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A B S T R A C T

Fire is a widespread Earth system process with important carbon and climate feedbacks. Multispectral remote
sensing has enabled mapping of global spatiotemporal patterns of fire and fire effects, which has significantly
improved our understanding of interactions between ecosystems, climate, humans and fire. With several up-
coming spaceborne hyperspectral missions like the Environmental Mapping And Analysis Program (EnMAP), the
Hyperspectral Infrared Imager (HyspIRI) and the Precursore Iperspettrale Della Missione Applicativa (PRISMA),
we provide a review of the state-of-the-art and perspectives of hyperspectral remote sensing of fire.
Hyperspectral remote sensing leverages information in many (often more than 100) narrow (smaller than 20 nm)
spectrally contiguous bands, in contrast to multispectral remote sensing of few (up to 15) non-contiguous wider
(greater than 20 nm) bands.

To date, hyperspectral fire applications have primarily used airborne data in the visible to short-wave infrared
region (VSWIR, 0.4 to 2.5 μm). This has resulted in detailed and accurate discrimination and quantification of
fuel types and condition, fire temperatures and emissions, fire severity and vegetation recovery. Many of these
applications use processing techniques that take advantage of the high spectral resolution and dimensionality
such as advanced spectral mixture analysis. So far, hyperspectral VSWIR fire applications are based on a limited
number of airborne acquisitions, yet techniques will approach maturity for larger scale application when
spaceborne imagery becomes available. Recent innovations in airborne hyperspectral thermal (8 to 12 μm) re-
mote sensing show potential to improve retrievals of temperature and emissions from active fires, yet these
applications need more investigation over more fires to verify consistency over space and time, and overcome
sensor saturation issues. Furthermore, hyperspectral information and structural data from, for example, light
detection and ranging (LiDAR) sensors are highly complementary. Their combined use has demonstrated ad-
vantages for fuel mapping, yet its potential for post-fire severity and combustion retrievals remains largely
unexplored.

1. Introduction

Fire is a ubiquitous disturbance agent in the terrestrial biosphere
and fire occurs in ecosystems that range from tropical rainforest to
deserts and boreal forests (Bond and Keeley, 2005; Bowman et al.,
2009). Fire occurs in a variety of forms including high intensity crown
fires to long-duration ground fires in organic soils with relatively low
intensity (van der Werf et al., 2017). Ecosystems and fire regimes are

rapidly changing at historically unprecedented rates (Dennison et al.,
2014; Gillett et al., 2004; Stavros et al., 2014; Westerling, 2006). For
example, fire activity has significantly increased in boreal forest eco-
systems (Gillett et al., 2004; Turetsky et al., 2011; Veraverbeke et al.,
2017) and declined in savannas (Andela et al., 2017; Andela and van
der Werf, 2014).

The fire disturbance continuum discriminates between discrete
temporal phases during which fire processes occur (Jain et al., 2004).
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The fire disturbance continuum includes pre-fire, active, and post-fire
environments (Fig. 1). The pre-fire environment refers to the type, and
condition of fuels as influenced by climate, weather and land man-
agement. The active fire environment is the phase during which fires
spread over the landscape. Topography, fuels and fire weather influ-
ence active fire behavior and intensity. Fire intensity describes the
physical combustion process of energy release from organic matter
(Keeley, 2009) and is directly related to fire emissions (Wooster et al.,
2005). Finally, the post-fire environment is what is left after the fire is
extinguished. The post-fire environment is often described inter-
changeably with the terms fire and burn severity (Boer et al., 2008;
Keeley, 2009). Here, we define fire severity as the degree of environ-
mental change caused by a fire as evidenced immediately after the fire
without recovery effects (Lentile et al., 2006; Morgan et al., 2014;
Veraverbeke et al., 2010). Conversely, burn severity gauges both the
immediate fire-induced change and vegetation recovery. Fire and burn
severity include fire effects on vegetation and soil (Key and Benson,
2006; Morgan et al., 2014; Parsons et al., 2010).

Remote sensing has been successfully applied in all stages of the fire
disturbance continuum for several decades. Success stories include fuel
type mapping (Marino et al., 2016; Mitri and Gitas, 2006; Peterson
et al., 2013; Roberts et al., 2003), fire risk assessments (Chuvieco et al.,
2004; Meng et al., 2017; Yu et al., 2017), active fire detection (Giglio
et al., 2003; Schroeder et al., 2014), burned area mapping (Barbosa
et al., 1999; Giglio et al., 2009; Gitas et al., 2008; Katagis et al., 2014;
Koutsias and Karteris, 2000; Pereira, 2003; Roy et al., 2005), fire/burn
severity assessments (Eidenshink et al., 2007; Meng et al., 2017;
Veraverbeke et al., 2010), and vegetation recovery mapping (Lewis
et al., 2017; Riaño et al., 2002; van Leeuwen et al., 2010; Veraverbeke
et al., 2012a). These applications have primarily capitalized upon
broadband multispectral remote sensing data. Broadband multispectral
remote sensing is the simultaneous acquisition of calibrated radiance
units in a limited number (generally in the order between three and 15)
of non-contiguous broad (generally wider than 20 nm) spectral bands.
In contrast, narrowband hyperspectral remote sensing is the simulta-
neous acquisition of calibrated radiance in many (generally more than
100) narrow (generally 20 nm or smaller) spectrally contiguous bands.
Hyperspectral imaging, or imaging spectroscopy, refers to the acquisi-
tion of coregistered images over contiguous narrow spectral bands
(Schaepman et al., 2009). Hyperspectral remote sensing has proven its
utility in a wide range of Earth system science domains including fire
applications (e.g. Dennison and Roberts, 2009; Schepers et al., 2014;
Veraverbeke et al., 2014). Prior hyperspectral fire studies were mostly
conducted based on airborne imagery, often from the Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS, Green et al., 1998), or the
Airborne Prism Experiment (APEX, Itten et al., 2008). To date, Hy-
perion on the Earth-Observing One (EO-1) platform acquiring data
between 2000 and 2017 has been the only spaceborne hyperspectral
imager that acquired data in the visible to short-wave infrared spectral
range (approximately between 0.4 and 2.5 μm) (Pearlman et al., 2003).
In the next few years several spaceborne hyperspectral sensors may be
launched: Environmental Mapping And Analysis Program (EnMAP,
Stuffler et al., 2007), Hyperspectral Imager Suite (HISUI, Iwasaki et al.,
2011), Hyperspectral Infrared Imager (HyspIRI, Lee et al., 2015), Pre-
cursore Iperspettrale Della Missione Applicativa (PRISMA, Labate et al.,
2009), and the Space-borne Hyperspectral Applicative Land and Ocean

Mission (SHALOM, Feingersh and Ben Dor, 2016). These missions will
greatly increase the availability and application of hyperspectral data.
Furthermore, a global hyperspectral mapping mission was recently re-
commended by the Decadal Survey for Earth Science and Applications
from Space from the National Academy of Sciences from the USA
(National Academies of Sciences, 2018).

With upcoming spaceborne hyperspectral missions and the proven
utility of hyperspectral data in fire applications, we provide a review of
the current state-of-the-art in hyperspectral remote sensing of fire. We
therefore review developments in the pre-fire, active fire, and post-fire
stages of the fire disturbance continuum. Benefits from hyperspectral
retrievals may result from the characterization of narrow spectral fea-
tures (e.g. water or gaseous absorption, Kuai et al. (2016), Yebra et al.
(2013)) because of the high spectral resolution and/or detailed spectral
signatures because of higher spectral data dimensionality (Veraverbeke
et al., 2014).

The primary focus of this review is on applications where hyper-
spectral data provides a clear improvement over multispectral data, or
on novel opportunities that arise from hyperspectral data that are not
possible based on multispectral data. We also propose avenues for
further research.

2. Hyperspectral fire applications

2.1. Pre-fire applications

The pre-fire environment refers to fuel type and condition
(Chuvieco et al., 2003a, 2003b) and how these change through time as
a function of climate, weather, land management, and land use. First,
fuel type represents an association of fuel elements of vegetation spe-
cies, form, size arrangement and continuity that results in a char-
acteristic fire behavior (Merrill and Alexander, 1987). Fuel type affects
the chemical composition and thus available energy content that then
affects fire intensity, the physical combustion process of energy release
from organic matter (Agee, 1993; Keeley, 2009). Second, fuel condition
refers to the moisture content and the live or dead fuel status. These
parameters influence fuel drying and combustion (Pickett et al., 2010).
Moisture content affects the flammability of fuels and thus fire behavior
such as ignition probability and fire spread rate and consequent smoke
impacts (Anderson, 1970; Forkel et al., 2012).

Multispectral remote sensing of fuel type by mapping plant func-
tional types has capitalized upon classification and vegetation index
approaches (Bartholomé and Belward, 2005; Friedl et al., 2002; Hansen
and Reed, 2000; Loveland et al., 2000; Nelson et al., 2013; Rollins et al.,
2006; Ryan and Opperman, 2013). Similarly, retrieving fuel moisture
and photosynthetic, i.e. live, versus non-photosynthetic, i.e. dead, ve-
getation from multispectral data is often based on spectral indices
(Anderson et al., 2004; Gao, 1995; Jackson et al., 2004; Liu and Kogan,
1996); sometimes augmented with land surface temperature data from
thermal bands (Chuvieco et al., 2003a, 2003b; Verbesselt et al., 2002).
Empirical relationships between spectral indices and fuel moisture are
regionally specific (Jurdao et al., 2013; Riano et al., 2005; Yebra et al.,
2013). Physically based radiative transfer models (RTMs) have been
used to overcome site-specificity of empirical fuel moisture estimation
methods (Yebra et al., 2013). These models estimate fuel moisture
content as the ratio between equivalent water thickness and dry matter

Fig. 1. Temporal phases in the fire disturbance continuum (after Jain et al., 2004).
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content, which are two common parameters in RTMs (Jurdao et al.,
2013). Robust and useful applications of multispectral pre-fire remote
sensing are abundant. The fact that reflectance data from a few bands,
often combined in a spectral index, results in high correlations with
multiple fuel attributes, however, demonstrates that some of these at-
tributes are highly correlated, yet broadband remote sensing may not
be able to fully capture subtle differences that may exist between fuel
type and condition.

The multiple and narrow spectral bands from hyperspectral remote
sensing allow different approaches to determine fuel type and condition

(Schimel et al., 2013; Thompson et al., 2017). Fuel type and fractional
cover can be determined from spectral mixture analysis (SMA) (Jia
et al., 2006a, 2006b; Roberts et al., 2006; Roberts et al., 2003; Stavros
et al., 2018) (Table 1). SMA calculates cover fractions of different
ground cover classes and thereby leverages the spectral information
over multiple wavebands (Adams et al., 1986; Roberts et al., 1998).
Because there is inherent variability within a ground cover class, often
many sample spectra, or endmembers, can be used for a single class.
Multiple endmember SMA (MESMA) is an extension of SMA that ac-
counts for variability within endmember classes (Roberts et al., 1998;
Rogge et al., 2006), which is beneficial for cover fraction retrievals. For
fuel type mapping, the ground cover classes can be as specific as eco-
system type and contain multiple slightly variable spectra (Fig. 2).
Ground cover classes can also be defined as green vegetation (GV), non-
photosynthetic vegetation (NPV), and substrate (Roberts et al., 1998).
The spatial distribution of GV, NPV and substrates in a Californian
landscape is shown in Fig. 3. NPV is highly flammable and its fractional
cover has been used as a fire risk indicator (Jia et al., 2006a; Roberts
et al., 2006; Varga and Asner, 2008). Fuel moisture content can be
derived from hyperspectral signals in spectral regions with high water
absorption (Ustin et al., 1998; Yebra et al., 2013). Broad spectral
changes due to changes in fuel moisture content include a decrease in
near infrared (NIR) and increase in short-wave infrared (SWIR) (Fig. 4).
Narrow spectral changes include decreases in the depth of the absorp-
tion by liquid water centered on approximately 0.97, 1.20, 1.45, 1.94
and 2.50 μm (Fig. 4) (Tucker, 1980; Yebra et al., 2013). Studies utilizing
hyperspectral data have capitalized upon these narrow spectral features
by using spectral indices that input one or multiple narrowbands cen-
tered around a water absorption feature or the first derivative of the
reflectance spectra (Al-Moustafa et al., 2012; Cao and Wang, 2017;
Casas et al., 2014; De Santis et al., 2006; Roberts et al., 2006; Schlerf
et al., 2005; Serrano et al., 2000). Approaches taking advantage of
contiguous spectral information have included spectral fitting of water
absorption features (Casas et al., 2014; Dennison et al., 2003; Serrano
et al., 2000) and RTMs (Casas et al., 2014). Schlerf et al. (2005) and
Roberts et al. (2006) reported higher accuracies from airborne hyper-
spectral retrievals compared to spaceborne multispectral retrievals.
Cheng et al. (2006) furthermore retrieved equivalent water thickness
based on applying a RTM on AVIRIS data.

Table 1
Summary of hyperspectral fire studies in pre-fire, active and post-fire en-
vironments. Fuel condition refers to dead or live fuel status, and moisture
condition. (radiative transfer model: RTM, SF: spectral fitting, SI: spectral
index, SMA: spectral mixture analysis).

Reference Application Methods

Pre-fire Ustin et al. (1998) Fuel condition RTM, SF and SMA
Serrano et al. (2000) Fuel condition SI
Dennison et al. (2003) Fuel condition SF
Roberts et al. (2003) Fuel type and

condition
SI and SMA

Roberts et al. (2006) Fuel type and
condition

SI and SMA

De Santis et al. (2006) Fuel condition SI
Jia et al. (2006a) Fuel condition SMA
Jia et al. (2006b) Fuel type and

condition
SMA

Varga and Asner
(2008)

Fuel condition SMA

Al-Moustafa et al.
(2012)

Fuel condition SI

Colgan et al. (2012) Fuel type Classification
Casas et al. (2014) Fuel condition RTM, SF and SI
Levick et al. (2015) Fuel type Classification
Stavros et al. (2018) Fuel type SMA

Active fire Vodacek et al. (2002) Fire detection Potassium emission
line

Dennison (2006) Fire detection SI
Dennison et al. (2006) Fire temperature SMA
Dennison and Roberts
(2009)

Fire detection SI

Amici et al. (2011) Fire detection Potassium emission
line

Dennison and
Matheson (2011)

Fire detection and
temperature

SI and SMA

Matheson and
Dennison (2012)

Fire detection and
temperature

SI and SMA

Post-fire Qiu et al. (1998) Recovery SI
Riaño et al. (2002) Recovery SI and SMA
van Wagtendonk et al.
(2004)

Severity SI

Chuvieco et al. (2006) Severity SI and RTM
Jia et al. (2006b) Severity Classification
Kokaly et al. (2007) Severity Classification
Lewis et al. (2007) Severity SMA
Robichaud et al.
(2007)

Severity SMA

Lewis et al. (2008) Severity SMA
Mitri and Gitas (2010) Recovery Classification
Lewis et al. (2011) Severity SMA
Numata et al. (2011) Recovery SI
Huesca et al. (2013) Severity and

recovery
SI and SMA

Mitri and Gitas (2013) Recovery Classification
Schepers et al. (2014) Severity SI
Veraverbeke et al.
(2014)

Severity SMA

Somers et al. (2016) Severity and
recovery

SI and SMA

Chen (2017) Severity SI and SMA
Lewis et al. (2017) Severity SMA
Meng et al. (2018) Recovery Classification
Tane et al. (2018) Severity SMA

Fig. 2. Example of fuel type spectral library. The mean (symbol in plot: +) and
the mean plus/minus one standard deviation (symbol in plot: .) of five spectra
per vegetation type is plotted. Atmospheric water vapor absorption regions
were removed.
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2.2. Active fire applications

Applications developed for active fires fall into two major cate-
gories: 1) fire detection, in which the goal is to identify spectra con-
taining active fire (Dennison and Roberts, 2009), and 2) fire tempera-
ture retrieval, in which the goal is to model fire temperature from
emitted radiance (Dennison et al., 2006). Fire temperature retrieval
may provide additional outputs from modeling, such as sub-pixel fire
fractional area.

Radiance emitted directly from a fire is dependent on the tem-
perature and emissivity of the burning biomass and flame, and the
flame length and depth. Traditional broadband methods for detecting
fire, estimating fire temperature and intensity use brightness tempera-
ture, which assumes that fire is a blackbody emitter (Giglio et al., 2003;
Roberts and Wooster, 2008; Schroeder et al., 2014; Zhukov et al.,
2006). For a blackbody, emitted radiance increases and peak emission
shifts to shorter wavelengths as fire temperature increases (Fig. 5).

Background blackbody surfaces at typical Earth surface tempera-
tures emit most of their radiance in the thermal infrared (TIR: 8–12 μm)
and longer wavelengths (Fig. 5). As temperature increases above 600 K,
radiance in the mid infrared (MIR: 3–5 μm) and SWIR (1.2–2.5 μm)
sharply increases. Smoke is a strong scatterer and absorber at wave-
lengths shorter than 1.2 μm, such that the visible (0.4–0.7 μm) and NIR

Fig. 3. a) True color composite from the Airborne
Visible/Infrared Imaging Spectrometer over parts of the
Santa Monica mountains in California, USA on June 16,
2016. The composite used the bands centered at 0.65 μm
(red), 0.55 μm (green) and 0.45 μm (blue). b) False color
composite inputting non-photosynthetic vegetation
(NPV, red), green vegetation (green) and substrate (blue)
cover fractions retrieved from multiple endmember
spectral mixture analysis. Suboptimal retrievals were
masked in black. NPV is highly flammable and its frac-
tional cover is thus a useful fire risk indicator. (For in-
terpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this
article.)

Fig. 4. Chamise spectra with fuel moisture content of 70, 98 and 142% mea-
sured in Southern California, USA. The vertical dotted lines denote key liquid
water absorption features (after Roberts et al., 2006).
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(0.7–1.2 μm) spectral regions have limited utility for active fire appli-
cations. At longer wavelengths, smoke transmittance is very high and
smoke has a very minor impact on emitted radiance. Thus, the SWIR
and MIR spectral regions are most useful for measuring flaming and
smoldering combustion (Dennison and Matheson, 2011). The SWIR
spectral region demonstrates a very strong difference in emitted spec-
tral radiance across the range of temperatures typical for smoldering
and flaming combustion (650 K to higher than 1500 K).

While multiple active fire applications of hyperspectral data have
assumed that fire within an instantaneous field of view (i.e. a pixel) is a
single temperature blackbody (Dennison et al., 2006; Dennison and
Matheson, 2011; Matheson and Dennison, 2012), the actual shape of
emitted radiance is a critically important question. Emitted radiance
from a single pixel will be a composite of multiple flaming and smol-
dering elements, each with their own range of temperatures. At-sensor
radiance itself will be a combination of burning and non-burning sur-
faces within the instantaneous field of view. Reflected solar radiance
will also be included in at-sensor radiance if a fire is imaged during the
day. Flames have lower emissivity than background materials, but the
impact of flame emissivity will depend on path length through flame
and the soot content of the flame (Giglio and Kendall, 2001; Riggan
et al., 2004).

Dennison and Matheson (2011) tested the blackbody assumption by
comparing emitted radiance acquired simultaneously by AVIRIS and
the MODIS/ASTER airborne simulator (MASTER, Hook et al., 2001)
over a single fire. Fire temperatures modeled using AVIRIS SWIR data
were compared to fire temperatures modeled using MASTER multi-
spectral MIR and TIR data. Both models assumed blackbody emission,
and temperatures retrieved from the two datasets were found to be
poorly correlated below 800 K. Matheson and Dennison (2012) in-
vestigated spatial scaling of AVIRIS data over four fires, and found
decreases in modeled fire temperatures as spectra were aggregated up
to coarser spatial resolutions. Based on fire complexity across spatial
scales, uncertain emissivity, and results from previous experiments, the
blackbody assumption should be regarded with caution (especially for
cooler fires).

Regardless of whether blackbody emission approximates actual fire
emitted radiance, maximum spectral radiance values produced by fire
are an important concern for remote measurement. Sensors designed
for measuring land and water surfaces typically do not have a high
enough saturation threshold to adequately capture peak emission from
wildfires, especially at finer spatial resolution where fire can comprise a
higher percentage of individual pixels (Realmuto et al., 2015). For

example, SWIR bands in AVIRIS data have frequently saturated over the
hottest parts of wildfires, especially when the spatial resolution is high
(Dennison et al., 2006; Matheson and Dennison, 2012).

Detection of fire within hyperspectral data presents two challenges.
Typically, hyperspectral data are acquired during the day, in which case
emitted radiance must be reliably separated from the reflected solar
radiance background to accurately detect fire. Also, fire may comprise a
small percentage of a larger pixel, which effectively dilutes the strength
of the emitted radiance signal and makes emitted radiance more diffi-
cult to separate from the reflected solar radiance background. Dennison
and Roberts (2009) compared all possible normalized difference index
combinations of AVIRIS bands in radiance data acquired over the 2003
Simi fire in California, USA. The presence of fire in a pixel increases
spectral radiance in longer wavelength SWIR bands more rapidly than
in shorter wavelength SWIR bands, and indices combining two bands
spanning the range of the SWIR spectral region produced the most
accurate detection of pixels containing fire. They suggested the most
accurate index as the Hyperspectral Fire Detection Index (HFDI):

=
−

+
HFDI

L L
L L

μm μm

μm μm

2.43 2.06

2.43 2.06 (1)

where L2.43 μm (in W m−2 sr−1 μm−1) is the spectral radiance around
2.43 μm, and L2.06 μm is the spectral radiance around 2.06 μm.

Dennison and Roberts (2009) further performed a sensitivity ana-
lysis on the HFDI, noting the impacts of fire temperature, subpixel
fractional area, atmospheric path length and water vapor, and solar
zenith angle on the index. HFDI takes advantage of an atmospheric
carbon dioxide absorption feature at 2.06 μm. Reflected solar radiance
experiences atmospheric carbon dioxide absorption on both the
downwelling and upwelling path, while emitted radiance only experi-
ences absorption on the upwelling path (Dennison, 2006). This differ-
ence allows improved separation of fire from the background surface,
but it also effectively prohibits remote measurement of carbon dioxide
emissions directly over a fire.

Excited potassium has line emission features at 0.767 and 0.770 μm.
Potassium emission has been detected over fires using imaging spec-
trometer data, including AVIRIS (Vodacek et al., 2002) and EO-1 Hy-
perion (Amici et al., 2011). Finer spectral resolution improves dis-
crimination of the potassium emission feature, but the primary
limitation of this technique remains scattering and absorption by smoke
within the NIR spectral region (Dennison and Roberts, 2009).

Hyperspectral temperature retrieval methods are based on a spectral
mixing model approach (Giglio et al., 2003). The general form of
spectral mixing models used for spectral radiance (Lλ in
Wm−2 sr−1 μm−1) is:

∑= +
=

L f L ελ
i

n

i i λ λ
1

,
(2)

where Li,λ is the radiance of endmember i at wavelength λ, fi is the
fraction of endmember i, n is the number of endmembers, and ελ is the
residual error. A background endmember can include emitted radiance
and/or reflected solar radiance, depending on the wavelength regions
included in the model (Dennison and Matheson, 2011). Most models
use a single blackbody emitted radiance endmember for fire in the
model (i.e. n=2). In simple two-band models, the temperature of the
fire is solved for using the brightness temperature of the measured pixel
and the brightness temperature of the background. In models with more
than two bands, endmembers spanning a range of temperatures can be
compared and subsequently the endmember that produces the lowest
model error is used to assign the fire temperature to a pixel (Dennison
et al., 2006). In either case, each endmember is multiplied by a frac-
tional cover. All fractions in the model sum to one, and fractional cover
of the fire endmember represents the sub-pixel fire percentage. This
type of mixing model assumes that radiance from fire and background
endmembers mix linearly; an assumption that is difficult to test in

Fig. 5. Blackbody emission curves across a range of temperatures (after
Dennison and Matheson, 2011). Grey areas denote the short-wave infrared
(SWIR), mid infrared (MIR) and thermal infrared (TIR) spectral regions.

S. Veraverbeke et al. Remote Sensing of Environment 216 (2018) 105–121

109



reality. Mixing model retrievals of fire temperature have also frequently
been applied to multispectral airborne and satellite remotely sensed
data (Eckmann et al., 2008, 2009; Giglio and Schroeder, 2014; Matson
and Holben, 1987; Oertel et al., 2004; Riggan et al., 2004; Zhukov et al.,
2006).

The larger spectral dimensionality provided by hyperspectral data
permits the application of more complex mixing models. For example,
Dennison et al. (2006) created a three-endmember multiple endmember
mixing model that included background endmembers for different ve-
getation types, soil and ash, a range of emitted radiance endmembers
that included modeled atmospheric absorption, and a shade end-
member that controlled for the absolute level of radiance. A major
advantage of this approach is that it simultaneously produces maps of
fire temperature, fire fractional area, and background land cover type
(Fig. 6). Dennison and Matheson (2011) applied a similar three-end-
member model, but extended both the background and fire end-
members through the MIR and TIR, and expanded the number of

potential endmembers to include both smoke and non-smoke covered
backgrounds. However, the lack of reference data for validation of re-
trieved fire temperature remains a limitation. To date, in situ tem-
perature measurements and hyperspectral imagery have not been col-
lected concurrently over a fire.

2.3. Post-fire applications

2.3.1. Fire and burn severity
Fire and burn severity are defined as the degree of environmental

change caused by a fire (Key and Benson, 2006). Fire severity refers to
the fire-induced change without vegetation recovery effects, while burn
severity represent the combined effect of the immediate fire impact and
longer term recovery (Lentile et al., 2006; Morgan et al., 2014;
Veraverbeke et al., 2010). Severity often refers to different ecosystem
characteristics depending on ecoregion and application. In grasslands
for example, combustion completeness, the ratio between combusted

Fig. 6. a) Color composite from the Airborne Visible/Infrared Imaging Spectrometer over parts of the active 2003 Simi fire in California, USA. The composite used the
bands centered at 1.70 μm (red), 1.10 μm (green) and 0.66 μm (blue). b) Land cover, c) fire temperature and d) fire fraction derived from multiple endmember
spectral mixture analysis after Matheson and Dennison (2012). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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and available biomass, is an important indicator of severity. In tem-
perate ecosystems severity often refers to tree mortality, while in boreal
ecosystems the depth of burning in organic soils is the main indicator of
severity (Rogers et al., 2014; Turetsky et al., 2011; Veraverbeke et al.,
2015). Severity data are used in two main applications. First, in the USA
severity maps are operationally used by Burned Area Emergency Re-
sponse (BAER) teams to diagnose risk to infrastructure and safety, and
prioritize post-fire rehabilitation efforts (Eidenshink et al., 2007;
Robichaud and Ashmun, 2013). Second, several studies recognize the
potential of severity maps to optimize fire emissions estimates (De
Santis et al., 2010; French et al., 2008). Veraverbeke and Hook (2013),
Rogers et al. (2014), Veraverbeke et al. (2015, 2017) and Walker et al.
(2018) implemented a remotely sensed fire severity proxy in fire-wide
to regional fire emissions models. In multispectral remote sensing, the
Normalized Burn Ratio (NBR, López García and Caselles, 1991) has
become the most widely used spectral index for assessing fire and burn
severity, often applied on Landsat imagery (French et al., 2008). NBR
relates to vegetation vigor and moisture by combining NIR and SWIR
reflectance. After fire, there is generally a decrease in NIR reflectance
and an increase in SWIR reflectance. The differenced NBR (dNBR, Key
and Benson, 2006) is obtained after bi-temporal differencing pre- and
post-fire NBR images. The principles of the dNBR index are transferable
to hyperspectral remote sensing. The limited availability of spaceborne
hyperspectral data and the need for advance planning in airborne
campaigns have resulted in very few opportunities to test the perfor-
mance of a hyperspectral dNBR (Stavros et al., 2016). A rare example of
such a pre-/post-fire airborne image acquisition is from van
Wagtendonk et al. (2004) for a fire in Yosemite National Park, USA.
They, however, found no increased sensitivity of a hyperspectral dNBR
to ground measurements of severity in comparison with the Landsat-
derived dNBR. Further opportunities to optimize the hyperspectral
dNBR recently arose from acquisitions over two large California wild-
fires in areas that were part of the HyspIRI preparatory airborne cam-
paign (Fig. 7). Schepers et al. (2014) tested several hyperspectral in-
dices derived from a post-fire image over a heathland ecosystem in
Belgium. They found that the strength and form of the relationships

between spectral indices and ground measures of severity varied by
vegetation type, necessitating a vegetation stratification to derive op-
timal results. Jia et al. (2006b) classified three fire severity levels by
applying spectral angle mapper techniques to hyperspectral data ac-
quired over a fire in Colorado, USA.

While spectral indices can be powerful proxies of biophysical
properties, they only use spectral information from two or three bands.
By doing so, they do not take advantage of the wealth of spectral in-
formation available in hyperspectral remote sensing. SMA is powerful
analysis tool for severity assessments with the additional advantage
that the output of SMA are quantitative abundance estimates of the
ground cover classes, without the need of a calibration with field data
as with spectral indices (Solans Vila and Barbosa, 2010; Somers et al.,
2010) (Fig. 8). SMA has been applied on multispectral post-fire imagery
(Fernandez-Manso et al., 2009; Meng et al., 2017; Quintano et al.,
2013; Smith et al., 2007; Veraverbeke and Hook, 2013), however, a few
studies have leveraged the higher spectral resolution from hyperspec-
tral remote sensing (Kokaly et al., 2007; Lewis et al., 2017; Lewis et al.,
2011; Lewis et al., 2008; Lewis et al., 2007; Robichaud et al., 2007;
Somers et al., 2016; Tane et al., 2018; Veraverbeke et al., 2014). Kokaly
et al. (2007) used AVIRIS data in a hyperspectral classification of
ground cover classes. Lewis et al. (2007, 2008, 2011, 2017), Robichaud
et al. (2007), Veraverbeke et al. (2014), Somers et al. (2016) and Tane
et al. (2018) derived cover fractions of ground classes including char-
coal, ash, green vegetation, scorched vegetation, non-photosynthetic
vegetation, soil and substrates. These estimates, and especially the
green vegetation and charcoal fractions, were significantly correlated
with ground measurements of severity in a variety of case studies in
temperate and boreal ecosystems (Fig. 8b). Lewis et al. (2008) also
found a relationship between ash cover derived from hyperspectral
SMA and soil water repellency. Veraverbeke et al. (2014) demonstrated
improvements of seven to 44% in estimating ground cover fractions
from hyperspectral data compared to multispectral data. These im-
provements were the result of the high dimensionality of hyperspectral
data that benefits discrimination between ground cover classes (Fig. 9).
Tane et al. (2018) investigated the trade-off between accuracy and

Fig. 7. a) Post-fire color composite from the Airborne Visible/Infrared Imaging Spectrometer over parts of the 2013 Rim fire in California, USA. The composite used
the bands centered at 2.10 μm (red), 0.88 μm (green) and 0.69 μm (blue). b) Hyperspectral differenced Normalized Burn Ratio over the same area. Clouds and water
bodies were masked and are depicted in white. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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computational efficiency by applying different band and endmember
selection techniques. Discrimination of charcoal hinges on its char-
acteristic low reflectance for NIR wavelengths (Fig. 9a). Green vege-
tation is spectrally different than other ground cover classes due its
combined high NIR and low SWIR reflectance (Fig. 9b). Separability of
NPV from substrate is usually more challenging in visible to SWIR
spectral regions (Fig. 9cd) (Roberts et al., 1993). As an alternative to
empirical and often site-specific spectral indices and SMA, Chuvieco
et al. (2006), De Santis et al. (2009) and De Santis and Chuvieco (2007)
developed a physically based RTM to map burn severity. The model
accounted for fire-induced changes in soil color, vegetation color (green

and brown), and vegetation cover. Although the model is applicable to
hyperspectral imagery (Chuvieco et al., 2006), it has so far only been
applied in multispectral case studies.

2.3.2. Vegetation recovery
Various fire-affected variables can be measured and modeled in

post-fire environments. Following the prior definition of burn severity,
vegetation recovery can be part of a severity assessment (Lentile et al.,
2006; Morgan et al., 2014; Veraverbeke et al., 2010). Post-fire species
structure and composition, and vegetation succession are crucial vari-
ables in understanding ecosystem responses to fire disturbance and

Fig. 8. a) Post-fire color composite from the Airborne Visible/Infrared Imaging Spectrometer over parts of the 2011 Canyon fire in California, USA. The composite
used the bands centered at 2.10 μm (red), 0.88 μm (green) and 0.69 μm (blue). b) Correlation between charcoal fraction and the Geo Composite Burn Index, a field
measurements of fire severity (De Santis and Chuvieco, 2009). c) Fractional cover maps of charcoal and (d) green vegetation derived from spectral mixture analysis
(after Veraverbeke et al., 2014). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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climate change (Capitanio and Carcaillet, 2008; Chu and Guo, 2013).
Especially in forest ecosystems, the spatial distribution of various forest
components, such as tree height and sapling density, defines forest
structure while species richness and abundance characterize forest
composition and biodiversity (McElhinny et al., 2005).

The terms vegetation recovery, vegetation regrowth, vegetation
regeneration are used, often interchangeably, to describe the various
stages of post-fire vegetation succession in fire-affected ecosystems
(Johnstone and Kasischke, 2005; Mitri and Gitas, 2013; Veraverbeke
et al., 2012b). These terms refer to the recovery process of species or
ecosystems to a pre-disturbance condition. Fires can also lead to per-
manent changes in vegetation composition and structure, decreased
vegetation cover, biomass loss and the alteration of landscape patterns
(Pérez-Cabello et al., 2009). Consequently, detailed monitoring of post-

fire vegetation dynamics helps define the ecological impact of fires on
ecosystem functioning, and allows implementation of effective re-
storation measures (Gitas et al., 2012; Gouveia et al., 2010; van
Leeuwen et al., 2010; Veraverbeke et al., 2012b). Fire severity, post-fire
meteorological conditions, fuel type, topography and soil properties are
all factors that influence recovery patterns (Moreira et al., 2009; Pausas
and Fernández-Muñoz, 2012; Veraverbeke et al., 2010).

Broadband multispectral remote sensing has been used extensively
to assess post-fire vegetation recovery at various temporal and spatial
scales (Díaz-Delgado et al., 2003; Goetz et al., 2006; Gouveia et al.,
2010; Leon et al., 2012). The existence of long time series of multi-
spectral imagery spanning consecutive decades, combined with free
data distribution policies have substantially increased its use in post-fire
recovery applications. Most of these studies rely on vegetation abun-
dance proxies derived from vegetation indices like the Normalized
Difference Vegetation Index (NDVI) and NBR, often processed using
advanced trajectory analysis algorithms (Katagis et al., 2014; Leon
et al., 2012; Storey et al., 2016; Zhao et al., 2016).

In a preliminary study on monitoring post-fire succession in
California's Santa Monica mountains, AVIRIS-derived vegetation in-
dices were tested for their capability to detect variations in the pho-
tosynthetic activity of chaparral (Qiu et al., 1998). The NDVI was used
along with specific narrowband indices, the Photochemical Reflectance
Index (PRI, Gamon et al., 1997) (PRI) and the Water Band Index (WBI).
Findings indicated that including narrowband indices eased detection
of sensitive changes in photosynthetic activity that were not associated
with changes in canopy structure. Multitemporal AVIRIS imagery was
used in another post-fire vegetation regeneration in the Santa Monica
mountains (Riaño et al., 2002). Riaño et al. (2002) found that GV
fraction performed equally well in both northern mixed chaparral and
south coastal sage scrub communities, as opposed to NDVI measure-
ments that were influenced by phenological variations. Also in Cali-
fornia, Somers et al. (2016) demonstrated the utility of MESMA-derived
cover fraction to monitor post-fire vegetation recovery (Fig. 10). In a
similar application, multitemporal airborne hyperspectral (AHS) ima-
gery and SMA were combined to monitor post-fire recovery in Spain
(Huesca et al., 2013).

To track ecological changes caused by fire across multiple spatial
and temporal scales, Lewis et al. (2017) made combined use of airborne

Fig. 9. Spectral separability of a) charcoal, b) green vegetation, c) non-photo-
synthetic vegetation and d) substrate. Spectral separability was calculated from
the between- and within-class variability of endmember spectra (Somers et al.,
2009; Veraverbeke et al., 2014). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Time series of surface composition between 2004 and 2013 in the area of the 2009 Jesusita fire in California, USA, as derived from Airborne Visible/Infrared
Imaging Spectrometer a) on August 6, 2004, b) just after the fire on August 26, 2009, c) on April 30, 2010, and d) on June 6, 2013. The false color composites input
non-photosynthetic vegetation (red), green vegetation (green) and substrate and ash (blue) cover fractions retrieved from multiple endmember spectral mixture
analysis. Suboptimal retrievals and missing data were masked in black (after Somers et al., 2016). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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hyperspectral data, spaceborne high, i.e. QuickBird, and medium, i.e.
Landsat, spatial resolution multispectral imagery collected on anni-
versary dates spanning ten years after three large wildfires in Montana,
USA, 2003. They used MESMA to derive post-fire char, soil, GV, and
NPV fraction maps at different recovery times. Retrievals from hyper-
spectral imagery had stronger correlations with ground measurements
one year post-fire, and with vegetation canopy data ten year post-fire.
Mitri and Gitas (2010, 2013) applied object-based image analysis on
single date EO-1 Hyperion images for classifying forest regeneration
and vegetation recovery in fire-affected areas on the Greek island of
Thasos. Vegetation indices derived from Hyperion were also useful for
estimating post-fire recovery in Mato Grosso in the southern Amazon in
Brazil (Numata et al., 2011). In this study, selected narrowband indices
outperformed the NDVI in detecting subtle changes in the physiological
properties of disturbed forests.

Despite the limited number of applications due to data limitations,
hyperspectral data provide opportunities for post-fire monitoring that
are not supported by broadband multispectral imagery. The reviewed
applications mostly hinged on single date or a small number of hy-
perspectral airborne or spaceborne images. Current limitations in de-
ploying airborne campaigns limit further exploration of the possibilities
that arise from hyperspectral data in post-fire recovery studies. The
upcoming hyperspectral satellite missions in an era of open data po-
licies will enable more systematic exploitation of hyperspectral in-
formation in post-fire monitoring studies.

3. Future perspectives

3.1. Automated image-based endmember extraction for spectral mixture
analysis

SMA, and in particular MESMA that accounts for within-class end-
member variability, is a popular image analysis technique in all phases
of the fire disturbance continuum: before, during and after the fire. In
the studies reviewed here, endmember spectra were most often mea-
sured in the field using a field spectroradiometer, or derived from the
imagery or existing spectral libraries (Baldridge et al., 2009). This ap-
proach was feasible and effective for local-scale studies as the ones
based on the limited air- and spaceborne hyperspectral data opportu-
nities reviewed here. The large datasets that will originate from the
upcoming spaceborne hyperspectral missions, however, require auto-
mated and image-specific endmember bundle retrievals. The im-
portance of this concept has been previously discussed, and image-
based endmember retrieval techniques have been developed (Bateson
et al., 2000; Roth et al., 2012; Somers et al., 2012), yet without large
scale application and thorough validation over space and time. Tech-
niques like MESMA may be applied to generate standardized products
for future hyperspectral missions to for example quantify GV, NPV and
substrate fractions. However, to achieve this, spectral libraries and re-
vised methods are required to provide fractions that are comparable
across large geographic regions, multiple years and across seasons
(Dudley et al., 2015). Fire studies focused on pre-fire fuel type and
condition or post-fire recovery will likely be able to leverage informa-
tion from these products. Specific attention will be required for active
fire and post-fire severity studies because these applications need ad-
ditional endmembers that are foreign to vegetation or substrate studies.
Spectral signatures of active fires can be modeled from the Planck
function for different temperatures (Fig. 5). Inclusion of the active fire
endmember could consist of spectral signatures from multiple tem-
peratures, or could capitalize upon iterative optimization techniques.
Fire severity studies need the inclusion of a charcoal or ash endmember
(e.g. Lewis et al., 2017), which could simply be implemented by ex-
tending the three-endmember model of GV, NPV and substrate to a
four-endmember model that adds the charcoal/ash endmember. The
implementation of this addition could be restricted to burned area only,
especially when a separate burned area retrieval would be available

from the suite of satellite products (Tane et al., 2018).

3.2. Radiative transfer models

RTMs have the potential to provide physically-based retrieval of
plant biophysical and biochemical properties, including fuel moisture
(Casas et al., 2014; Jurdao et al., 2013; Riano et al., 2005; Yebra et al.,
2018) and fire severity (Chuvieco et al., 2006; De Santis et al., 2009; De
Santis and Chuvieco, 2007). Modeling studies have demonstrated that
fuel moisture content can be retrieved from remotely sensed data using
RTM inversion (Bowyer and Danson, 2004; Ceccato et al., 2001; Riano
et al., 2005). Application of RTMs to hyperspectral data have not yet
demonstrated conclusive gains in accuracy over empirical methods for
estimating fuel moisture (Casas et al., 2014), while RTMs have not yet
been applied to hyperspectral imagery for fire severity assessments.
Empirical estimation techniques have the advantage of allowing for
site-dependent variation in the relationship between reflectance and
fuel moisture content, while RTMs may be more promising for devel-
oping continental to global-scale fuel moisture retrievals (Yebra et al.,
2018). Upcoming spaceborne hyperspectral missions will deliver much
higher temporal frequency than airborne sensors have previously pro-
vided, which should improve both RTM and empirical fuel moisture
retrievals. RTM methods can use time series data to estimate dry matter
content during the dry season (Riano et al., 2005), and denser time
series data may also reduce uncertainty in empirical relationships.
Operational fuel moisture monitoring may require higher temporal
resolution than provided by upcoming spaceborne hyperspectral sen-
sors. The possibility of having multiple coincident hyperspectral sensors
in different orbits, however, may increase the temporal resolution of
hyperspectral imagery. In case the temporal sampling remains in-
sufficient for operational mapping of fuel moisture, spaceborne hyper-
spectral fuel moisture retrievals may be useful for calibration and va-
lidation of retrievals based on imagery with lower spatial and/or
spectral resolution (Roberts et al., 2003; Trombetti et al., 2008). For fire
severity mapping, the temporal constraint is less stringent since only
one post-fire image is needed.

3.3. Optimizing hyperspectral fire severity indices

Hyperspectral data are powerful for fire severity assessments be-
cause they allow accurate within-pixel fractional cover estimates of
ground cover classes, among other charcoal, that are indicative for
severity (Lewis et al., 2017; Meng et al., 2017; Veraverbeke et al.,
2014). A more traditional method for mapping fire and burn severity is
the dNBR. The dNBR has the advantage of conceptual simplicity and
computational efficiency, and may therefore complement more so-
phisticated retrievals (Veraverbeke and Hook, 2013). The Landsat
dNBR is the most often used approach to assess fire and burn severity
(French et al., 2008; Key and Benson, 2006). In multispectral remote
sensing, commonly one band combination per sensor allows the cal-
culation of the dNBR. In hyperspectral remote sensing, however, several
band combinations lead to multiple dNBR definitions that are slightly
different. It may be possible that there exists an optimal combination of
NIR and SWIR narrowbands. So far, this exercise has not been under-
taken partly because of the limited availability of pre−/post-fire image
pairs required for dNBR calculation (Stavros et al., 2016). However,
opportunities that arise from two recent California wildfires that were
imaged by AVIRIS as part of the HyspIRI preparatory airborne cam-
paign allow such an investigation. Investigations could focus on re-
lationships with field measurements of severity and spectral index op-
timality for multiple band combinations (Pinty and Verstraete, 1992;
Roy et al., 2006; Thenkabail et al., 2002).
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3.4. Synergy between hyperspectral and light detection and ranging
(LiDAR) data

Hyperspectral and LiDAR data are complementary. Hyperspectral
data can discriminate between fuel type and condition, yet LiDAR data
can provide additional information regarding the three-dimensional
(3D) structure of fuels (Riaño et al., 2003) and ground surface. By doing
so, the synergy between hyperspectral and LiDAR technologies can ef-
fectively be named 3D imaging spectroscopy. This synergy has been
explored in a few pre-fire applications (Colgan et al., 2012; Levick et al.,
2015; Stavros et al., 2018; Varga and Asner, 2008). Colgan et al. (2012)
used LiDAR to identify individual tree crowns and estimate canopy
height, while hyperspectral data guided tree species discrimination.
This approach was successful for mapping fuels in Kruger National Park
in South Africa. Levick et al. (2015) applied similar methods in the
same study area and found that areas with higher fire frequency were
associated with reduced tree cover and shifts in canopy height dis-
tribution. Varga and Asner (2008) combined hyperspectral and LiDAR
data to map the 3D structure of grass fuels in Hawaii Volcanoes Na-
tional Park, USA. They therefore combined fractional cover estimates of
NPV from SMA on hyperspectral data with canopy heights from LiDAR.
Their derived fire fuel index is a proxy of flammability and fire spread
potential. Stavros et al. (2018) combined hyperspectral and structural
data to map fuels in a Californian landscape.

Combined hyperspectral and LiDAR data have rarely been exploited
in post-fire applications. This research gap is likely explained by
shortages in synergistic image acquisitions, especially from both before
and after the fire. Post-fire charcoal fractional cover or dNBR derived
from hyperspectral images combined with changes in canopy height
distribution could significantly refine carbon emission estimates from
fires especially if these post-fire retrievals are supplemented with
knowledge on pre-fire fuel composition and amount. Chen (2017)
provided some first insight on complementarities between the dNBR
and MESMA fractional covers derived from hyperspectral imagery, and
canopy height derived from LiDAR in a post-fire environment (Fig. 11).
The MESMA output allows greater separation in riparian areas com-
pared to the dNBR, whereas the canopy heights from LiDAR are in-
dicative of residual standing biomass, even in areas mapped as ash by
MESMA. Such synergistic research opportunities are rare within air-
borne campaigns, however, airborne hyperspectral and LiDAR data
from before and after fire cover large parts of two recent California fires
and present an ideal case study (Stavros et al., 2016). Meng et al. (2018)
recently combined hyperspectral and LiDAR imagery to estimate spe-
cies-level post-fire recovery responses to different fire severity levels.

3.5. Hyperspectral thermal applications

Hyperspectral TIR data can provide complementary information to
visible and SWIR data in fire applications. These applications include
detection of water- and temperature-induced stress in plant species
based on spectral changes in TIR emissivity (Buitrago et al., 2016;
Meerdink et al., 2016; Ullah et al., 2012), and the detection and
quantification of particulate and gaseous emissions from active fires
(Hulley et al., 2016; Kuai et al., 2016). Identifying plant species
(Meerdink et al., 2016; Ullah et al., 2012) and detection of water- and
temperature-induced stress in plant species (Buitrago et al., 2016) using
spectral emissivity have so far only been demonstrated with laboratory
measurements in controlled environments, but have the potential to
provide information on plant stress and moisture content, and thus pre-
and post-fire fuel condition (Neinavaz et al., 2017). For example,
Buitrago et al. (2016) found that plants exposed to water and tem-
perature stress showed significant changes in their TIR spectra, which
were linked to changes in the cuticle thickness and structure. More
work is required to apply these methods to hyperspectral TIR data from
air- or spaceborne platforms.

Hyperspectral TIR measurements over active fires are presently

limited due to detector saturation limits and the lack of suitable air- and
spaceborne instrumentation. Wildfires have not been a prime target for
most airborne thermal missions in the past, and wildfire occurrence is
ephemeral limiting acquisition windows for airborne campaigns. The
Hyperspectral Thermal Emission Spectrometer (HyTES), an airborne
imaging spectrometer with high spectral resolution (256 bands between
7.5 and 12 μm), wide swath (1–2 km), and high spatial resolution (2m
at 1 km altitude flying height), has acquired data over four small active
fires in California, USA since deployment in 2013, but these have only
been considered targets of opportunity acquired en route to other
destinations. Hyperspectral satellite sensors like the Infrared
Atmospheric Sounding Interferometer (IASI, Aires et al., 2002), the
Tropospheric Emission Spectrometer (TES, Beer, 2006), and the At-
mospheric Infrared Sounder (AIRS, Tobin et al., 2006) have the cap-
ability to observe large gaseous emissions from fires, however, they are
limited by their coarse spatial resolutions of 10 km or more, and in-
sensitivity to near-surface concentrations due to sensor saturation is-
sues. Airborne hyperspectral TIR sensors such as HyTES on the other
hand have the imaging capability to detect gaseous emission sources at
pixel sizes of a few meter, and have sufficient spectral information to
resolve the spectral absorption signatures of a variety of different trace
gases including methane (CH4), ammonia (NH3), hydrogen sulfide
(H2S), sulfur dioxide (SO2), nitrogen dioxide (NO2) and nitrous oxide
(N2O) (Hulley et al., 2016; Kuai et al., 2016). The primary gas species
emitted from wildfires, CO2 and CO, do not exhibit spectral absorption
features in the TIR region, however, other biomass burning gases such
as CH4 and NH3 are detectable with high confidence (Hulley et al.,
2016). Biomass burning is a major source of atmospheric NH3 (Hegg
et al., 1988; Whitburn et al., 2015). Examples of the absorption features
of CH4 and NH3 are shown in Fig. 12. Airborne hyperspectral TIR data
have the ability to discriminate these gases within a single plume pixel.
A further unique advantage of TIR data for fire applications is that
night-time observations allow easier detection of gas emissions since
the collapsed nocturnal planetary boundary layer results in higher near-
surface concentrations. In addition, the ability to detect fires is greater
at night since during the day active fires can be confused with warm
ground surfaces, especially with lower spatial resolution sensors.

During active fires, hyperspectral TIR data have the ability to
quantify surface and near-surface air temperature in the vicinity of the
fire, and downwind concentrations of NH3 and CH4, with an error be-
tween 50 and 80% for NH3 and between 20 and 25% for CH4 (Kuai
et al., 2016). HyTES detected a NH3 plume over the Gulch fire, a small
fire in southern Utah, USA, in July 2014 (Fig. 13). The fire plume ex-
hibited NH3 mole fraction enhancements of up to 5.5 ppb. This is ap-
proximately 10 ppb lower than emissions from the El Segundo natural
gas power plant in Los Angeles, USA, observed in prior HyTES cam-
paigns. The magnitude of NH3 and particulate emissions are primarily
determined by combustion type (Liu et al., 2014; Reid et al., 2005;
Yokelson et al., 1997). Incomplete combustion products include CO,
CH4, NH3, C2–C3 hydrocarbons, methanol (CH3OH), formic and acetic
acids, and formaldehyde (CH2O) (Bertschi et al., 2003; Yokelson et al.,
1997). The observed NH3 values are within expectations for the
creeping and smoldering conditions and incomplete combustion of the
Gulch fire.

Because TIR spectrometers rely on the thermal emission and
thermal contrast between the ground and gas for detection, particulate
scattering from smoke has little effect on the signal. This suggests po-
tential for combined analysis of both the particulate and gaseous
emissions from fires by flying HyTES with a multi-angle polarimeter
imager such as the Airborne Multi-angle Spectro Polarimetric Imager
(AirMSPI, Diner et al., 2013). AirMSPI is an airborne prototype in-
strument used for obtaining multi-angle polarization imagery. AirMSPI
could be used to assess the relative contribution of organic, non-or-
ganic, and black carbon particles to the total airborne particle emissions
(Kalashnikova et al., 2018), while HyTES could provide information on
concentrations of gaseous emissions and temperature. Synergistic use of
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hyperspectral thermal and multi-angle observations would help con-
strain biomass burning emissions and particulate composition of smoke
to help model and predict the impacts of future emissions on air quality
and climate change. Another interesting synergy is between

hyperspectral VSWIR, MIR and TIR data. The VSWIR spectral region is
more sensitive to high temperatures between approximately 800 and
1500 K, and thus ideally suited for hot flaming fires. The MIR and TIR
spectral regions in contrast are more sensitive to lower temperatures

Fig. 11. a) Hyperspectral differenced Normalized Burn Ratio and b) surface composition (as in Fig. 11b) derived from in the 2009 Jesusita burned area in California,
USA, as derived from Airborne Visible/Infrared Imaging Spectrometer. c) Canopy height derived from an airborne light detection and ranging acquisition in
December 2009 (after Chen, 2017).

Fig. 12. Absorption features of a) CH4 and b) NH3 extracted from the high-resolution transmissions molecular absorption 2012 database (HITRAN, Rothman et al.,
2013) convolved to spectral response functions of the Hyperspectral Thermal Emission Spectrometer. Spectral regions with high intensity represent absorption
features.
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between approximately 300 and 800 K, and thus better suited for cooler
smoldering fires. The combined use of hyperspectral VSWIR, MIR and
TIR data thus offers opportunities to better characterize the full range of
fire temperatures on Earth.

4. Conclusions

Hyperspectral remote sensing has proven utility in all temporal
stages of the fire disturbance continuum. In pre-fire applications, hy-
perspectral data allows detailed assessment of fuel type and condition.
Fire temperatures and gaseous emissions can be determined from active
fires with hyperspectral data. After the fire, hyperspectral information
from charcoal, ash and vegetation are indicative for fire severity and
ecosystem recovery. Improvements from hyperspectral imagery come
from its ability to capture narrow spectral features, e.g. water absorp-
tion features for fuel moisture estimations, and/or better constraints on
algorithms because of the higher spectral data dimensionality. So far,
hyperspectral fire applications have almost exclusively leveraged air-
borne data in the visible to short-wave infrared. The number of studies
is limited because airborne campaign planning generally does not in-
clude ephemeral fire occurrence. Despite the limited number of studies,
these examples demonstrate the feasibility and maturity of hyperspec-
tral data processing for large scale applications when such datasets
would become available from spaceborne platforms. Scheduled mis-
sions like EnMAP, HyspIRI and PRISMA will provide opportunities to
further explore linkages between ecosystem properties and fires at re-
gional to global scales. The maturity of applications based on visible to
short-wave infrared regions is supplemented by upcoming innovative
developments in the mid to thermal infrared regions. Recent airborne
hyperspectral thermal infrared developments show the potential for
significant advances in retrieving fire temperature and gaseous emis-
sions. Further research should focus on preparing readiness of proces-
sing techniques for large scale hyperspectral applications in the visible
to short-wave infrared, increasing airborne acquisition and data ex-
ploration of fires with hyperspectral thermal data, and building sy-
nergistic capacities between hyperspectral data and structural data
from light or radio detection and ranging instruments.
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