
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ulrm20

Lake and Reservoir Management

ISSN: 1040-2381 (Print) 2151-5530 (Online) Journal homepage: https://www.tandfonline.com/loi/ulrm20

Evaluating historical trends and influences of
meteorological and seasonal climate conditions on
lake chlorophyll a using remote sensing

Carly H. Hansen, Steven J. Burian, Philip E. Dennison & Gustavious P.
Williams

To cite this article: Carly H. Hansen, Steven J. Burian, Philip E. Dennison & Gustavious P.
Williams (2019): Evaluating historical trends and influences of meteorological and seasonal climate
conditions on lake chlorophyll a using remote sensing, Lake and Reservoir Management, DOI:
10.1080/10402381.2019.1632397

To link to this article:  https://doi.org/10.1080/10402381.2019.1632397

View supplementary material 

Published online: 25 Jul 2019.

Submit your article to this journal 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ulrm20
https://www.tandfonline.com/loi/ulrm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10402381.2019.1632397
https://doi.org/10.1080/10402381.2019.1632397
https://www.tandfonline.com/doi/suppl/10.1080/10402381.2019.1632397
https://www.tandfonline.com/doi/suppl/10.1080/10402381.2019.1632397
https://www.tandfonline.com/action/authorSubmission?journalCode=ulrm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ulrm20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/10402381.2019.1632397&domain=pdf&date_stamp=2019-07-25
http://crossmark.crossref.org/dialog/?doi=10.1080/10402381.2019.1632397&domain=pdf&date_stamp=2019-07-25


Evaluating historical trends and influences of meteorological and seasonal
climate conditions on lake chlorophyll a using remote sensing

Carly H. Hansena, Steven J. Buriana, Philip E. Dennisonb and Gustavious P. Williamsc

aDepartment of Civil and Environmental Engineering, University of Utah, 110 S. Central Campus Drive, Suite 2000, Salt Lake City, UT,
84112; bDepartment of Geography, University of Utah, Salt Lake City, UT, 84112; cDepartment of Civil and Environmental Engineering,
Brigham Young University, Provo, UT, 84602

ABSTRACT
Hansen CH, Burian SJ, Dennison PE, Williams GP. 2019. Evaluating historical trends and influences
of meteoorological and seasonal climate conditions on lake chlorophyll a using remote sensing.
Lake Reserv Manage. XX:XX–XX.

Evaluations of long-term water quality trends and patterns in lakes and reservoirs are often inhib-
ited by irregular historical records. This study uses historical Landsat satellite imagery to construct
a more complete historical record of algal biomass (measured via chlorophyll a [Chl-a]) and
presents a framework for developing seasonal algal estimation models using open source tools
for processing and model development. This approach is both physically based (using observed
patterns of variability and algal succession in the lake) and data driven (relying on statistical meth-
ods for model development). We use a generalized linear regression modeling technique to
develop lake-specific, seasonal models for each lake in the multilake Great Salt Lake system in
Utah. The 32-yr constructed history of estimated Chl-a enables analysis of long-term trends within
the lake system as well as evaluations of local climate influences on Chl-a concentrations. The
estimated historical record exhibits a shift in seasonality (i.e., maximum Chl-a occurs earlier in the
growing season), as well as increasing trends of extreme Chl-a concentrations. We also evaluated
relationships between meteorological conditions and Chl-a using the enhanced historical record
and found localized sensitivity to short-term weather events such as high wind, high tempera-
tures, or precipitation events. Seasonal climate conditions including high winter precipitation,
summer temperatures, and early spring snow water equivalent are consistent with higher Chl-a
extremes in the historical record. Improved understanding of the trends and climate influences
provides useful context and guidance for future monitoring efforts and management strategies.
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Problems associated with excessive amounts of
phytoplankton (hereafter algae) are widely recog-
nized in lakes and reservoirs throughout the
world, in both recreational and drinking water
systems (Falconer 1999, Heisler et al. 2008).
Harmful algal blooms or HABs are often defined
as an excess of phytoplankton (hereafter algae)
that cause harm by disturbing food web dynam-
ics and producing toxins (Hunter 1998,
Anderson et al. 2002, Backer et al. 2010). Blooms
can harm lake ecology by depleting dissolved
oxygen for grazing zooplankton and other aquatic
organisms as they decompose and by limiting
light penetration for benthic plants, which
reduces biomass and productivity (Paerl 1988,
Paerl et al. 2001, Smith 2003, Paerl and Otten

2013). When growth of competing algae popula-
tions and zooplankton is limited, this can pro-
mote out-of-control growth of the bloom-
forming species. When the algae decompose, this
reduces dissolved oxygen, which also impairs lake
aesthetics and recreation as anoxic conditions
encourage the growth of sulfate-reducing bacteria
(which produce hydrogen sulfide gas and cause
an unpleasant rotten-egg odor) (Acu~na et al.
2017, Chen et al. 2017).

Aesthetic problems and “lake stink” caused by
the decomposition of large algal blooms have
been a recurring complaint of visitors to the
Great Salt Lake and nearby lakes in Utah for dec-
ades. These problems have garnered significant
concern from the public following several years
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of large algal blooms, with extremely high cyano-
bacteria cell counts (>10,000,000 cells/mL) in
Utah Lake, and detected cyanotoxins (including
nodularin and microcystin) in Utah Lake and
Farmington Bay (Utah Department of
Environmental Quality [UDEQ] 2018). Due to
irregular historical records, there is little context
for how the magnitude of these events compares
to those in the past. However, anecdotal history
of poor conditions, recent extreme HAB events,
and increased public concern have sharpened the
focus on water quality and management issues in
these lakes and motivated additional monitoring
efforts. In light of the local concern for HABs,
several continuous buoys have been installed in
Utah Lake, and there have been increased efforts
to provide resources about algal blooms, update
the public on current conditions, and participate
in ongoing monitoring efforts such as the multi-
agency Cyanobacteria Assessment Network
(CyAN). These increased efforts to better under-
stand HABs are echoed by the US Environmental
Protection Agency (USEPA), which encourages
increased monitoring and study of HABs using
both field sampling methods and techniques such
as remote sensing (US Environmental Protection
Agency [USEPA] 2017). Additional information
is still needed about past conditions to provide
science-based evidence that supports monitoring,
policy, and management decisions. This historical
information is necessary for providing context for
current conditions and understanding of how
water quality conditions have changed over a
long period of time.

The objective of this study is to use existing
field records, readily available remote sensing
imagery, and open-source tools to (1) extend the
temporal field record of water quality data; (2)
use the remotely sensed record to describe long-
term, seasonal, and lake-wide patterns of algal
biomass; and (3) explore influences of local
meteorological events and climate conditions on
algae biomass. We accomplished these objectives
by calibrating, applying, and evaluating lake-spe-
cific models for the distinct bays in the Great Salt
Lake and Utah Lake over a 32-yr historical
remote sensing record. This study combines
knowledge of observed physical processes and
patterns in the Great Salt Lake system and data-

driven techniques to develop models that comple-
ment and inform water quality monitoring efforts
that are currently in place for this lake system.

Study site

The Great Salt Lake is a remnant of the ancient
freshwater Lake Bonneville, which once stretched
across Idaho, Utah, and Nevada. As Lake
Bonneville drained over the last 14,000 yr, it left
the current lake system, which includes the Great
Salt Lake, the Jordan River, and Utah Lake to the
south (Arnow and Stephens 1990, Figure 1).
These lakes have changed a great deal since early
settlers came to the Salt Lake Valley; many of
these changes have been engineered, including
construction of pumping systems, drains, diver-
sions, and railroad and automobile causeways.
For example, 1 causeway divides the northern
bays (Gunnison, Willard, and Bear River) from
the larger, southern portion of the Great Salt
Lake, creating vastly different conditions in these
2 areas. Another causeway further isolates
Farmington Bay from the rest of the southern
portion. Because these causeways restrict flow
and mixing between different sections, the differ-
ent bays are often considered as distinct lakes. In
this study, we focus on the southern portion of
the Great Salt Lake and refer to this portion of
the lake as GSL. The combination of the GSL,
Farmington Bay, and Utah Lake is hereafter
referred to as the GSL system.

The GSL is a unique body of water, with an
average depth of approximately 4.2 meters. It is
characterized as a hyper-saline lake, with salinity
ranging from 11 to 15% in the southern half (US
Geologic Survey [USGS] Utah Water Science
Center 2013). Farmington Bay is approximately 1
m deep, with 1–8% salinity. Because these lakes
are so shallow, surface area varies considerably
with lake level. Following several exceptionally
wet years in the early 1980s, the GSL and
Farmington Bay had approximate surface areas of
2500 and 450 square kilometers, respectively.
However, current surface areas of the GSL and
Farmington Bay are approximately 1600 and 75
square kilometers, respectively. The GSL is the
terminal point for several major rivers (Jordan,
Weber, and Ogden rivers), and contains
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significant land and water-access areas for recre-
ation and bird habitat. Farmington Bay supports
a diverse ecosystem for millions of migratory
birds that feed on the abundant insects and brine
shrimp (Cox and Kadlec 1995) and features
many popular recreation and camping spots. The
GSL plays an important role in both the brine
shrimp industry and recreation, with one of the
few marinas and boat launches on the lake.
Heavy use of the GSL through bird-watching,
hunting, and other recreation draws hundreds of
thousands of visitors each year, providing add-
itional motivation for improving lake health and
aesthetics. Additionally, the GSL provides a sig-
nificant net economic value (between $10.3 mil-
lion and $58.9 million annually) to publicly
owned treatment works by serving as a receiving
waterbody for wastewater discharge
(Bioeconomics, Inc. 2012). The total contribution
of all services and uses of the GSL (industrial,
aquaculture, and recreational) to the Utah gross

domestic product is estimated at $1.3 bil-
lion annually.

Utah Lake is also very shallow, with an average
depth of approximately 2.74 m and a current
approximate surface area of 340 square kilo-
meters. In the mid-1980s, it was closer to 400
square kilometers. It has higher salinity than
most freshwater lakes (around 0.1%), which fluc-
tuates depending on inflows and evaporation
(UDEQ 2006). Utah Lake has a number of camp-
grounds, public access points, and marinas sup-
porting recreational activities. Like Farmington
Bay, it also supports a large migratory bird popu-
lation, and is heavily monitored because it is a
habitat for the endangered June sucker
(Chasmistes liorus) species.

Historically, diatoms have dominated Utah
Lake, though many species of chlorophyta (green
algae) and cyanobacteria (blue-green algae) have
also been frequently observed (Rushforth and
Squires 1985). Recent (since 2014) blooms in the

Figure 1. Great Salt Lake System, with Utah Lake draining into the Great Salt Lake via the Jordan River. The southern arm of the
lake is further divided by a causeway separating Farmington Bay from the rest of the Great Salt Lake. Sampling locations are
shown each of the contributing monitoring organizations.
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mid to late summer in Utah Lake have largely
been dominated by Microcystis, Aphanizomenon,
and Dolichospermum (UDEQ 2018). In
Farmington Bay, large blooms of cyanobacteria
(especially Nodularia) have been observed,
whereas the most prevalent algae in the GSL are
diatoms and green algae (Wurtsbaugh 2008,
Wurtsbaugh et al. 2012).

Previous studies of algal blooms in the Great Salt
Lake system

As is the case with many large lakes, monitoring
water quality at high spatial and temporal resolu-
tions is not feasible in the GSL system.
Traditional sampling techniques are costly and
cannot reasonably cover the entire spatial extent
of these large lakes. There also are limitations to
data sharing (e.g., lags between when data are
collected and when they are formatted and pub-
lished) and differences in sampling methods
among the various monitoring organizations.
These organizations include the Utah
Department of Environmental Quality Division
of Water Quality (UDWQ), the US Geological
Survey (USGS), and the Jordan River/Farmington
Bay Water Quality Council (JRFBWQC).
Historically, these organizations have used
chlorophyll a (Chl-a) concentrations to estimate
algae biomass at set locations throughout the lake
system (Figure 1).

In the past, remote sensing of HABs in the
GSL system was limited to single events. One
study used Earth Resources Technology Satellite
(ERTS-1) and aerial imagery from a single date
to describe the distribution of an algal bloom in
Utah Lake (Strong 1974); however, there were no
estimates of algal biomass. More recently, a study
of the 2016 Utah Lake bloom used Sentinel-2A
and Landsat 8 to estimate the Floating Algae
Index and the Normalized Difference Chlorophyll
Index (Page et al. 2018). The Page et al. study
did not attempt to calibrate site-specific models
or account for unique physical or optical charac-
teristics of Utah Lake, but relied on models from
the literature.

Previous studies of algal bloom drivers in the
GSL system have largely focused on field-meas-
ured or laboratory-controlled Chl-a and in-lake

characteristics and constituents (e.g., water tem-
perature, nutrient and salinity concentrations)
(Wurtsbaugh 2008, Goel and Myers 2009, Larson
and Belovsky 2013, Marden et al. 2015). Study of
any external factors (e.g., hydrology or meteor-
ology) has been limited to Utah Lake and a single
bloom event (Page et al. 2018). Our study
extends previous work by using nontraditional
methods (i.e., remote sensing) to estimate Chl-a
and by exploring trends and effects of external
factors using a long record of Chl-a conditions.

Methods

A review of analytical/semi-analytical (based on
bio-optical models) and empirical (based on
observed relationships between limnological and
remotely sensed data) approaches to remote sens-
ing of water quality (Matthews 2011) shows that
both approaches have been demonstrated for a
wide range of inland lake and reservoir systems.
While the physical processes modeled by analytical
approaches are important for certain contexts (i.e.,
understanding scattering/absorption characteristics
of water constituents (International Ocean-Colour
Coordinating Group [IOCCG] 2006), this study
uses an empirical approach, due to its relative sim-
plicity and ability to exploit available historical
data. Information about other constituents affect-
ing inherent optical properties in the study area is
limited, hindering the development of analytical
models. For example, an analytical model of Utah
Lake would require historical information about
calcite precipitation (which affects water color);
however, coincident historical data are not readily
available. Empirical modeling approaches inher-
ently account for conditions that affect spectral
features without requiring detailed information on
the physical parameters. We used an empirical
modeling approach to estimate Chl-a, and statis-
tical analyses to evaluate trends and relationships
of Chl-a to local climate conditions throughout
the GSL system.

Data

Field measurements

We obtained historical field-measured surface
Chl-a concentrations from the UDWQ using the
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Ambient Water Quality Monitoring System
(AWQMS) database (from 1995 to 2012), from
the USGS using the National Water Information
System (NWIS) (from 1995 to 2015), and
JRFBWQC (from 1997 to 2015) (Table 1). Data
were limited to measurements during the main
growing season (May–Sep). The number of
observations for Utah Lake, GSL, and
Farmington Bay during these time periods were
325, 1148, and 95, respectively. The map of sam-
pling locations (Fig. 1) and limited number of
historical samples for these 3 organizations high-
light the temporal and spatial limitation of the
existing records.

Chl-a concentrations are the most common
index of algal biomass used by local monitoring
organizations. For the GSL and Farmington Bay,
the data used in calibration were corrected for
the accessory pigment pheophytin; however, the
available record for Utah Lake mostly contained
measurements that were not corrected for pheo-
phytin. In the few available records containing
both uncorrected and corrected Chl-a, measure-
ments, the corrected Chl-a concentrations were
generally around 30% lower than the uncorrected
concentrations. To maintain consistency, we used
only the uncorrected Chl-a concentrations for
calibrating the Utah Lake models. Measurements
for all of the lakes were taken near the surface, at
depths <1 m (generally <0.25 m). For dates
where samples at multiple depths were collected,
we used the measurement nearest the surface.

Satellite imagery and Google Earth Engine

The satellite imagery used for this study was
acquired by the NASA Landsat-5 Thematic
Mapper (TM), launched in 1984, and Landsat-7
Enhanced Thematic Mapper Plus (ETMþ),
launched in 1999 (Table 1). These instruments

collect 30 m resolution imagery covering the
major global land surfaces (including all of North
America) at a revisit rate of 16 d. This means the
satellite repeats coverage for each scene within
the Landsat Worldwide Reference System (WRS),
a grid reference system of 233 paths and 248
rows, once every 16 d. The GSL system is con-
tained within Path 38, Row 32 and Path 38, Row
31 of the WRS. There are slight variations in
Bands 4 and 7 between the 2 missions that are
assumed to be negligible. This allows for develop-
ment of models that produce estimates with
either Landsat-5 or Landsat-7 images. We chose
not to include Landsat 8 in the analysis due to
the lack of available calibration data during its
operational period.

We obtained imagery data through Google
Earth Engine (Gorelick et al. 2017) to reduce the
burden of data management, storage, and proc-
essing. Earth Engine has been used in a wide var-
iety of land cover/waterbody classification
(Alonso et al. 2016) and flood and surface water
mapping (Pekel et al. 2016, Tellman et al. 2016)
studies, and less extensively for accessing and
processing data for algal bloom monitoring (Ho
et al. 2017). We created functions using the Earth
Engine Python Application Programming
Interface to query the online server and return
the surface reflectance values for the GSL system
as a dataframe that could be used within R statis-
tical software (R Core Team 2018) for model
development and application. The Landsat sur-
face reflectance products available through Earth
Engine are generated by the USGS (USGS 2018)
using the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) (Masek
et al. 2006), which converts the top of atmos-
phere reflectance to surface reflectance. The long,
continuous record and ready availability of these

Table 1. Summary data used for model development, application, and analysis.
Data source Data type Period of record Resolution or units

UDWQ Surface chlorophyll a 1992–2009 mg/L
USGS Surface chlorophyll a 1995–2015 mg/L
Jordan River/Farmington Bay Water Quality Council Surface chlorophyll a 2013 mg/L
Landsat-5 TM Surface reflectance 1984–2007 30 m pixels, 16-d satellite overpass
Landsat-7 ETMþ Surface reflectance 1999–2016 30 m pixels, 16-d satellite overpass
National Climate Data Center Daily precipitation,

daily average wind speed,
daily total wind movement,
daily maximum air temperature

1984–2016 mm/d,
m/s,
km/d,
degrees Celsius

Natural Resources Conservation Service Snow water equivalent (SWE) 1984–2016 inches/d
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data products allow for a convenient exploration
of the historical record. However, we note that
the use of LEDAPS introduces potential errors
into the modeling process. The LEDAPS method
removes atmospheric contributions to the at-sen-
sor radiance when calculating the remote sensing
surface reflectance (Rrs); however, the LEDAPS
approach can sometimes overcorrect for atmos-
pheric interference, resulting in negative reflect-
ance values over water in the short-wave infrared
range (where water surface reflectance is typically
very low). This is generally most problematic in
deep, clear waterbodies that appear very dark and
have low signal-to-noise ratio; however, the lakes
in the GSL system are generally turbid and shal-
low. We removed negative reflectance values and
excluded them from model calibration and appli-
cation. The Landsat surface reflectance product
includes a cloud mask and cloud mask confi-
dence band, which allows filtering of pixels that
are obstructed by cloud cover or haze. We used
the cloud mask information to ensure that only
cloud-free pixels were included in the model
development and application. We also masked
pixels from Landsat 7 data that were affected by
scan line corrector error (present in images after
May 31, 2003), allowing the rest of the image
with valid data to be used in the calibration and
application workflow.

For each field sample, we obtained surface
reflectance values (from the pixel corresponding
with the field sampling location) for every image
within ±10 d of the sample date. If pixels from
multiple images were returned for a single field
sample, we used the reflectance values from the
image nearest the sampling date (unless there
was cloud cover).

Climate data

We obtained historical daily meteorological
records matching the record of remotely sensed
imagery (1984–2016) from the National Oceanic
and Atmospheric Administration (NOAA)
National Climate Data Center archives for sta-
tions near the Great Salt Lake and Farmington
Bay (USW00024127, located at 40�4602100N,
�111�57019.0100W) and Utah Lake (USC00428973,
located at 40�2200.0100N, �111�540000W). These

stations provide the most complete record for pre-
cipitation (mm/d), wind speed (m/s) or total daily
wind movement (km), and maximum/minimum
daily temperature (degrees Celsius) near the study
area. Additionally, estimates of snow water equiva-
lent (SWE) in inches were obtained from Natural
Resources Conservation Service Snow Telemetry
(SNOTEL) sites: Site 820, located at 40�260N,
�111�370W, and Site 684, located at 40�460N,
�111�380W. Site 820 is assumed to be representa-
tive of snowpack for watersheds contributing to
Utah Lake, while site 684 is representative of
snowpack for the GSL and Farmington
Bay watersheds.

Model parameterization

Our model development approach is data driven
(using statistical techniques to determine model
parameterization) while being rooted in observa-
tions of physical characteristics and processes
(creating unique models for the distinct lakes and
seasons and using appropriate near-coincident
data). Parameterization of empirical Chl-a models
(the selection of bands, band ratios, and band
combinations) can be difficult because of the
range of models used in the literature for differ-
ent types of waters, physical characteristics, pres-
ence of other constituents, and levels of turbidity
(Gurlin et al. 2011, Matthews 2011, Lesht et al.
2013, Ali et al. 2014, Hansen and Williams 2018).
Optimal band selection for the unique water
chemistry and characteristics of the GSL system
is further complicated by seasonal algae succes-
sion. Succession results in reflective properties
that are specific to the dominant populations of
algae at different times of the growing season
(Casterlin and Reynolds 1977, Stadelmann et al.
2001, Hansen et al. 2015). A pattern of algae suc-
cession is documented for Utah Lake, with high
species diversity in early summer months and a
reduction in species diversity and domination of
blue-green algae in later months (Whiting et al.
1978, Rushforth et al. 1981, Rushforth and
Squires 1985).

To reflect the unique physical characteristics of
the system and exploit variations in algae popula-
tions, we considered all TM/ETMþ bands, band
ratios, and the Normalized Difference Vegetation
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Index as potential predictor variables in a series
of lake- and season-specific stepwise regressions.
We did not limit to bands used in the literature,
which have been shown to perform poorly for
these lakes (Hansen and Williams 2018). We
used a generalized linear model (GLM) structure
with log-link functions to account for the non-
normal distribution of Chl-a data (Nelder and
Wedderburn 1972) and a mixed stepwise regres-
sion based on minimizing the Akaike information
criterion (AIC) to provide an initial suite of pre-
dictor variables. The AIC is particularly useful for
evaluating models with different numbers of
parameters, as it penalizes models with more
parameters (similar to an adjusted R2 value). We
further refined the initial parameters from the
stepwise regression to include only highly signifi-
cant parameters (p< 0.05). This approach
resulted in 2 models for each lake: 1 for spring
(May–Jun) and 1 for summer (Jul–Sep), resulting
in 6 final models.

For calibration, we used near-coincident sam-
ple data because historical water quality data
were collected without respect to the satellite
overpass schedule, resulting in relatively few
exact matches. While water clarity studies have
used a wide range of time windows to match
sampled and remotely sensed data (ranging
from ±3 h [Bailey and Werdell 2006], to 1 d
[Lesht et al. 2013], 7 d [Kloiber et al. 2002,
McCullough et al. 2013], and ±10 d [Olmanson
et al. 2008]), a shorter time window may be
more appropriate for estimating Chl-a due to
the episodic nature of algal bloom events.
Previous Chl-a studies in nearby Utah lakes
noted an improvement in model performance
with shorter time windows between 0 and 1 d
(Hansen et al. 2015). To determine an appropri-
ate time window for the final models in this
system, we used observations of temporal vari-
ability in the lake system (Hansen et al. 2017),
which indicated high variability and low auto-
correlation for Utah Lake after 2 d, and less
variability and higher autocorrelation in
Farmington Bay and GSL. This suggests time
windows of less than 2 d would be appropriate
for Utah Lake and more relaxed time windows
could be considered for the others. We further
justified the time window by comparing model

performance (R2 between modeled and observed
values) for each time window from ±0 to 10 d
(Fig. S1). R2 generally decreased as the time
window was relaxed, with the exception of the
GSL-Summer model, which had a better model
fit with a time window of ±2 d compared to 0
or 1 d (due to a significant increase in the num-
ber of observations and broader range of Chl-
a). No models were developed for Farmington
Bay using time windows less than 2 d due to
insufficient data. The final time windows, based
on the observational data and the exploration of
different time windows, were defined as ±1 d for
Utah Lake, ±2 d for GSL, and ±4 d for
Farmington Bay.

Final model coefficients and parameters are
provided (Table 2). Model goodness of fit was
measured via percent bias (PBIAS), which is cal-
culated as follows:

PBIAS ¼ 100�
P

Modi � Obsið Þ
P

Obsi
(1)

where Modi and Obsi are corresponding values
for each ith observation of Chl-a from the mod-
eled and calibration datasets. PBIAS for the final
models ranges from �15.9 to 17% (Table 2).
Positive values indicate overestimation bias,
whereas negative values indicate model underesti-
mation bias. Other measures of goodness of fit
include R2 between the modeled and observed
Chl-a (ranging from 0.79 to 0.99; Table 2 and
Fig. 2) and mean absolute error (MAE) between
modeled and observed values. The magnitude of
the MAE is generally low (1–13.4 mg/L). This cor-
responds to 9–48% of the mean observed Chl-a
or 2–8% of the maximum observed Chl-a. The
exception to this is the Spring Farmington Bay
model, which has a MAE of 38.5mg/L, where
there were relatively few data available for cali-
bration and the magnitudes and range of concen-
trations were much greater than for other lakes
and seasons (normalized to mean and maximum
observed Chl-a, the MAE is 19 and 8%, respect-
ively). While the normalized MAE with respect
to mean is relatively high, model residuals have
no apparent patterns or trends and approximate
a normal distribution, indicating that the models
do not consistently produce larger errors for any
particular range of Chl-a concentrations.

LAKE AND RESERVOIR MANAGEMENT 7



Model application

We applied the calibrated models to water-
masked, cloud-free surface reflectance data from
1984 to 2016. We then computed a modified nor-
malized difference water index (MNDWI), which
was developed specifically for distinguishing water-
bodies in Landsat imagery (Xu 2006), and applied

the results to each scene to mask nonwater pixels.
This is to account for variation in lake surface
area over time and ensure only water pixels were
included in lake-wide summaries. The MNDWI
equation uses the mid-infrared band (band 5 or
B5) and the green band (band 3 or B3) in Landsat
5 and 7 imagery, as shown in Equation 2:

Table 2. Summary of model characteristics and performance. Performance is measured via R2, mean absolute error (MAE), and
percent bias (PBIAS) between modeled and observed Chl-a concentrations.

Lake Season

Number of
near coincident

matches
Time window

(±days)

Range of
Chl-a in

calibration
data (mg/L)

Modeled vs.
observed R2

MAE
(mg/L) PBIAS Model

Utah Lake May–Jun 10 1 1.2–45 0.99 0.9 �0.3% Chl-a ¼ exp(�14.23þ 9.33�Green/
Blue þ 0.003�Blue
� 0.004�SWIR1)

Jul–Sep 46 1 0.2–185.5 0.88 10.6 �15.9% Chl-a ¼ exp(7.33 - 0.004�Blue �
0.05�Green/
SWIR2þ 0.01�Red/SWIR1)

Great Salt
Lake

May–Jun 90 2 0.3–164.2 0.86 10.9 17.0% Chl-a ¼ exp(3.51þ 0.09�Green/Blue
� 0.01�Blue þ 0.009�Red)

Jul–Sep 69 2 0.045–112 0.79 5.2 �3.0% Chl-a ¼ exp(�0.36þ 6.12�Red/Blue
� 0.006�Red)

Farmington
Bay

May–Jun 14 4 4–505.9 0.87 38.5 1.4% Chl-a ¼ exp(6.53 - 1.02�Red/NIR �
0.009�SWIR2þ 0.004�SWIR1)

Jul–Sep 11 4 37.38–196 0.86 13.4 0.2% Chl-a ¼ exp(6.11� 0.002�Green)

Figure 2. Modeled versus observed Chl-a, with R2 between modeled and observed values. Differences between the solid regres-
sion line and the dashed 1:1 line show the under-/overestimation.
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MNDWI ¼ B3�B5
B3þ B5

(2)

Positive MNDWI values were considered
water, while negative MNDWI were classified as
land (Xu 2006). We assumed that any estimated
Chl-a concentrations above 500 mg/L were noise
and masked them from the final results.

Statistical analysis

Trends

We calculated long-term trends of the change in
Chl-a (mg/L per year) over the resulting historical
record using the nonparametric Theil–Sen esti-
mator, which is robust for nonnormally distrib-
uted data and outliers (Esterby 1996). The
Theil–Sen slope estimator is calculated as the
median of the slopes of the lines crossing all pos-
sible pairs of distinct points. Its use in water
quality time-series analysis has been demon-
strated in literature (Esterby 1996), particularly
when the time series is irregular or when time
series exhibit seasonality (Hirsch et al. 1982). We
used the Median-Based Linear Models, or mblm
package, in R (Komsta 2013) to calculate the
Theil–Sen estimator for each of the lakes over the
32-yr constructed record. We calculated annual
trends for a number of characteristics describing
algal bloom dynamics. These include mean,
extreme (99th percentile), variability (standard
deviation), and spatial extent (calculated as a per-
centage of pixels above 50mg/L, which corre-
sponds to highly eutrophic and hypereutrophic
conditions, according to the Carlson TSI metric
[Carlson 1977]). We also calculated long-term
trends by month to examine potential seasonality
(Hirsch et al. 1982). Finally, we calculated trends
in the timing of annual maximum Chl-a values
(day of year when the estimated maximum Chl-a
level occurred) using the Theil–Sen estimator.

Influence of short-term weather and seasonal cli-
mate conditions

Short-term meteorological conditions (including
wind, precipitation, and high air temperatures)
may affect surface Chl-a concentrations by con-
tributing to mixing or providing a favorable
environment for algae growth and buoyancy with

calm conditions and higher water temperatures
(Fig. S2). These short-term events could have
immediate effects at timescales that are relevant
to sampling or short-term monitoring. We eval-
uated relationships between these parameters and
Chl-a by determining quartiles for each meteoro-
logical variable and sorting estimates of Chl-a
into groups or subsets based on the conditions of
the previous day. We then evaluated differences
between the means of these subsets using the
Kruskal–Wallis test, a nonparametric test to
evaluate whether differences between the subsets
is significant (p< 0.05). We also used the non-
parametric Kendall’s tau method to measure the
strength of the relationship between the meteoro-
logical variable and Chl-a concentrations across
the entire range of possible meteorological condi-
tions, with a null hypothesis that there is no asso-
ciation between Chl-a and the variables.

We also evaluated whether the seasonal climate
conditions that were identified as likely triggers by
Page et al. (2018) for the 2016 bloom are sup-
ported by evidence in the remotely sensed record.
The study of the 2016 bloom suggested that the
major drivers were high winter and spring
(Dec–Mar) precipitation, high spring (Mar) runoff,
and low precipitation and warmer temperatures in
early summer months (May–Jun). Instead of mod-
eled climate and hydrology data, we used weather
observations from NOAA stations during the
same seasons defined by Page et al. (2018) and we
used SWE observations from SNOTEL sites during
March a proxy for runoff (which is largely driven
by snowpack, and March is typically when the
peak SWE occurs in these watersheds [Fig. S3]).
Trends in the seasonal climate parameters (tem-
perature, precipitation, and SWE) were evaluated
using the Theil–Sen estimator.

To evaluate whether the conditions identified
by Page et al. (2018) were consistent with algal
bloom conditions in the past, we first calculated
precipitation totals, average temperatures, and
average SWE for the seasons defined above. Page
et al. (2018) did not indicate how the 2015–2016
climate conditions compared to typical conditions;
rather, they compared values to those in other
months in the year leading up to the bloom. This
is problematic, as it mostly describes the general
seasonal climate patterns of the study area (higher
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precipitation in winter and spring, high runoff in
the spring, and low precipitation and higher tem-
peratures in early summer). Instead, we used a
relative comparison to the averages of the histor-
ical period (1984–2016), and subset the 32-yr
record of annual Chl-a measures according to
above historical average and below historical aver-
age seasonal conditions. The conditions that were
suggested as contributing to the 2016 bloom were
high precipitation in December–March, high
March SWE, and low precipitation and high tem-
peratures in May–June. Similar to the comparison
of short-term conditions, we evaluated the statis-
tical significance of differences in these subsets
using the Kruskal–Wallis test, and also used
Kendall’s tau to evaluate correlations over the
entire range of seasonal climate conditions.

Additional information about the tools and
software packages developed to accomplish the
model calibration, application, and postapplica-
tion analysis workflow (Fig. S4) is provided in
the supplementary information.

Results

The empirical models we developed produce a
remotely sensed record that supplements and
enhance the field sampling record by greatly
increasing the extent and the number of Chl-a
estimates (Fig. 3). The remotely sensed estimates
extend the field sampling records more than a
decade earlier than the field record and provide
more complete seasonal records than the field
sampling record. There were approximately 7
times more remotely sensed estimates than field
samples for Utah Lake and GSL, and 34 times
more for Farmington Bay (which had the most
severely limited field sampling record). The
increase in the number of data available for ana-
lysis reduces uncertainty in the results of statis-
tical analyses of trends and relationships. The
models also increase the spatial information
available for the lake system by providing esti-
mates of such as lake-wide averages, lake-wide
extremes, and spatial extent of blooms.

Figure 3. Historical record of Chl-a concentrations between 1984 and 2017 for the sampling locations in the Great Salt Lake
System: (A) Utah Lake, (B) Great Salt Lake, and (C) Farmington Bay. The observed data (triangles) are from field samples and the
estimated (circles) are from remotely sensed imagery.
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Trends in the constructed historical record

Over the 32-yr remotely sensed record, the lake
system shows significant increasing trends of
extreme Chl-a values (1.8–4.9mg/L per year) and
Chl-a variability (0.2–1.2mg/L per year) (Table
3). Farmington Bay and Utah Lake have slight
decreasing trends in the spatial extent of blooms,
and Utah Lake has a slight decreasing trend in
the average Chl-a. The trends from the remotely
sensed record contrast those observed in the
more limited field sampling record. Notably,
trends based on field sampling records for Utah
Lake indicate increases in average Chl-a (3.1 mg/L
per year) instead of a slight decrease, and rela-
tively large increases in extremes (13.3 mg/L per
year), and variability (3.3 mg/L per year). Field
sampling-based trends for the GSL and
Farmington Bay also differ from remotely sensed-
based trends, indicating no significant trends for
average, extremes, or variability.

Long-term trends of the timing of blooms (i.e.,
day of year when average and extreme Chl-a con-
centrations peaked) exhibit a statistically signifi-
cant (p< 0.05) shift to earlier in the growing
season. These trends range from 1.2 to 2.5 d ear-
lier per year for peaks in average concentrations
and 0.5–2.5 d earlier per year for peaks in extreme
values (Table 3). Assuming a perfectly linear pat-
tern, this means peaks in average concentrations
are now occurring between 5 and 11weeks earlier
and peaks in extremes are occurring 2–11weeks
earlier compared to the early 1980s.

Seasonally, the long-term trends in the lake
system are more nuanced (Fig. 4). The data show
trends of increasing averages and extremes in the
system in May and June, while July through
September generally exhibit decreasing trends (or
in some cases, smaller positive trends compared
to those observed in the earlier months). The ear-
lier months also exhibit trends of increasing vari-
ability and in the case of the GSL, increasing
spatial extent of blooms. The pattern of

increasing averages and extremes in earlier
months, along with shifts in the timing of peak
average and extreme concentrations, indicates
that poor conditions in the lake system are
occurring earlier in the season than they did in
the past.

The long-term shifts in seasonality of peak
Chl-a timing and early summer averages and
extremes are coincident with general long-term
trends in the local climate. During the same
period (1985–2016), there is an increase in tem-
perature during most months for both sites, and
a decrease in precipitation and SWE (particularly
for the Utah Lake weather monitoring sites) (Fig.
S4). While a combination of influences may con-
tribute to a bloom in any given year (including
those influences and scales explored in this study
as well as other influences like natural and
anthropogenic nutrient loading), it is important
to recognize that these climate parameters are
also exhibiting long-term changes and may be
contributing to the shift in seasonal patterns.

Short-term influence of meteorological conditions

Relationships between surface Chl-a and preceding
weather conditions were highly variable between
the lakes in the GSL system and among sites within
the lakes. While precipitation and wind are largely
uncorrelated to each of the lake-wide measures of
blooms for the entire system (Fig. 5), air tempera-
ture showed weak but significant (p< 0.05) correla-
tions for Utah Lake and GSL (0.2 and �0.25,
respectively). This may reflect some level of season-
ality (where algae populations change throughout
the season) and distinct algae populations that
thrive under different temperature conditions.

To further highlight the variability in short-term
effects on Chl-a, we show differences in Chl-a at
several sites throughout the system (Fig. 6). These
sites are chosen for proximity to human activity or
inflows or to show conditions throughout each of

Table 3. Summary of statistically significant (a¼ 0.05) long-term trends (change per year), calculated using the Theil–Sen estima-
tor from 1984 to 2016.

Lake
Average Chl-a

(mg/L/yr)
Extreme Chl-a

(mg/L/yr)
Standard deviation of

Chl-a (mg/L/yr)
Bloom

extent (%/yr)
Timing of peak

average Chl-a (d/yr)
Timing of peak

extreme Chl-a (d/yr)

Utah Lake �0.25 1.8 0.2 �0.2 �1.2 �0.5
Great Salt Lake — 2.8 0.55 — �1.5 �2.5
Farmington Bay — 4.9 1.2 �0.4 �2.5 �1.2
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the lakes. Precipitation appears to have the biggest
effect at sites near inflows (inside Provo Bay in
Utah Lake and at the southern end and middle of
Farmington Bay). At these sites, Chl-a is lower fol-
lowing medium to high precipitation compared to
no or low precipitation (Fig. 6a). In contrast, sites
in GSL showed little sensitivity to precipitation.
Wind had the largest effect on the site inside Provo
Bay, with high wind resulting in lower Chl-a, but
no other sites showed much sensitivity (Fig. 6b).
Temperature effects varied widely across the lakes
and sites; following high temperatures, there were
small increases in the Farmington Bay sites, large
increases in the mean and variability in the Provo
Bay site, but a pattern of decreasing mean and vari-
ability in GSL sites (Fig. 6c). The only meteoro-
logical condition that exhibited statistically
significant differences in Chl-a was temperature;
the sites in and near Provo Bay generally had
higher Chl-a at higher quantiles and sites in GSL
generally had lower Chl-a at higher quan-
tiles showing.

Influence of seasonal climate conditions

The evaluation of annual extreme Chl-a concen-
trations of Utah Lake largely supports the

findings of Page et al. (2018), who suggested that
a combination of high winter precipitation, low
summer precipitation, high summer tempera-
tures, and high runoff were responsible for the
2016 Utah Lake bloom. The estimated annual
extreme Chl-a concentrations in Utah Lake were
higher during years with these seasonal condi-
tions (Fig. 7), with the exception of low summer
precipitation, where there was very little differ-
ence between Chl-a during low or high summer
precipitation (Fig. 7b). Extreme Chl-a levels in
GSL and Farmington Bay were also generally
higher during years with high winter precipita-
tion and summer temperatures, but both lakes
showed a decrease in extremes during years when
there was high SWE (Fig. 7d). This highlights
another difference between the lakes in this sys-
tem and points to potential differences in the dis-
tinct watershed and loading processes during
years with high snowpack/runoff. The only sea-
sonal climate parameters that showed statistically
significant differences in mean Chl-a were SWE
and winter precipitation for Utah Lake, which
had weak but significant positive correlations
(r¼ 0.31 and 0.34, respectively). This further sup-
ports the idea that winter precipitation and SWE
in the early spring are contributors to algal

Figure 4. Magnitudes of trends for lake-wide (A) average (mean) Chl-a, (B) extreme (99th percentile) Chl-a, (C) variability (standard
deviation) of Chl-a, and (D) bloom extent (as a percent of lake >50mg/L). Only statistically significant trends are shown. Note
increasing trends in early summer months for average and extreme concentrations, increasing trends in variability for the whole
growing season, and increasing trends for bloom extent in the early summer months in the GSL.
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bloom conditions in Utah Lake. No other param-
eters and bloom measures in other lakes had stat-
istically significant differences in means or
correlations.

Discussion

Analysis of long-term trends indicates there has
been a shift over the past several decades in the
timing of algal blooms, with positive trends in
the earlier months for several algal bloom
dynamics and trends for peak conditions shifting
earlier in the growing season. There are also posi-
tive trends in the annual extremes and variability
over the last 3 decades. These increasing trends
are occurring in a lake system where local sum-
mer temperature also increased. The shifting in
timing and positive trends in extremes occurred
coincidentally with increases in temperature and
decreases in precipitation, which could be espe-
cially problematic in the face of future changing
climate conditions. For example, differences in
precipitation patterns and warming temperatures
could create favorable conditions for extending
the season of algal blooms. Future monitoring
and management efforts may need to adjust for

the seasonal shifts to plan for the emergence of
blooms and poor conditions.

Localized sensitivity to short-term meteoro-
logical events provides important context for
evaluating field sampling results (whether the
sampled concentrations might be temporarily
higher or lower because of a short-term meteoro-
logical condition). This could also aid in predict-
ing likely movement of algae and areas that are
susceptible to increases following storms, high
winds, or periods of above-average temperatures.
Knowledge of where blooms are likely to concen-
trate, spread, or move due to wind force/mixing
could be helpful in tracking blooms, targeting
sampling efforts, and making decisions dealing
with closure or warnings for public recreational
areas. Additionally, patterns of algal bloom move-
ment may help inform hydrodynamic modeling
efforts by providing insight into the sensitivity of
algal blooms to certain factors like wind speed
and surface mixing.

The long-term remotely sensed record sup-
ports the suggestion that high winter/spring pre-
cipitation, high temperatures, and high runoff
contribute to algal blooms in Utah Lake, as these
conditions coincided with years with more

Figure 5. Correlation between lake-wide bloom measures and meteorological parameters, as measured by Kendall’s tau for (A)
Utah Lake, (B) GSL, and (C) Farmington Bay. The only significant correlations are between bloom measures and temperature (posi-
tive for Utah Lake, and negative for GSL).
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extreme Chl-a concentrations. However, algal
bloom formation in Farmington Bay and GSL
appears to be less affected by seasonal precipita-
tion (and subsequent surface runoff) than in
Utah Lake. These differences underscore the
complexity of the lake system, the watershed
processes that contribute the lake, and the diverse
factors that influence algal bloom dynamics.

The trends for the estimated record (limited to
estimates at historical monitoring locations) dif-
fered significantly from the record of field obser-
vations. The large difference in trends between
the estimated and field sampling records can be
attributed to varying numbers of samples (result-
ing in different distributions of Chl-a) over the
length of the record. Likewise, trends in timing
of annual maxima differ from those in the field
sampling record. The remotely sensed record
indicates an earlier shift in timing for all of the
lakes, while the field sampling record indicates a
trend of later peak conditions for Utah Lake.
According to the record based only on field
observations (which are limited to the sampling

locations), the timing of the highest average Chl-
a concentrations is occurring 2.7 d later each
year, while the remotely sensed record (which is
not limited to the sampling locations) indicates
that the timing has shifted 1.2 d earlier each year.
The differences in trends for the estimated and
field-sampled records suggest that the irregular
and inconsistent nature of the field sampling
record and its limited spatial representation of
the lakes could lead to incorrect conclusions
about water quality behavior in the lake system.

Limitations

While the remotely sensed record we produced
provides many benefits, it is important to note
the limitations of this study. These include limita-
tions of the remotely sensed data: suboptimal
band configuration and surface reflectance prod-
ucts (as discussed previously), and the revisit rate
of historical Landsat imagery. While the reso-
lution of spectral bands and range of the Landsat
sensors are not as well suited for water quality

Figure 6. Differences in distributions of Chl-a concentrations for selected sites in Utah Lake, GSL, and Farmington Bay. Chl-a is
grouped according to the meteorological conditions of the previous day: (A) precipitation, (B) wind, and (C) maximum air tempera-
ture). Note the difference in sensitivity to different meteorological conditions between the lakes and between different locations in
the same lake.
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applications as some other sensors (Palmer et al.
2015), Landsat data have been widely used for
small-scale Chl-a mapping applications (Giardino
et al. 2001, Duan et al. 2007, Allan et al. 2011)
and long-term and regional studies of lake Chl-a
(Brezonik et al. 2005, Duan et al. 2009, Torbick
et al. 2013, Allan et al. 2015, Hansen et al. 2015,
Ho et al. 2017). This is largely due to the consist-
ent revisit rate, long history, and complete spatial
coverage of most large lakes at a relatively high
resolution. Landsat-based estimates provide valu-
able information about water quality conditions
throughout large bodies of water over relatively
long periods of time compared to other satellites
with more optimal band configurations. Landsat
imagery continues to be used in modeling algal
blooms in inland lakes because it provides exten-
sive records for observing long-term effects (Ho
and Michalak 2017) and it supplements limited
historical records of other sensors (Ho et al.
2017). The long historical record is especially use-
ful where historical field sampling records are as
limited as those for the lakes in the GSL system.

Additionally, the 16 d revisit rate could poten-
tially miss entire bloom events, which reduces
accuracy in estimates of the trends and timing of
peak Chl-a concentrations. However, the
remotely sensed record based on Landsat imagery
still provides a much more complete view of
long-term conditions than field records.
Additionally, the failure of the Scan Line
Correction in Landsat 7 images resulted in the
loss of some data, which can also reduce accuracy
of the trends.

Another limitation to the model development
was the relatively limited historical data available
for calibration (especially in Utah Lake and
Farmington Bay). As a consequence of the lim-
ited calibration data and limitations of Landsat
data, there were relatively large errors for the
Farmington Bay spring model. These limitations
may be resolved and the models may be
improved as sustained records of better remote
sensing products (such as newer satellites
including Landsat 8 and Sentinel-2) become
available and with increased monitoring that is

Figure 7. Distributions of annual extreme Chl-a concentrations, grouped by the condition of the seasonal climate parameters: (A)
winter precipitation, (B) summer precipitation, (C) summer temperature, and (D) SWE. For Utah Lake, differences in extreme values
generally follow the conditions suggested by Page et al. (2018); high Chl-a coincides with high winter precipitation, summer tem-
perature, and SWE.
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coordinated with imagery acquisition. Several
studies have demonstrated the use of these satel-
lites for mapping of Chl-a (Manzo et al. 2015,
Toming et al. 2016). These instruments can
build on long-term studies using older instru-
ments and provide data for recent history and
ongoing monitoring applications. Future model-
ing efforts that build on these new data may still
deal with limited available calibration data. We
recommend coordination with monitoring agen-
cies to optimize field sampling and encourage
use of these data in remote sensing applications.
Another limitation of this study is in the use
seasonal approximations of algal succession and
Chl-a as a measure of biomass. Increased infor-
mation about seasonal algal speciation and
potential shifts in species diversity (which is not
currently available for the historical record)
would improve the definition of seasonal mod-
els. Additionally, frequent collection of other
measures, such as phycocyanin concentrations,
would provide valuable information about
whether the algal blooms are composed of
cyanobacteria, and toxin levels would help iden-
tify blooms that are of particular interest for
public health reasons.

Conclusions

This study identified several long-term changes
in the water quality of the GSL system over the
past several decades: shifts in peak Chl-a concen-
trations, increasing extremes, and increasing vari-
ability of Chl-a throughout the lakes. Lake
managers must be able to anticipate and prepare
for these changes by considering how future cli-
mate conditions could alter behavior and health
of the lake system. Locations that are particularly
sensitive to precipitation, high winds, and high
temperatures may warrant additional consider-
ation as the lakes are monitored in the future,
and future sensor placement or timing/frequency
of monitoring may need to be adjusted to
account for this sensitivity.

The results and the patterns observed in the
GSL system demonstrate the value of having an
enhanced historical record, which provides more
frequent and consistent observations and as
greater spatial coverage than historical field

sampling. This enhanced record allows for
exploration of long-term trends, spatial patterns,
and relationships to local climate conditions
which are not feasible with limited field sam-
pling-based records. The trends and connections
to short-term climate events and longer term sea-
sonal climate conditions should be used to guide
local environmental and regulatory agencies as
they focus resources and plan future monitoring
efforts. In addition to the influences of the cli-
mate conditions explored in this study, other fac-
tors, such as nutrient loading from point and
nonpoint sources in the surrounding area, should
be studied to examine influence on the algal
dynamics in the lake system. One of the main
obstacles in doing so will be obtaining a long-
term record of these contributions of nutrients.

As the improved remote sensing data and field
data become available, the workflow and tools
presented in this study for obtaining remotely
sensed data, calibrating, and applying models can
be adapted for future analysis and monitoring.
This will enable water resource managers to iden-
tify and target problem areas, determine which
conditions may be contributing to HAB prob-
lems, and evaluate whether conditions are wor-
sening or improving. In turn, this encourages
more effective monitoring and mitigation strat-
egies, resulting in healthier and better man-
aged lakes.
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