 2. Note

Figure 2. A spatiotemporal GIS framework for model coupling [51].
Traffic simulation is used to derive ETEs, which can be used as the
input for trigger modeling. Fire spread rates and travel times can be
calculated using fire spread modeling. Finally, we couple fire spread
and traffic simulation models to examine the spatio-temporal
patterns of fire spread and evacuation traffic.
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that evacuation traffic takes place in the road network, which is a constrained
geographic space. The ETEs derived from evacuation traffic simulation are used
as the input for trigger modeling. As for fire spread modeling, the geographic dis-
tance between two adjacent raster cells is converted to fire travel times in different
directions. Note that the spatial dimensions of fire spread and traffic simulations
are converted to fire travel time and evacuation time, respectively. Then a time–
space conversion is performed to generate a raster trigger buffer for a given input
evacuation time T. Note that a trigger buffer is a time buffer and takes into con-
sideration both evacuation and fire travel times. After the generation of the buf-
fers, fire and traffic simulation models are coupled, and spatiotemporal
computation is performed to reveal the spatiotemporal patterns of fire spread and
evacuation traffic. The detailed steps are listed as follows.

4.1. Step 1: Estimate Evacuation Time Using Traffic Simulation

In the first step, microscopic traffic simulation is used to estimate the evacuation
time of a fire-prone community. Based on the five-step evacuation modeling pro-
cedure proposed by Southworth [22], the workflow for this step is shown in
Fig. 3. Since wildfire evacuations are usually at a smaller geographic scale than
hurricane evacuations, household-level travel demand modeling is becoming more
popular [25, 53]. Since the exact number of vehicles for each household is
unknown, a statistical distribution can be used to assign the number of vehicles to
each household, e.g., the Poisson distribution [25]. Thus, we use a Poisson distri-
bution to generate the number of vehicles to randomly assign to each household
(e.g., 0, 1, 2…n). Determining the departure time profiles is a prerequisite for
evacuation time estimation. It is assumed that all the households will choose to

Figure 3. The workflow of traffic simulation [51]. We used a normal
distribution to generate trips for each household and a Poisson
distribution to generate the departure times.
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evacuate after they receive the warnings and the departure time D follows a nor-
mal distribution D � N(l, r), where l is the mean departure time and r the stan-
dard deviation. As for destination selection, it is assumed that all the evacuees will
choose the closest egress point. Finally, the assumption used for route selection is
that all the evacuees will choose the shortest path, and this assumption is likely to
hold in WUI areas with relatively sparse road networks.

The total evacuation time is defined as the time span from the start of the evac-
uation (when the evacuation warning is sent out) to the time when the last vehicle
reaches the destination egress in the road network. Han et al. [54] point out that
the evacuation time where 95% of the population is evacuated is more practically
meaningful compared to a complete 100% evacuation rate, as the latter would put
too much importance on the last departing vehicle. Thus, the evacuation times
when 25, 50, 75, and 95% of the population have arrived at the destination are
calculated and used as the input time for trigger modeling. The four ETEs are
denoted with T25, T50, T75, and T95, respectively, as shown in Fig. 4. For a given
evacuation scenario, n sets of four ETEs can be derived from n runs of traffic sim-
ulation. Note that many traffic microsimulators have the capability to simulate
traffic using seconds as the time step. The final ETEs are converted to minutes
since the temporal resolution for fire spread and trigger modeling is at the minute.

4.2. Step 2: Generate Probability-Based Trigger Buffers

In this step, the ETEs from Step 1 are aggregated to derive cumulative probabili-
ties and then used to generate probability-based trigger buffers. Note that since
there could be repeated values in the n input ETEs. All the m (1 £ m £ n) distinct
ETEs for a specific scenario are sorted in an ascending order and can be denoted

Figure 4. An illustration of the derived four ETEs [51]. Specifically,
we calculate the time taken when 25, 50, 75, and 95% of the
evacuees have arrived at the safe places during the evacuation for
each run of traffic simulation. If we perform traffic simulation n times,
we can derive n sets of these four ETEs.
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with a set Te= {t1, …, tm}. Let fk (1 £ k £ m) be the cumulative frequency of
ETE tk, and the probability that a trigger buffer bk generated using tk can ensure

the successful completion of a specific evacuation is defined as pk ¼ fk
n , as shown in

Fig. 5a. In this way, a trigger buffer bk is associated with a probability value pk.
As shown in Fig. 5b, the probability value associated with the outmost trigger
buffer bm is pm = 100%, which means that if it is used as the trigger buffer in
wildfire evacuation, the probability that it could ensure the successful completion
of an evacuation for the specific scenario will be 100%. However, if we use the
innermost trigger buffer b1 in this evacuation scenario, the probability will be p1.

The three-step procedure for trigger modeling is used to create trigger buffers, as
shown in Fig. 6 [19]. First, the fire spread modeling software package FlamMap is
used to compute the fire spread rates in eight directions for each raster cell. Second,
the fire spread rates are used to calculate the travel times between adjacent raster
cells and construct a fire travel-time graph. Third, the edges in opposite directions
are reversed and the Dijkstra [36] shortest path algorithm is used to traverse the
graph from the community cells outwards until the accumulated fire travel time
reaches the input evacuation time T. The trigger buffers will be a set of raster poly-
gons around the community. The time distance between the boundary of a trigger
buffer and the community depends on the fire travel time in that direction. Since fire
spread rate is determined by many environmental factors (e.g., fuel model, topogra-
phy, and wind), the shape of a trigger buffer is usually skewed.

4.3. Step 3: Evaluate the Value of the Generated Trigger Buffers

In this step, wildfire and traffic simulation models are coupled to evaluate the value
of the generated trigger buffers. The conceptual diagram of the evaluation proce-

Figure 5. An illustration of the generated probability-based trigger
buffers [51]. Note that the trigger buffer for each ETE is associated
with a cumulative probability value, which denotes the probability
that the trigger buffer can ensure the successful completion of the
specific evacuation.
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dure is given in Fig. 7. The probability-based trigger buffers are used as input for
this step. The fire perimeter for each time step can be computed from wildfire sim-
ulation. When the fire reaches the boundary of the evacuation trigger buffer at time
t0, the community at risk will be notified to evacuate. The same environmental
inputs, fire spread rates, and shortest path algorithm are used for wildfire simula-
tion. Note that when the fire reaches the community at time t2, the fire travel time
t2 - t0 should align with the input evacuation time T for the trigger buffer.

After evacuation warnings are sent out, vehicles start to depart from the house-
hold origins and travel towards the egress nodes. Fire and traffic simulation mod-
els are coupled to examine the spatial relationship between fire front and the
vehicles in-transit. Beloglazov et al. [55] used person-threat distance to measure
evacuees’ exposure to fire risk during evacuation. In this work, the person-threat
distance was also employed as a metric to evaluate the value of a trigger buffer.
Specifically, the shortest distance between the fire front and the vehicles in-transit
at time step t2 when the fire reaches the community is calculated, as shown in

Figure 6. The workflow of creating probability-based trigger buffers
[51]. The ETEs derived from traffic simulations have their
corresponding cumulative probability values and are used as the
input time for trigger modeling. A trigger buffer based on fire spread
rates is generated for each input ETE, and thus each trigger buffer is
also associated with a probability value.
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Fig. 7. The trajectory of a vehicle v can be represented with a series of points with
corresponding times TP(v) = {tp1, …, tpn}. Each element tp 2 TP includes time t
and the location p and can be represented by tp = (t, p). For each vehicle v 2 V,
we can derive the specific tp = (t, p) when t is equal to t2 and calculate the mini-
mum distance between its location p and the fire front. Note that wildfire simula-
tion is based on the raster data model and the shortest distance is the minimum
Euclidean distance between the point p and the centroids of the raster cells that
represent the fire front at time step t2. The shortest distance could reflect the risk
the fire poses to the closest evacuee when it reaches the community. If the distance
is too small, the evacuee could be trapped by the fire; otherwise if the evacuee is
very far from the fire front, it means that the trigger buffer used may lead to early
evacuation. Moreover, we also extract the locations of the evacuees and aggregate
them at the road link level at time t2. If we map the results out, we can get a
snapshot of the evacuation process such that we could more directly examine the
spatial configuration of evacuation traffic and the fire front.

5. Case Study

Southern California is one of the areas that is most vulnerable to wildfires in the
American West due to flammable fuels (e.g., chaparral), seasonal drought, and
Santa Ana wind events. A case study was conducted to evaluate the value of the
proposed method, and Julian, a census-designated place (CDP) in San Diego
County, California, was chosen as the study site. Julian is surrounded by wild-
lands, and the evacuation route system only includes a few exits, which makes it

Figure 7. The conceptual diagram of the evaluation procedure [51].
The fire starts at the ignition and spread towards the community.
When the fire reaches the trigger buffer at t0, the residents will be
notified to evacuate. The evacuation traffic will be mapped out when
the fire reaches the community at t2 to evaluate the effectiveness of
the trigger buffer used during evacuation.
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representative of many high fire-risk and low-egress communities in the western
U.S. As shown in Fig. 8, there are three primary exits in the evacuation route sys-
tem—Highway 78 West, Highway 78 East, and Highway 79 South. The residential
area used is composed of three communities: the Julian downtown area, the Whis-
pering Pines community, and the Kentwood-in-the-pines community. The house-
hold locations were derived by extracting the centroids of the residential land
parcels downloaded from the GIS department of San Diego County (SanGIS),
and a total of 744 households in this area were used in this study.

In the case study, the evacuation module of an open-source traffic microsimula-
tion software package named MATSim was used to perform traffic simulation and
estimate evacuation time [56]. The road network data were compiled from Open-
StreetMap, a crowd-sourcing open data initiative with millions of contributors all
over the world [57]. Note that the data from OpenStreetMap can be readily used
in MATSim [58]. Specifically, the downloaded road data were edited using an
open-source tool named Java OpenStreetMap Editor (JOSM) and its MATSim
plugin. The speed limits of the highways and residential roads were set to 17.882

Figure 8. The map of Julian, California [51]. This study area is an
isolated community surrounded by a large amount of fuels. The points
denote household locations, and the road network is the evacuation
route system during evacuation and has three major egresses.

Fire Technology 2018



m/s (40 mph) and 11.176 m/s (25 mph), respectively, during the network coding
process. Note that the speed limits used are based on local regulations.

Egress points will also be the nodes on the road network and will be used as
destination nodes. Household-level Origin–Destination (OD) demand in microsim-
ulation will be determined by the locations of households and points of egress on
the road network. In this case study, it is assumed that a fire will arrive from the
southeast, and all residents will use the western egress (Highway 28 West) as their
exit. MATSim uses the number of ‘‘persons’’ to denote the number of trips from
one origin node. Since a personal vehicle is the primary transport mode in wildfire
evacuations in the U.S. [53], a Poisson distribution number generator was imple-
mented in Java to assign a random number to a household as the number of vehi-
cles departing from this node. According to the American Community Survey
(ACS) 2015 vehicle occupancy data (Appendix 1), the average household vehicle
occupancy is close to 2. Thus, the mean value used for the Poisson distribution
was 2. In addition, we also used a mean value 4 to create a scenario with a larger
travel demand as a comparison. A normal distribution was used to generate the
departure times, and the parameters are shown in Table 1. Note that k denotes
the mean value of the Poisson distribution for travel demand, and l and r are the
mean value and standard deviation of the normal distribution for departure times.
The traffic simulation was run 100 times for each scenario to estimate evacuation
time. Note that only one iteration was performed for each simulation. We used
the shortest path assumption and did not consider user equilibrium. The normal
distribution was used for computation convenience, and use of this specific distri-
bution does not affect the generalizability of the method.

The calculated ETEs as well as their cumulative probabilities are listed in
Table 2. Specifically, we calculated the evacuation times when 25, 50, 75, and 95%
of the evacuees have arrived at the safe areas for each scenario. We also computed
the minimum, mean, maximum, and standard deviation of the ETEs as well as
their corresponding cumulative probability values for each case. Relevant data for
fire spread modeling primarily include vegetation cover data (fuel models), weather
data (e.g., wind speed and wind direction), and topographic data (digital elevation
model (DEM), slope, and aspect). The fuel model and topographic data were
downloaded from LANDFIRE—a national open data initiative for fuel mapping
[59]. The spatial resolution of all raster data used is 30 m. The residential raster
polygon was acquired by combining the convex hull of the households and the ras-
ter cells with unburnable fuel model values around it. A south wind with speed
16 km/h (10 mph) was used for fire spread modeling in FlamMap. The 1 h, 10 h,
and 100 h dead fuel moisture values used were 5%, and the live woody and herba-

Table 1
Parameters for Different Evacuation Scenarios

Scenario k l (min) r (min) Earliest (min) Latest (min)

1 2 40 20 0 80

2 4 40 20 0 80
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ceous fuel moistures were set to 65%. The 5% dead fuel moisture is typical of daily
lows in dead fuel moisture in fall in Southern California, and 65% live fuel mois-
ture value is typical of seasonal lows reached annually in chaparral [60].

The generated probability-based trigger buffers for scenario 1 are shown in
Fig. 9. When the fire crosses the boundary of the outmost 53 min trigger buffer in
Fig. 9a, the probability that the lead time could ensure the successful completion
of the evacuation in which 25% of the evacuees have arrived at the safe areas is
100%; if we use the minimum 45 min trigger buffer, the probability will be 1%.
Thus, a trigger buffer with a larger probability value could better ensure the suc-
cessful completion of the evacuation. Note that the maximum evacuation time for
a 95% evacuation is 160 min and this buffer can ensure a safe evacuation for this
scenario but might lead to earlier evacuation and cause unnecessary disruptions
when it is used in wildfire evacuation practice. In this way, the uncertainty in
evacuation time can be reflected directly by the probability values associated with
the generated trigger buffers, which could help facilitate the ICs’ decision making
during wildfire evacuations.

The trigger buffers generated using the maximum evacuation times for different
scenarios are displayed in Fig. 10. The ETEs and sizes of trigger buffers increase
with the increase of evacuation travel demand. We employed wildfire simulation
to evaluate the value of the derived trigger buffers in Fig. 10. As shown in Fig. 11,
the fire ignition point is located 4 km from the boundary of the residential area.
Note that the fire perimeters are skewed downwind and thus the trigger buffers
are skewed upwind. The calculated fire travel times are shown in Table 3. Note
that time T denotes the input time for trigger modeling and the maximum ETEs
from Table 2 were used. The time t = t2 - t0 computed from fire simulation
aligns with the input time T. The locations of the in-transit vehicles were extracted
at time t from the results of traffic simulation, and the person-threat distances
were also computed. Table 4 lists the statistics of the person-threat distances for
one run of traffic simulation. For each scenario, the minimum person-threat dis-
tance increases when trigger buffers generated with larger input times are used
(i.e., the risk to evacuating residents is reduced). When the maximum evacuation

Table 2
Cumulative Probabilities for Four ETEs (Unit: Minute)

Scenario T25 T50 T75 T95

1

Min 45 (1%) 78 (4%) 113 (2%) 141 (2%)

Mean 49 (64%) 82 (56%) 119 (56%) 149 (58%)

Max 53 (100%) 88 (100%) 128 (100%) 160 (100%)

SD 1.5 2.4 3.4 4.2

2

Min 69 (4%) 139 (2%) 210 (1%) 268 (1%)

Mean 72 (74%) 144 (55%) 219(63%) 278 (57%)

Max 75 (100%) 151 (100%) 229 (100%) 292 (100%)

SD 1.3 2.7 4.0 4.2
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times for T95 are used for trigger modeling, 95% of the evacuees have arrived at
the safe area by the time the fire reaches the boundary of the community (i.e., the
risk to the trailing evacuating residents is reduced).

In order to better reveal the dynamics of evacuation traffic and fire spread, the
locations of the evacuees when the fire reaches the community were extracted and

Figure 9. Generated probability-based trigger buffers for scenario
1. We computed the four ETEs for each simulation and mapped out the
trigger buffers for the minimum, mean, and maximum ETE. The
maximum ETE denotes the worst case in n simulations for a specific
scenario, and the probability that its corresponding trigger buffer can
ensure the successful completion of the evacuation is 100%.

Setting Wildfire Evacuation



mapped in Fig. 12. We aggregated the vehicles at the link level and visualized the
vehicle counts of the links. The maps indicate that for each scenario more
in-transit evacuees are closer to the fire front when small trigger buffers are used.
For example, when the trigger buffers generated using T25 were used, many in-
transit evacuees are located close to the fire front and could be potentially trapped
by the fire; when larger buffers generated using T75 were used, fewer in-transit
evacuees will be exposed to the wildfire risk. Another finding is that evacuation
route system geometry will influence the evacuees’ exposure to fire risk. For exam-
ple, many vehicles will be put into a queue at these converging links and these
links will become congested, resulting in the evacuees’ being exposed to the fire
risk. If the congested link is located close to the fire front, the fire could trap the
evacuees in-transit and cause deaths. Moreover, a comparison of the two scenar-
ios reveals that more evacuees will be exposed to fire risk with the increase of
evacuation travel demand.

6. Discussion

The proposed method takes into account both evacuation traffic and fire spread
and provides a spatial perspective on evacuation timing. The ICs could develop a
better understanding of evacuation timing through this method. Previous studies

Figure 10. Trigger buffers generated using 100% evacuation times.
We used the maximum ETEs in four set of ETEs to generate the trigger
buffers for each scenario. Thus, the probability that these buffers can
ensure the successful completion of the evacuation for each case is
100%.
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Figure 11. Fire perimeters from wildfire simulation [51]. We
derived fire perimeters from wildfire simulation and overlaid the
perimeters with other datasets. Note that the perimeters are skewed
along the wind direction while the trigger buffer is skewed against
the wind direction.

Table 3
Derived Fire Travel Times from Fire Simulation (Unit: Minute)

Scenario T25 T50 T75 T95

1

T 53 88 128 160

t0 299 264 224 193

t2 351 351 351 351

t 52 87 127 158

2

T 75 151 229 292

t0 277 200 122 60

t2 351 351 351 351

t 74 151 229 291

Setting Wildfire Evacuation



have examined the impacts of the structure of the road network on wildfire evacu-
ation risk [61, 62]. The results in this study demonstrate that we could better
reveal the dynamics of evacuation traffic and fire spread in wildfire evacuations
when we couple the two models to set triggers. The interdisciplinary nature of this
work also allows us to pursue answers to more questions concerning the complex
dynamics of evacuation warning, evacuation traffic, and fire spread during wildfire
evacuations. Future research can focus on the following four aspects.

First, some assumptions were made for traffic simulation, which cannot con-
sider all possible spatiotemporal patterns of evacuation traffic during the evacua-
tion. Note that complete compliance and a normal distribution of distribution of
departure times are used for computation convenience. Evacuation departure
times often depend on warning receipt and household preparation [15]. Thus,
future work could take into account more findings (e.g., evacuation shadow) from
empirical studies to better estimate evacuation time [63]. Specifically, more factors
could be included to better model evacuation travel demand. For example, popu-
lation distribution differs significantly during the day time and at night [64]. We
made the assumption that all the evacuees are at home in the case study, which
could be a typical evacuation scenario in the night time. People may involve in
many other activities in the day time, e.g., driving to work, picking up children
from school, and going to the grocery store. Thus, we also need to consider these
activities to improve ETEs for day-time evacuations. Recent years have witnessed
the popularity of activity-based analysis and modeling in transportation studies
[43], and activity-based models can take into account these activities during evacu-
ation. Note that MATSim supports activity-based traffic simulation [65], which
could be used to model wildfire evacuation during the day time. Moreover, further
studies should also be conducted to better model departure times. Many empirical
studies use curves to model departure times [26, 66]. Thus, different departure
curves could be used for estimating evacuation time in future work. And further
research should also be conducted to examine the impacts of using different

Table 4
Person-Threat Distances for Different Scenarios in One Run (Unit:
Meter)

Scenario T25 T50 T75 T95

1

Min 128 2107 2811 9693

Mean 168 3232 4565 9693

Max 290 9458 9458 9693

SD 38 1555 1999 0

2

Min 128 1779 2575 6827

Mean 286 2838 3233 8045

Max 631 9458 9458 9458

SD 111 1090 1464 737
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Figure 12. The evacuation traffic for scenario 1 and 2. The
evacuation traffic when the fire reaches the community was mapped
out separately for each scenario and overlaid with the fire perimeters
and road network data. More vehicles will be located closer to the
fire front for a larger evacuation traffic demand. And a larger buffer
can provide more time for evacuation but might cause early
evacuation and disruptions.
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departure curves on evacuation timing and warning. Lastly, we used a shortest
path assumption in the route choice modeling, and other agent route-choice
behavior could be included in future work to evaluate the impacts of different
assumptions (e.g., user equilibrium) on evacuation timing.

Second, it is assumed that all the residents in the study area receive warnings at
the same time during the evacuation. However, staged evacuation is very popular
in real-world wildfire evacuations because the fire could be suppressed by the fire-
fighters and the wind might also change its direction. Note that risk area delin-
eation is a key step towards performing staged evacuations. Risk area accuracy is
an important issue in hurricane evacuations, and previous studies have examined
the factors that influence people’s perception of risk areas [67, 68]. Compared with
hurricane risk areas, it is more difficult to define risk areas in wildfire evacuations
because wildfire can come from any direction. Protective action warnings in wild-
fire evacuations are sent out dynamically with the spread of the fire [69]. The
dynamic nature of risk area delineation in wildfire evacuations makes it a chal-
lenge to perform staged evacuation traffic simulations. Future work could explore
the impacts of staged evacuation strategies on evacuation time estimation in trig-
ger modeling.

Third, more research could be conducted to further examine how to associate
trigger buffers with different protective action selections. Evacuation could maxi-
mize public safety and is the primary protective action during wildfire evacuations
in the U.S. However, when the fire is too close to residences or evacuation route
systems, an evacuation order could make the residents trapped in-transit. In this
case, a shelter-in-place order should be issued instead. Thus, protective action
selection relies on evacuation timing—whether the threatened residents will have
enough time for their safe evacuation. In this regard, trigger modeling could be
employed to create trigger buffers associated with different protective action rec-
ommendations. Note that evacuation traffic simulation can be used to estimate the
probable worst-case and best-case evacuation time of a community given the
assumptions used in the study (i.e., these extremes are subjective). The trigger buf-
fer generated with the probable best-case evacuation time could be associated with
a shelter-in-home order because it is difficult for the community to accomplish a
safe evacuation within such a short time. On the contrary, the probable worst-case
evacuation time could be used to create a trigger buffer for evacuation recommen-
dation. Cova et al. [70] introduced an optimization-based model for protective
action selection in wildfire evacuation. With more scenarios taken into account
during evacuation traffic simulation, the proposed simulation-based method in this
work could also be potentially tailored for protective action selection modeling.
Moreover, when emergency managers make evacuation decisions, a false positive
decision error can ensure public safety but will incur evacuation costs, reduce
credibility, and decrease future warning compliance, while a false negative error
(i.e., not evacuating residents when the threat impacts them) could cause loss of
life and property [71]. These should also be taken into account in protective
action selection modeling.

Lastly, wildfire smoke could significantly reduce visibility and cause accidents
during an evacuation, which may slow down the whole evacuation process and
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make the evacuees trapped by the fire. We could take into account the impacts of
smoke in wildfire evacuation modeling in future work. Researchers in public
health have conducted a large body of research to examine people’s exposure to
wildfire smoke and its impacts on their health [72], and future work could also
focus on evacuation planning and modeling in the context of exposure to wildfire
smoke for vulnerable populations.

7. Conclusion

A spatiotemporal GIS framework to couple fire and traffic simulation models to
set triggers during wildfire evacuation is presented. The key contributions of this
work are as follows. First, the spatiotemporal scale and resolution of evacuation
traffic and fire spread are considered under the spatiotemporal GIS framework.
This could facilitate more complex spatiotemporal computation to further exam-
ine the dynamics of evacuation traffic and fire spread in future work. Second, the
proposed method also takes into account the uncertainty in evacuation time esti-
mation and represents the uncertainty using the probability-based trigger buffers,
which can reflect the uncertainty induced by departure time and travel demand
distribution. When the ICs use the proposed method to set triggers, the trigger
buffers that include evacuation time information could help them make better
decisions. Third, the proposed method geovisualizes the evacuation traffic when
the fire reaches the community, which gives a spatial perspective on evacuation
timing. The ICs could use this method to more directly examine the dynamics of
evacuation traffic and fire spread, which could improve their situational awareness
and facilitate their evacuation decision-making. The case study demonstrates the
potential value of the trigger buffers generated using the proposed method, and
the findings could potentially be used by the ICs to facilitate evacuation planning
and evacuation decision-making in wildfires. Lastly, the proposed method could
be also used to identify the population that is vulnerable to wildfire risk during
evacuation and help emergency mangers and city planners adjust evacuation route
systems or residential planning codes for hazard mitigation and emergency pre-
paredness.

In summary, the proposed spatiotemporal GIS framework enriches the previous
trigger modeling method by incorporating traffic simulation into trigger modeling.
With the ETEs from evacuation traffic simulation as the input, the ICs could
develop a better understanding of evacuation timing when using trigger modeling
to set triggers in wildfire evacuation practices. Moreover, this work used open
data in traffic simulation and trigger modeling, which lays a foundation for open
wildfire evacuation modeling in future work.
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