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A B S T R A C T

Defoliation by herbivorous insects is a widespread forest disturbance driver, affecting global forest health and
ecosystem dynamics. Compared with time- and labor-intensive field surveys, remote sensing provides the only
realistic approach to mapping canopy defoliation by herbivorous insects over large spatial and temporal scales.
However, the spectral and structural signatures of defoliation by insects at the individual tree level have not been
well studied. Additionally, the predictive power of spectral and structural metrics for mapping canopy defo-
liation has seldom been compared. These critical knowledge gaps prevent us from consistently detecting and
mapping canopy defoliation by herbivorous insects across multiple scales. During the peak of a gypsy moth
outbreak in Long Island, New York in summer 2016, we leveraged bi-temporal airborne imaging spectroscopy
(IS, i.e., hyperspectral imaging) and LiDAR measurements at 1m spatial resolution to explore the spectral and
structural signatures of canopy defoliation in a mixed oak-pine forest. We determined that red edge and near-
infrared spectral regions within the IS data were most sensitive to crown-scale defoliation severity. LiDAR
measurements including B70 (i.e., 70th bincentile height), intensity skewness, and kurtosis were effectively able
to detect structural changes caused by herbivorous insects. In addition to canopy leaf loss, increased exposure of
understory and non-photosynthetic materials contributed to the detected spectral and structural signatures.
Comparing the ability of individual sensors to map canopy defoliation, the LiDAR-only Ordinary Least-Square
(OLS) model performed better than the IS-only model (Adj. R-squared=0.77, RMSE=15.37% vs. Adj. R-
squared= 0.63, RMSE=19.11%). The IS+ LiDAR model improved on performance of the individual sensors
(Adj. R-squared= 0.81, RMSE=14.46%). Our study improves our understanding of spectral and structural
signatures of defoliation by herbivorous insects and presents a novel approach for mapping insect defoliation at
the individual tree level. Additionally, with the current and next generation of spaceborne sensors (e.g.,
WorldView-3, Landsat, Sentinel-2, HyspIRI, and GEDI), higher accuracy and frequent monitoring of insect de-
foliation may become more feasible across a range of spatial scales, which are critical for ecological research and
management of forest resources including the economic consequences of forest insect infestations (e.g., reduced
growth and increased mortality), as well as for informing and testing of carbon cycle models.

1. Introduction

Infestation by insects and pathogens is one of most widespread
disturbances in forest ecosystems, affecting forest health, ecosystem
services, carbon dynamics, and species composition across the globe

(Ayres and Lombardero, 2000; Kautz et al., 2017a; Kautz et al., 2017b;
Seidl et al., 2017; Senf et al., 2017c). In the United States, forest in-
festation was estimated to be 20M ha per year, of which 25–50% was
attributable to defoliation by herbivorous insects (Dale et al., 2001;
Kautz et al., 2017b). The exotic gypsy moth (Lymantria dispar L.) is one
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of the chief defoliators across the northeastern United States. Gypsy
moth larvae (caterpillars) feed on leaves of host trees and can defoliate
0.5–1.0M ha forest per year on average and> 5.0M ha in peak years
(Elkinton and Liebhold, 1990; Man, 2010). Also, because the range of
gypsy moth is still expanding, studying defoliation by gypsy moth is of
high research and management interest (De Beurs and Townsend, 2008;
Foster et al., 2013; Spruce et al., 2011; Thompson et al., 2017;
Townsend et al., 2012).

Insect defoliation does not necessarily result in immediate tree
mortality, but can reduce tree growth and trees' resilience to secondary
pressures (e.g., drought, wildfire, and hurricanes) (Dale et al., 2001;
Gandhi and Herms, 2010; Naidoo and Lechowicz, 2001). Defoliation
can also kill trees after successive defoliation events (Dudley and Bean,
2012; Kegg, 1971), leading to significant ecological and economic
consequences and carbon dynamics (Clark et al., 2010; Coyle et al.,
2008; Kenis et al., 2009). Effective detection and monitoring of insect
defoliation has thus long been a central focus in the remote sensing,
forest ecology and management communities (Coulson et al., 1999;
Foster et al., 2013; Landsber and Ohmart, 1989; Townsend et al., 2012),
and becomes a pressing issue with increasing evidence showing positive
interactions between forest infestation and drier and warmer climate
(Kolb et al., 2016; Logan et al., 2003; Seidl et al., 2014; Seidl et al.,
2017).

Remote sensing provides the only realistic way for mapping defo-
liation by herbivorous insects over large spatial and temporal scales
(Rullan-Silva et al., 2013; Senf et al., 2017c; Townsend et al., 2012). A
wide range of remote sensing data has demonstrated the capacity to
monitor spatial-temporal patterns of defoliation by herbivorous insects,
including spaceborne multispectral data (e.g., 2 m WorldView-2, 10m
SPOT, 30m Landsat, and 250m MODIS) (De Beurs and Townsend,
2008; Dennison et al., 2009; Franklin et al., 2008; Ji et al., 2017; Meng
et al., 2012; Nagler et al., 2014; Oumar and Mutanga, 2014; Spruce
et al., 2011; Townsend et al., 2012), airborne imaging spectroscopy (IS,
i.e., hyperspectral imaging) data (e.g., 5 m HyMap and18m AVIRIS)
(Fassnacht et al., 2014; Hanavan et al., 2015; Somers et al., 2010), and
airborne Light Detection and Ranging (LiDAR) data (Hanssen and
Solberg, 2007; Solberg et al., 2006) at multiple spatial scales. Numerous
remote sensing-based approaches to mapping defoliation by herbi-
vorous insects have also been developed and applied, such as vegeta-
tion indices (Spruce et al., 2011; Townsend et al., 2012), spectral
mixture analysis (Radeloff et al., 1999; Somers et al., 2010), and image
classification (Kantola et al., 2010; Oumar and Mutanga, 2014; Senf
et al., 2015).

Vegetation indices applied to 30m Landsat data have been used
most widely, e.g., (Hurley et al., 2004; Pasquarella et al., 2017;
Townsend et al., 2012), however, these approaches focus solely on
broadband spectral responses (i.e., red, near-infrared (NIR), and
shortwave near-infrared (SWIR)) to canopy defoliation at ≥ 30m
scales. Very high spatial resolution (VHR,≤5m) multi-spectral sensors,
such as GeoEye, QuickBird, and WorldView-2, have been used for
mapping and predicting canopy defoliation with relatively higher ac-
curacies, e.g., (Dennison et al., 2010; Oumar and Mutanga, 2014; White
et al., 2005; Wulder et al., 2008), but most of these studies mainly fo-
cused on mapping advanced stages of canopy defoliation (e.g., tree
mortality). More importantly, only a few studies have explored the
utility of IS or LiDAR for measuring defoliation severity of deciduous
broadleaved trees in temperate forest (Hanavan et al., 2015; Hanssen
and Solberg, 2007; Shendryk et al., 2016; Solberg et al., 2006; Somers
et al., 2010). Determination of high resolution spectral and structural
signatures of canopy defoliation severity of deciduous broadleaved
trees in temperate forest is critical for consistent and precise forest
health monitoring at global scale (Millar and Stephenson, 2015;
Trumbore et al., 2015), but these signatures are still poorly understood.
Additionally, few studies have compared the predictive power of
spectral and structural metrics and their combination for measuring
defoliation severity, and the combined use of spectral and structural

metrics has broad implications for the development of next-generation
remote sensing frameworks for forest health monitoring (Lausch et al.,
2016; White et al., 2016). These critical knowledge gaps need to be
filled for consistent and precise detection and mapping of defoliation by
herbivorous insects at VHR, which will enable more effective opera-
tional forest management (e.g., insect control and fire suppression) and
improve our understanding of the effects of insect outbreaks on forest
ecology, ecosystem services, and carbon dynamics (Black, 2005; Clark
et al., 2010; Kenis et al., 2009; Oumar and Mutanga, 2014).

The development of airborne remote sensing platforms, including
VHR optical IS and structual LiDAR instruments, can help resolve these
knowledge gaps (Asner et al., 2017; Cook et al., 2013). By measuring
continuous narrowband spectral information, IS data can enhance our
ability to remotely assess forest health (Hanavan et al., 2015; Somers
et al., 2010). By retrieving detailed three-dimensional information
about tree canopies with a high density of laser pulses, LiDAR provides
new opportunities for monitoring forest health in the context of the
detection and mapping of forest infestations (Hanssen and Solberg,
2007; Shendryk et al., 2016; Solberg et al., 2006). Most prior applica-
tions of IS or LiDAR to mapping defoliation by herbivorous insects have
focused on pine trees and wood-boring beetles (e.g., mountain pine
beetles) (Hanssen and Solberg, 2007; Senf et al., 2017c; Solberg et al.,
2006), and the potential of combined IS and LiDAR measurements has
not been sufficiently assessed and compared for mapping defoliation
severity of deciduous broadleaf forests by defoliators like gypsy moth.

Our objective is to explore the crown-scale spectral and structural
signatures of canopy defoliation by gypsy moth caterpillars across a
defoliation severity gradient and present a novel approach for mapping
crown-scale canopy defoliation, which can be easily transferable to
other forest ecosystems or forest infestation types. Likely because of
consecutive dry springs for the past several years (2014–2016), a severe
gypsy moth outbreak occurred and caused widespread canopy defo-
liation in northeastern United States in early summer 2016 (Pasquarella
et al., 2017). During the peak of this defoliation event (i.e., June 14th,
2016), we leveraged the airborne remote sensing platform (i.e., NASA
Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT); Cook et al.,
2013) to simultaneously measure optical IS and structural LiDAR in-
formation at VHR in a mixed oak-pine forest. We chose this study area,
because we previously surveyed this area with the airborne G-LiHT
platform one year before on an anniversary date (i.e., June 15th, 2015).
During ground measurements, we estimated percentage of leaf area
remaining, ranging between 0% and 100%, to record defoliation se-
verity at the individual tree level. As defoliation severity is the inverse
of percentage of leaf area remaining, 0% leaf area remaining refers to
complete canopy defoliation.

Using G-LiHT IS and LiDAR datasets and corresponding ground
measurements, we addressed the following research questions: (1) At
the crown scale, what are the spectral and structural signatures of de-
foliation by herbivorous insects across a defoliation severity gradient?
(2) Can biophysical effects (i.e., canopy leaf loss and increased non-
photosynthetic material and understory exposure) explain the detected
spectral and structural signatures of defoliation by herbivorous insects?
(3) What are the differences in predictive power of IS and LiDAR for
mapping crown-scale defoliation? (4) Can the combined use of IS and
LiDAR improve mapping accuracy?

2. Materials

2.1. Study area

We examined a gypsy moth outbreak event in several mixed oak-
pine forest stands located in the Long Island Pine Barrens ecoregion,
New York (Fig. 1) during the summer of 2016. The study area has
undergone several outbreaks of gypsy moth defoliation for the past
three decades. The study area has sandy-flat soils and a moderate-
humid climate with evenly-distributed annual precipitation
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(Kurczewski and Boyle, 2000). Annual precipitation is approximately
1200mm; annual daily mean temperature is −4.8 °C in January and
21.9 °C in July. Mixed with pitch pine (Pinus rigida), the dominant
species of broadleaf trees in the study areas are white oak (Quercus alba
L.), scarlet oak (Quercus coccinea), and black oak (Quercus velutina).
Huckleberry (Gaylussacia baccata K. Koch) and blueberry (Vaccinium
spp.) are the two main shrub species in the study area, which have been
found to have an inverse canopy cover relationship with trees (Reiners,
1967).

2.2. Aerial survey and data preprocessing

We conducted two aerial surveys of the study area (collectively,
800 ha; Fig. 1), with the airborne G-LiHT platform before and during
the peak of the gypsy moth outbreak in summer 2015 (i.e., June 15th,
2015) and 2016 (i.e., June 14th, 2016). The bi-temporal aerial surveys
were conducted on a sunny day within 2-h window of local solar noon
at a 50° field of view and 200m average flight altitude. Compared with
a single post-disturbance IS and LiDAR dataset, bi-temporal datasets
allow measurement of changes in specific tree crowns. G-LiHT consists
of a scanning LiDAR, profiling LiDAR, imaging spectrometer, Global
Positioning System and Inertial Navigation System (GPS-INS) and time
server, data acquisition computer, and downwelling irradiance spec-
trometer (Cook et al., 2013). The LiDAR data were collected by an on-
board aerial laser scanning (ALS) system (Riegl USA, Orlando, FL, USA)
with a mean pulse density of 15–20 laser pulses/m2. The IS sensor
(Headwall Photonics, Fitchburg, MA, USA) collected spectra over the
407–1007 nm spectral region in 114 spectral bands with a≤5 nm

increments (full width half maximum) and a 12-bit radiometric re-
solution at 1m spatial resolution (Cook et al., 2013). The data used in
this study, including at-sensor corrected reflectance (ACR) and geor-
eferenced IS data and coincident LiDAR data at 1m spatial resolution,
can be downloaded from the G-LiHT website (http://gliht.gsfc.nasa.
gov/).

To ensure consistent temporal reflectance response, we performed
radiometric inter-calibrations for the bi-temporal ACR IS imagery.
Specifically, we manually selected 3560 pixels of invariant spectral
features (i.e., impervious surfaces) directly on the bi-temporal G-LiHT
IS imagery, then we fitted and applied a linear regression model for
each IS spectral band, from 2015 against 2016. Inter-calibrated spectra
were compared to in situ spectra collected on the ground for data
quality check (see Section 2.3 below).

2.3. Field measurements

Because defoliation by gypsy moth caterpillars is an ephemeral
process, we conducted field measurements of canopy defoliation at the
individual tree level within five days of the 2016 G-LiHT aerial survey.
Since gypsy moth caterpillars mainly feed on deciduous broadleaf trees
(Lippitt et al., 2008), we only measured defoliation status of oak trees
within the study area including black oak, scarlet oak, and white oak.
To capture a wide variation of canopy defoliation severity and avoid
spatial autocorrelation effects, we established seven variable-length
transects ranging between 120 and 250m within the study area (Fig. 1).
Specifically, we randomly started to sample oak trees from the road
edge, and measured every oak tree at least 15m spatially separated in

Fig. 1. Crown-scale defoliation survey transects within the study area (the background imagery is the true color RGB composition (657 nm (red), 564 nm (green), and
484 nm (blue)) derived from NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) measurements acquired on June 14, 2016); in-situ pictures showing
crown-scale defoliation severity scores (i.e., percentage of leaf area remaining). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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each transect until reaching the forest interior (Fig. 1).
In total, 91 oak crowns were measured within the study area

(Fig. 1). The percentage of leaf area remaining in each survey crown
was visually estimated by two technicians separately with 10% inter-
vals, and the two independent estimations were averaged and used as
defoliation severity. At the same time, multiple in-situ photos were
taken for each survey crown for verifying defoliation status afterwards
(Fig. 1). Species and diameter at breast height (DBH) were also re-
corded. Additionally, for checking the quality and potential spectral
calibration of G-LiHT IS data, we used a Spectral Evolution PSR+ 3500
spectrometer (http://www.spectralevolution.com/) to collect the
ground spectra during the 2016 G-LiHT aerial survey. Specifically, we
collected spectra of different land covers on the ground (e.g., soil, grass,
concrete road, and litter), ranging between 350 and 2500 nm, and each
ground sample was measured five times. The center coordinates of all
survey tree crowns and field spectra sites were recorded with a hand-
held decimeter-level differential global positioning system (dGPS,
Trimble Geo7x). After post-processing, the average horizontal accuracy
of recorded coordinates was 0.20m.

3. Methods

To map crown-scale oak canopy defoliation, our workflow was
composed of the following steps: (1) LiDAR-based crown segmentation
(i.e., individual tree delineation), (2) analysis of spectral and structural
signatures of survey crowns, (3) Multiple Endmember Spectral Mixture
Analysis (MESMA) applied to IS data in 2015 and 2015, (4) training and
comparison of defoliation models, and (5) crown-scale canopy defo-
liation mapping (Fig. 2).

3.1. LiDAR-based crown segmentation

We applied a top-down segmentation algorithm (Li et al., 2012) to
segment tree crowns from the G-LiHT LiDAR point cloud, as the dense
understory of Long Island Pine Barrens ecoregion forest limits bottom-
up algorithms for detecting individual tree trunks (Lu et al., 2014;
Shendryk et al., 2016). This top-down segmentation algorithm isolates
trees individually and sequentially from the point cloud, from the tallest
tree to the shortest. Starting from a treetop, a target tree is identified by
including nearby points and excluding points of other trees based on
their horizontal spacing. The main input parameters of the used top-
down segmentation algorithm are 1) search radius (R), which is used
for identifying local maxima, 2) horizontal threshold (dt1), which is
used for including points to a target tree at height lower than 15m, 3)
horizontal threshold (dt2), which is used for including points to a target
tree at height higher than 15m, and 4) minimum number of points (n)
in a target tree (Li et al., 2012). Based on the 18 forest inventory plot
data collected in the same forest area from previous studies (Meng
et al., 2017) (see Section 1 in Supplementary materials for more details
about the forest inventory data), the following combination of para-
meters: R of 1.5 m, dt1 of 1.5m; dt2 of 3.5m, and n of 10 points were
determined and used to segment tree crowns (see Supplementary ma-
terials Section 2 for more details about determining optimal segmen-
tation parameters). The segmentation was performed using Digital
Forestry Toolbox (Parkan, 2017). We then used the dGPS-recorded
coordinates of individual defoliation survey trees to link corresponding
polygons of segmented crowns, and used these crown-scale segmenta-
tion polygons as the basis for further analysis.

3.2. Multiple endmember spectral mixture analysis (MESMA)

To calculate IS metrics for defoliation mapping and explore the
biophysical effects underpinning the spectral and structural signatures
of defoliation by gypsy moth caterpillars, we applied MESMA to the G-
LiHT IS imagery in 2015 and 2016. MESMA is an expanded version of
Linear Spectral Mixture Analysis (LSMA) (Roberts et al., 1998). LSMA

decomposes the reflectance of image mixed pixels using a fixed set of
spectrally distinct components (i.e., endmembers), enabling the esti-
mations of the relative contribution of a given cover type (i.e., abun-
dance) to pixel reflectance (Drake et al., 1999). MESMA overcomes the
LSMA's constraint of modeling all pixels for a given cover type using the
same set of endmembers by allowing the endmember model to vary on
a pixel-by-pixel basis (Roberts et al., 1998). Specifically, MESMA can
use variable endmembers for different endmember models (e.g., two,
three, four or more) to account for within-class spectral variability.
Thereby, MESMA can extract biophysical-meaningful information from
IS spectra, and has been widely used for remote sensing of forest dis-
turbance studies (Lewis et al., 2017; Meng et al., 2017; Meng et al.,
2018; Meng and Zhao, 2017; Quintano et al., 2013).

Our application of MESMA consisted of three key steps: spectral

Fig. 2. Workflow in this study for mapping canopy defoliation by herbivorous
insects at the individual tree level.
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library development, selection of optimal endmembers, and modeling.
First, we used G-LiHT image spectra to define endmembers for spectral
library development. Based on our knowledge of the study area and
very high spatial resolution imagery in Google Earth Pro, we manually
defined candidate endmembers on the 2016 G-LiHT hyperspectral
imagery. Avoiding shadow and edge pixels, we selected about two
thousand uniform pixels as candidates for green vegetation (GV) end-
members, including oak, pine, and shrub understory. Endmember
Average Root Mean Square Error (EAR; Dennison and Roberts, 2003)
was used to select GV endmembers for MESMA. EAR calculates how
well each endmember spectrally represents one endmember type. We
selected one to two “optimal” endmembers for the following GV types:
GV-understory, GV-pine, and GV-oak (Fig. 3a). For non-photosynthetic
vegetation (NPV) endmembers, we convolved branch and trunk field
spectra collected from the study area (Section 2.3) into G-LiHT spectra
(Fig. 3b). Considering the relatively simple cover types in our study
area, we assumed that every G-LiHT IS pixel can be modeled by a three
endmember model (i.e. GV-NPV-Shadow). We thus applied a three
endmember MESMA model to unmix each G-LiHT IS image.

We set the minimum allowable endmember fraction, maximum al-
lowable endmember fraction, and maximum allowable shade fraction
to values of 0.05, 1.05 and 1.0, respectively, and the maximum root-
mean-square error (RMSE) to 0.025. All constraint values were based
on recommendations for the Visualization and Image Processing for
Environmental Research (VIPER) Tools software package (Roberts
et al., 2007), which was used to implement MESMA. MESMA success-
fully modeled 91.8% of 2015 IS pixels and 94.5% of 2016 IS pixels.

3.3. LiDAR structural metrics

G-LiHT LiDAR data were used to calculate various structural metrics
for mapping defoliation by gypsy moth caterpillars (Table 1). Previous
studies have found that LiDAR structural metrics can effectively detect
overall structural changes by natural disturbances and thus can be used
to assess forest health (Kane et al., 2014; McCarley et al., 2017;
Shendryk et al., 2016). We chose these structural metrics, according to
their use in other forest disturbance studies (Kane et al., 2014;
McCarley et al., 2017; Shendryk et al., 2016). To generate the LiDAR
structural metrics, we first binned the bi-temporal G-LiHT LiDAR point
clouds into 1-m voxels. Then all LiDAR structural indices were calcu-
lated and converted into individual rasters. We calculated all LiDAR-
derived structural metrics using LAStools software suite (https://
rapidlasso.com/). Not all structural metrics were finally used, and a
variable selection process was applied to select optimal predictors for
defoliation modeling (Please see Sections 3.4 & 3.5 below).

3.4. Comparison of predictive powers for IS, LiDAR and their combination

To train a robust ordinary least squares (OLS) model for mapping
crown-scale canopy defoliation, a preliminary screening was first con-
ducted to select optimal predictors from all available predictors derived
from G-LiHT IS and LiDAR data. We first calculated mean, minimum,
maximum, and standard deviation values for each individual tree
crown polygon described in Section 3.1 for 2015 and 2016 MESMA
(i.e., oak, pine, understory, and NPV fraction) and structural metrics
(Table 1). Then, based on the survey crown dataset, we fit a linear
model and calculated Pearson's correlation coefficient (r) for all com-
binations of 2016 predictors and percentage of leaf area remaining at
the individual tree level. We also evaluated if univariate models be-
tween the response variable and each 2016 predictor variable could be
better fit with a second-degree polynomial or logistic regression than
with a simple linear relationship, but we did not observe evidence for
any other than a linear fit. As such to reduce data redundancy, a
threshold of an absolute r value of 0.40 was used to exclude predictors
with poor predictive power from further analysis. After the predictor
screening, the change in remaining predictors (see Fig. 6 below for a
complete list) was calculated (Eq. (1)) and used to provide additional
predictive variables:

= −Change in Var Var Var2015 2016 (1)

where Var is the given variable under study. Then, we performed the
following steps for OLS model training and validation: (1) The survey
crown dataset was randomly split into training (70%) and validation
(30%) dataset. (2) To compare the predictive power of IS, LiDAR, and
their combination, the three following options were used for model
training: IS: only using IS-derived (i.e., MESMA) variables; LiDAR: only
using LiDAR variables; IS+ LiDAR: using both IS and LiDAR variables.
(3) Using an Akaike Information Criterion (AIC)-based backward
method (Burnham and Anderson, 2004), we selected important pre-
dictors and trained OLS models for the three options, separately. (4) We
applied the three trained OLS models to the validation datasets and
assessed their predictive powers using the root mean square error
(RMSE; mean Euclidean distance between the prediction in crown-scale
oak defoliation and the surveyed oak defoliation) and adjusted R-
squared (i.e., the proportion of variability in crown-scale oak defolia-
tion explained by model).

Important variable selection can remove unnecessary predictors and
thus reduce collinearity and noise of trained OLS models (Kane et al.,
2015; Meng and Dennison, 2015). AIC is a metric commonly used to
compare the performances of different OLS models (Yamashita et al.,
2007). AIC-based backward method starts all available predictors in the
OLS model, and then removes the predictor with lowest AIC

Fig. 3. Green vegetation (GV) (a) and non-photosynthetic vegetation (NPV) (b) endmembers selected for use with MESMA.
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improvement until all predictors in the OLS model contribute sig-
nificantly to the OLS model (Yamashita et al., 2007). Remaining un-
certainties during the current OLS modeling process include the ran-
domness in splitting between training (70%) and validation (30%)
datasets and the potential of over-fitting caused by the relative small
size dataset (i.e., 91 crowns). Thereby, we repeated the OLS modeling
process one hundred times using randomly selected training and vali-
dation data, and then summarized the resulting RMSE and adjusted R-
squared results to assess the OLS models.

3.5. Mapping crown-scale oak defoliation

To map canopy defoliation by gypsy moth caterpillars at the in-
dividual tree level, we trained an OLS IS+ LiDAR model using selected
important predictors with a frequency of ≥ 60 (showing best perfor-
mance, see Section 4.4). To avoid over-fitting, we averaged the coeffi-
cient values of IS+ LiDAR model from the repeat training results (see
Table 2 below) for mapping crown-scale oak defoliation across the

study area. An oak crown mask was generated based on the 2015
MESMA results: we classified a crown object as oak if> 50% pixels
within the crown object polygon had ≥ 0.5 oak endmember fraction
value. The accuracy of the oak crown map was assessed using crown-
scale oak defoliation and forest inventory field measurements in 2016,
and had an overall accuracy of 84% estimated by an error matrix (Table
S.1).

The primary assumptions of OLS modeling were also tested and
satisfied as below: (1) Normality, by visual analysis of a normal Q-Q
plot showing standardized residuals vs. normal scores (Ghasemi and
Zahediasl, 2012); (2) Co-linearity, by calculations of variance inflation
factors (VIF) with a threshold of 10 (O'brien, 2007); (3) Homo-
scedasticity, by visual analysis of a plot showing the standardized re-
siduals vs. the standardized predicted values (Griffith, 2009).

Table 1
Calculated LiDAR-derived structural metrics from 2015 and 2016 G-LiHT aerial data collections used in this study.

Index acronym LiDAR-derive structural metrics Interpretation

CHM Canopy height model Mean vegetation crown height
COV Canopy cover Number of first returns above the cover cutoff (i.e., 5 m) divided by the number of all first returns and output as a

percentage
DNS Canopy density Number of all points above the cover cutoff (i.e., 5 m) divided by the number of all returns
QAV Mean quadratic height Mean of the quadratic height (∑ = hi

n
i1
2/n), hi is the height of a return point and n is the number of all points

SKE Skewness The skewness of return points
KUR Kurtosis The kurtosis of return points
Pnth nth percentile height nth (i.e., 10, 20, 30, 40, 50, 60, 70, 80, and 90) percentile height value of return points between the ground and the

maximum height
Int_ske Intensity skewness of return intensity Intensity skewness of return points
Int_kur Intensity kurtosis of return intensity Intensity kurtosis of return points
Bnth nth bincentile height Fraction of return points between the nth (i.e., 10, 20, 30, 40, 50, 60, 70, 80, and 90) percentile height and the

maximum height (%)
0–5m 0–5m LiDAR return fraction Fraction of return points within the 0–5m height interval to the total number of return points (%)
5–10m 5–10m LiDAR return fraction Fraction of return points within the 5–10m height interval to the total number of return points (%)
10–15m 10–15m LiDAR return fraction Fraction of return points within the 10–15m height interval to the total number of return points (%)
15–20m 15–20m LiDAR return fraction Fraction of return points within the 15–20m height interval to the total number of return points (%)
20–35m 20–35m LiDAR return fraction Fraction of all return points within the 20–35m height interval to the total number of return points (%)

Table 2
Selection frequencies of important predictor variables by AIC method during OLS modeling (only predictor variables selected more than once was shown here) and
their confidence interval of coefficient values.

Name Frequency Option Chosen or not for final models 95% Confidence interval of coefficient values

Intercept IS-only 62.06 ± 0.74
Change in NPV fraction 100 IS-only Yes 318.34 ± 8.61
Oak fraction in 2016 97 IS-only Yes 35 ± 1.42
Change in understory fraction 95 IS-only Yes 60.42 ± 1.25
NPV fraction in 2016 86 IS-only Yes 3058.67 ± 138.86
Change in MESMA oak fraction 9 IS-only No N.A.
MESMA understory fraction in 2016 6 IS-only No N.A.
Intercept LiDAR-only 139.36 ± 0.7
B70 in 2016 99 LiDAR-only Yes −1.09 ± 0.02
Change in Kurtosis 70 LiDAR-only Yes −10.86 ± 0.35
Intensity skewness in 2016 60 LiDAR-only Yes −57.95 ± 0.65
Change in intensity skewness 16 LiDAR-only No N.A.
B80 in 2016 1 LiDAR-only No N.A.
Skewness in 2016 1 LiDAR-only No N.A.
Change in skewness 1 LiDAR-only No N.A.
Intercept IS+ LiDAR 100.53 ± 0.3
B70 in 2016 98 IS+ LiDAR Yes −1.12 ± 0.02
MESMA Oak fraction in 2016 97 IS+ LiDAR Yes 36.28 ± 0.8
Change in intensity skewness 69 IS+ LiDAR Yes 20.82 ± 0.57
Change in Kurtosis 38 IS+ LiDAR No N.A.
Intensity skewness in 2016 13 IS+ LiDAR No N.A.
Change in B80 8 IS+ LiDAR No N.A.
MESMA NPV fraction in 2016 2 IS+ LiDAR No N.A.
Change in MESMA NPV fraction 1 IS+ LiDAR No N.A.
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4. Results

4.1. Crown-scale spectral signatures of oak defoliation

To avoid noise and show the general trend of oak spectra across a
defoliation severity gradient, surveyed oak crowns were grouped into
five defoliation severity levels by an equal 20% interval, and the mean
spectra of each severity group were calculated and plotted in Fig. 4,
consistent with previous similar remote sensing studies (Townsend
et al., 2012). In general, the crown-scale oak spectra were sensitive to
defoliation severity, with large spectra variations at green, red edge,
and NIR wavelengths (Fig. 4). Specifically, red edge slope, associated
with vegetative vigor, decreased with defoliation severity; similarly,
NIR reflectance, associated with vegetation biomass, also decreased
with defoliation severity. Visible reflectance (e.g., green wavelength)
did not demonstrate a clear trend with severity.

4.2. Crown-scale structural changes by oak defoliation

LiDAR-measured canopy height profiles within the five defoliation
severity groups varied from 2015 to 2016 (Fig. 6). Most of the defo-
liation severity groups had positive values at lower vertical height in-
tervals (< 10m), indicating better penetration of laser pulses through
the forest canopy in 2016 and returns from near the surface due to
canopy leaf loss. Within the 10–20m vertical height interval, return
points decreased from 2015 to 2016. However, there is no clear trend
within the 20–35m vertical height interval.

4.3. Comparisons of OLS models using IS-only, LiDAR-only and
IS+ LiDAR variables

We plotted and compared the scatterplots of percentage of leaf area
remaining versus 2016 IS and LiDAR metrics for variables with an ab-
solute value of r≥ 0.40 (Fig. 6). Among the 3 MESMA fraction and 31
LiDAR metrics, we selected all the MESMA and 11 of the LiDAR-derived
predictors (Fig. 6). Specifically, all MESMA related predictors had an
absolute value of r≥ 0.40 with the percentage of leaf area remaining
and were selected for further analysis; in terms of LiDAR-derived
structural predictors, nearly all percentile height related predictors
except B10 had relatively high linear correlations with crown-scale
defoliation severity and demonstrated an increasing trend in correlation
with percentile height (Fig. 6). We further calculated the changes from
2015 to 2016 for these predictors with an absolute value of r≥ 0.40.

Based on the AIC metric, the most frequently selected important
predictor variables differed among the IS-only, LiDAR-only and
IS+ LiDAR datasets (Table 2). Only the predictors selected>60 times
were used for modeling canopy defoliation for each modeling option
(i.e., IS-only, LiDAR-only, and IS+ LiDAR; Table 2). Specifically,
change in NPV fraction, oak fraction value in 2016, change in unders-
tory, and NPV fraction in 2016 were used for IS-only model; B70 in
2016, change in Kurtosis, and intensity skewness in 2016 were used for
the LiDAR-only model; for the IS+ LiDAR model, B70 in 2016, oak
fraction value in 2016, and change in intensity skewness were used. We
also calculated the 95% confidence interval of coefficient values of
chosen predictors for each dataset option (Table 2).

Fig. 4. Mean crown-scale spectra and their 95% confidence interval for the following defoliation severity (i.e., percentage of leaf area remaining) groups extracted
from the 2016 G-LiHT imaging spectroscopy measurement: 0–20% leaf area remaining; 20–40% leaf area remaining; 40–60% leaf area remaining; 60–80% leaf area
remaining; 80–100% leaf area remaining; To avoid noise, percentage of leaf area remaining was grouped into 20% intervals, consistent with previous similar remote
sensing studies (Townsend et al., 2012). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Validation results varied among the three predictor options (Fig. 7).
Overall, the IS-only model had the lowest mapping accuracy with a
mean Adj. R value of 0.63, significantly lower (P < 0.001) than LiDAR-
only and IS+ LiDAR models. The validation accuracy of the IS +
LiDAR model was only slightly higher than that of LiDAR model (0.81
vs. 0.77), but still statistically significant at the level of 0.05. Using
RMSE as a metric, the IS+ LiDAR model consistently performed best
for mapping canopy defoliation (14.46 ± 2.22%), comparing with the
IS-only model (19.11 ± 2.90%) and the LiDAR-only model
(15.37 ± 2.12%). Moreover, the value ranges of Adj.R-squared and
RMSE (%) for LiDAR-only and IS+ LiDAR model were both much less
(i.e. 50% and 30%, respectively) than that for IS-only model, signifying
much lower modeling uncertainty (Fig. S1). Finally, we found regres-
sion coefficients from the different dataset splitting schemes were
consistent, in terms of their general pattern and relative magnitude
(Table 2).

4.4. Biophysical effects of canopy defoliation

To explore the biophysical effects underpinning the spectral and
structural signatures of oak defoliation, we summarized the MESMA
fraction values and LiDAR metrics in 2015 and 2016 within the five
defoliation severity groups (Figs. 8 and 9). Oak fractional cover gen-
erally decreased from 2015 to 2016, but understory and NPV fractional
cover indicated the opposite trend (Fig. 8). Specifically, IS measure-
ment captured the increased exposure of forest understory (i.e., shrubs)
and NPV materials (i.e., trunk and branch), as a result of decrease in
canopy leaf area. More importantly, these changes varied with the
defoliation severity, with the largest changes found in highest severity
groups (0–20% leaf area remaining). Thus, we conclude that the de-
tected crown-scale spectral and structural signatures in Sections 4.1 &
4.2 can be explained by biophysical effects of insect herbivory including
decrease in canopy leaf area and increased exposure in NPV and un-
derstory. For LiDAR metrics, B70 (70th bincentile height, Table 1),
intensity skewness, and kurtosis all increased from 2015 to 2016, but
their change magnitudes decreased with defoliation severity (Fig. 9).
These trends are consistent with changes in the canopy height profile
within five defoliation severity groups (Fig. 5).

4.5. Crown-scale canopy defoliation across the study area

The final used IS+ LiDAR model for mapping crown-scale oak de-
foliation across the study area was as below.

= + × − ×

+ ×

C (%) 100.53 36.28 M 1.12 B70

20.82 Skewness
d oak,2016 2016

c (2)

where Cd stands for percentage of leaf area remaining, Moak,2016 for
MESMA oak fraction in 2016, B702016 for B70 in 2016, and Skewnessc
for change in intensity skewness from 2015 to 2016. It was possible for
our model to produce percentage of leaf area remaining< 0%
or>100%. In these cases, we reset the modeled value to the closest
physically possible value (0% or 100%). We also split the continuous
measurements of percentage of leaf area remaining by the IS+ LiDAR
model into five groups for map display.

We applied Eq. (2) to the G-LiHT IS+ LiDAR dataset covering our
study area to map the spatial patterns of canopy leaf status associated
with gypsy moth outbreak in 2016 (Fig. 10). Defoliation was scattered
in the 2016 map, with large patches of heavy defoliation (0–20% leaf
area remaining or 80–100% canopy leaf loss). 2.0% of crown objects
suffered heavy defoliation, which is equivalent to 104,811m2 of canopy
area in our study area. The MEMSA oak fraction, ranging between 0 and
1, and LiDAR B70, ranging between 0 and 100%, corresponded well
with the spatial pattern of modeled canopy defoliation status (percen-
tage of leaf area remaining) in our study areas.

5. Discussion

High resolution canopy defoliation mapping is critical for mon-
itoring and exploring the effects of insect infestations on forest health
and ecosystem dynamics, particularly under drier and warmer climate
scenarios that may weaken tree defenses to insect attack (Hicke et al.,
2012; Seidl et al., 2014; Seidl et al., 2017). We leveraged co-aligned
VHR airborne optical IS and structural LiDAR measurements to map
defoliation by gypsy moth caterpillars at the individual tree level. We
found crown-scale oak spectra at red-edge and NIR wavelengths were
most sensitive to defoliation severity, and simple LiDAR metrics (e.g.,
B70, intensity skewness, and Kurtosis) can effectively detect the crown-
scale overall structural changes caused by herbivorous insects. Bio-
physical effects of canopy leaf loss, particularly exposed understory and
NPV, underpinned the detected spectral and structural changes across
the defoliation severity gradient. Lastly, we found an IS+ LiDAR OLS
model had the best mapping performance (Fig. 9) among three pre-
dictor options (IS-only, LiDAR-only, and IS+ LiDAR), with LiDAR-only
outperforming IS-only. We didn't account for spatial effects for the OLS
modeling of canopy defoliation in our study, because spatial modeling
techniques, such as autoregressive model and spatial filtering
(McCarley et al., 2017; Meng et al., 2015), might further improve the
accuracy of OLS training models, but would increase the uncertainty of
applying the trained model to the whole study area.

Our analysis is distinguished from the previous studies in that we
explored the combined hyperspectral and LiDAR-derived structural
signatures of deciduous broadleaved trees across a defoliation severity
gradient at the individual tree level. Most previous efforts have focused
on analyzing spectral signatures of defoliation severity or mortality at
≥30m plot (i.e., inter-stand) scale with broadband multi-spectral
sensors (Radeloff et al., 1999; Rullan-Silva et al., 2013; Senf et al.,
2015; Senf et al., 2017c; Townsend et al., 2012), but previous studies
also indicate that the pattern of insect outbreak is driven by multi-scale
processes (Seidl et al., 2016; Senf et al., 2017a). Thus this study has
filled in an important knowledge gap in crown-scale spectral and
structural signatures of defoliation severity and provides the ground-
work for consistently mapping defoliation severity across multiple

Fig. 5. Change in canopy height profile within five defoliation severity (i.e.,
percentage of leaf area remaining) groups from 2015 to 2016 calculated from
the G-LiHT LiDAR measurements; negative values indicate the decrease in
vertical laser return point distributions from 2015 to 2016 at certain height
interval, and positive values indicate the opposite trend; bars show the standard
errors for each defoliation severity group. To avoid noise, percentage of leaf
area remaining was grouped into 20% intervals, consistent with previous si-
milar remote sensing studies (Townsend et al., 2012).

R. Meng et al. Remote Sensing of Environment 215 (2018) 170–183

177



Fi
g.

6.
Sc
at
te
r
pl
ot

m
at
ri
x
of

pe
rc
en

ta
ge

of
le
af

ar
ea

re
m
ai
ni
ng

vs
.2

01
6
IS

an
d
Li
D
A
R
m
et
ri
cs

us
ed

fo
r
m
od

el
tr
ai
ni
ng

:a
.M

ES
M
A
N
PV

fr
ac
ti
on

;b
.M

ES
M
A
oa

k
fr
ac
ti
on

;c
.M

ES
M
A
un

de
rs
to
ry

fr
ac
ti
on

;d
.L

iD
A
R
sk
ew

ne
ss
;

e.
Li
D
A
R
In
te
ns
it
y
ku

rt
os
is
;f
.L

iD
A
R
In
te
ns
it
y
sk
ew

ne
ss
;g

.2
0t
h
bi
nc

en
ti
le

he
ig
ht
;h

.3
0t
h
bi
nc

en
ti
le

he
ig
ht
;i
.4

0t
h
bi
nc

en
ti
le

he
ig
ht
;j
.5

0t
h
bi
nc

en
ti
le

he
ig
ht
;k

.6
0t
h
bi
nc

en
ti
le

he
ig
ht
;l
.7

0t
h
bi
nc

en
ti
le

he
ig
ht
;m

.8
0t
h

bi
nc

en
ti
le

he
ig
ht
;n

.9
0t
h
bi
nc

en
ti
le

he
ig
ht
.

R. Meng et al. Remote Sensing of Environment 215 (2018) 170–183

178



scales, which are critical for forest management and ecological study, as
well as for informing and testing of carbon cycle models (Clark et al.,
2010; Landry et al., 2016; McDowell et al., 2015; Seidl et al., 2016; Senf
et al., 2017a). Specifically, our study indicates that the combined use of
VHR IS and LiDAR measurements can provide an opportunity to scale
remotely sensed measurements of defoliation severity from the in-
dividual-tree level to inter-stand level: on one hand, further studies can
be conducted to determine to what extent crown-scale canopy defo-
liation contributed to the inter-stand scale change in spectral re-
flectance of broadband multi-spectral sensors like Landsat-8 and Sen-
tinel-2 with higher temporal resolution and larger spatial coverage
(Senf et al., 2015; Townsend et al., 2012; Zarco-Tejada et al., 2018); on

the other hand, our results can be used to separate the signature of
canopy defoliation from other temporal changes (e.g., phenology) that
may be present in Landsat or Sentinel-2 data (Hawryło et al., 2018; Senf
et al., 2017b). The improved capabilities of remote sensing of insect
outbreak at crown-scale can provide new insights for reducing insect
habitat quantity and quality and understanding insect outbreak's me-
chanic process (McDowell et al., 2015; Senf et al., 2017a).

Our study found a negative relationship between NIR reflectance
and defoliation severity (Fig. 2), and this relationship is consistent with
relationships found by previous studies investigating defoliation of
conifers and spruce at inter-stand scale with broadband multi-spectral
sensors (Ahern, 1988; Olsson et al., 2012), but different from an in-
crease in NIR reflectance following insect outbreak in jack pine
(Radeloff et al., 1999). Our VHR results further indicate that NPV and
the forest understory, which were not considered in previous studies,
can also affect remotely sensed measurements of oak defoliation and
should be taken into account for canopy defoliation mapping, in addi-
tion to canopy leaf area (Figs. 6 & 8). The differences in forest un-
derstory and structure in varied forest ecosystems can likely explain
differences in spectral changes after the insect outbreak across previous
studies (Ahern, 1988; Griffiths et al., 2014; Olsson et al., 2012; Radeloff
et al., 1999) and the defoliation severity model (Eq. (2)) developed here
would have to be adapted for forests with different forest structure,
composition and understories. Moreover, our analysis was based on 91
oak crowns in a local forest and segmentation parameters for crown
delineations used here (see Section 3.1) can also change with forest
type, which further adds to uncertainties in the generalized use of our
derived defoliation severity model (Eq. (2)). We thus recommend more
spectral and structural signature studies of canopy defoliation across
severity gradients at VHR in other forest ecosystems for studying
scaling effects and consistent modeling of canopy defoliation across
large spatial-temporal scales.

Most previous remote sensing studies of canopy defoliation have
focused on the spectral index-based methods (Rullan-Silva et al., 2013;
Senf et al., 2017c), which are simple and easy to implement. We have
tested the suitability of available visible-NIR narrowband spectral in-
dices in G-LiHT IS data for mapping defoliation severity (Table S2). This
analysis demonstrated that red edge indices, such as Modified Red Edge
Normalized Difference Vegetation Index (MENDVI) and Vogelmann
Red Edge Index 1 (VREI1), had the highest correlations with canopy
defoliation caused by insect outbreak (Table S2), which is consistent
with previous similar studies (Hawryło et al., 2018; Knipling, 1970;
Oumar and Mutanga, 2014; Rock et al., 1988; Shendryk et al., 2016;
Townsend et al., 2012). Similar results were also reported in Shendryk
et al. (2016), where IS-derived red-edge and NIR variables were the
most important ones in predicting tree dieback and defoliation caused
by flooding. With the increasing availability of red edge and even
shortwave infrared (SWIR) bands on spaceborne remote sensing plat-
forms (i.e., VHR Worldview-3 and moderate-resolution Sentinel-2)

Fig. 7. Boxplots of adjusted R-squared (a) and RMSE (b) values using IS-only
predictor variables, LiDAR-only predictor variables and their combination for
predicting canopy defoliation of validation datasets. P values show the least
significance of paired Wilcoxon signed rank test results.

Fig. 8. Average and standard error values of MESMA fractions at five leaf area remaining (i.e., canopy defoliation severity) groups for 2015 and 2016: a. GV-oak
fraction; b. GV-understory fraction; c. NPV fraction.
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(Drusch et al., 2012; Warner et al., 2017), more accurate mapping of
spatial variation in defoliation severity is promising with these new
sensors. Additionally, given the apparent advantages of narrowband
vegetation indices and potential for full spectrum metrics like fractional
cover, future spaceborne IS mission sensors (e.g., HyspIRI and EnMap)
could further improve our capability for mapping insect defoliation
despite coarser spatial resolution (Lee et al., 2015; Stuffler et al., 2007).
In summary, these mentioned new sensors could potentially enable
improved monitoring of the spread and severity of forest infestations
across scales, forest types, and disturbance agents with higher accuracy
and frequency than ever before. But the G-LiHT IS used here does not
cover the SWIR wavelengths, which are sensitive to leaf water content

and lignocellulose absorption and have been widely used for remote
sensing of canopy defoliation (Somers et al., 2010; Townsend et al.,
2012). Metrics using SWIR bands made available by these recent and
the planned sensors at moderate spatial resolution thus still require
further study to compare their predictive power with LiDAR-derived
metrics chosen in this study (Fig. 9). However, previous studies also
indicate that visible-NIR wavelengths are still viable for mapping ca-
nopy defoliation, in absence of SWIR wavelengths (Townsend et al.,
2012).

To examine whether LiDAR can be used for measuring defoliation
severity of broadleaf deciduous trees, we explored the sensitivity of
various LiDAR metrics to the change in overall canopy structure caused

Fig. 9. Average and standard error values of LiDAR predictors selected by stepwise AIC-based method (see Section 4.4) for mapping crown-scale canopy defoliation
at five leaf area remaining (i.e., canopy defoliation severity) groups for 2015 and 2016: a. B70; b. Intensity skewness; c. Kurtosis.

Fig. 10. Crown-scale percentage of oak leaf area remaining (i.e., oak canopy defoliation severity) map at 1m resolution in a mixed pine-oak forest, Long island, NY in
2016; the inset subplots show a partial zoom-in view of the defoliation severity map and corresponding MESMA oak fraction (a) and LiDAR-derived B70 (i.e., 70th
bincentile height) (b). The rectangle on the oak canopy defoliation severity map shows the inset extent.
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by herbivorous insects. Previous studies have explored remote sensing
of fire-induced structural changes or beetle-induced conifer leaf loss
using LiDAR (Alonzo et al., 2017; Hanssen and Solberg, 2007; McCarley
et al., 2017; Solberg et al., 2006), but few studies examined the cap-
ability of LiDAR metrics for measuring insect-induced broadleaf de-
ciduous tree defoliation severity at the individual tree level. Our ana-
lysis shows that simple LiDAR metrics, such as B70 (i.e., 70th bincentile
height), intensity skewness and kurtosis, are sensitive to canopy leaf
loss by herbivorous insects across the defoliation severity gradient
(Fig. 9). This can be explained by the fact that canopy leaf loss by
herbivorous insects can increase the chance of LiDAR pulses to pene-
trate the tree canopies and rebound from the understory, leading to
somewhat large variations in vertical profiles of return points, which
can increase the LiDAR intensity skewness and kurtosis (Figs. 5 & 9).
Additionally, defoliation should provide a distinctive structural sig-
nature when compared to fire or logging disturbance (Bolton et al.,
2017; Bolton et al., 2015; Kane et al., 2014; Zhao et al., 2015), since
insect herbivory doesn't affect branch, trunk, and understory returns.
LiDAR data thus may be uniquely capable of mapping different dis-
turbance types based on their structural fingerprint. With the future
global LiDAR coverage provided by the Global Ecosystem Dynamics
Investigation (GEDI) mission (Dubayah et al., 2014), there is potential
to scale up crown-scale measurements of defoliation provided by air-
borne LiDAR data.

Using airborne IS and LiDAR imaging, our study provides a rapid
and accurate approach for regional defoliation severity mapping at the
individual tree level. Our validation results of three predictor options
(Fig. 9 and Fig. S1) indicate that the combination of IS and LiDAR
provide more additional information for mapping defoliation by her-
bivorous insects than using either sensor type alone, and the LiDAR-
only OLS model outperformed the IS-only model, demonstrating that if
only one data type could be collected, LiDAR would provide the better
ability to map canopy defoliation severity of broadleaf trees. As the
development of unmanned remote sensing techniques and computer
vision (e.g., Structure from Motion algorithm for three dimensional
information construction from two-dimensional image sequences)
continues (Alonzo et al., 2018; Colomina and Molina, 2014), the cost of
aerial surveys can be further reduced and more studies can be poten-
tially conducted in multiple representative forest ecosystems to scale
crown-level defoliation measurements to the inter-stand level, enabling
real-time monitoring of canopy defoliation at regional and global scales
(Dash et al., 2017; Pasquarella et al., 2017). Considering forest damage
caused by herbivorous insects is a function of both the severity and
timing of defoliation, more frequent and more accurate spatial-tem-
poral measurements of canopy defoliation are critical to better assisting
forest managers with designing adaptive management strategies for
reducing forest damage and maintaining forest health. Additionally, the
derived high resolution spatial-temporal information would be also
essential for exploring insect herbivory effects on ecosystem func-
tioning, diversity, and carbon dynamics (de la Mata et al., 2017; Frost
and Hunter, 2004; Goetz et al., 2012; Kenis et al., 2009; Townsend
et al., 2004).

6. Conclusion

We explored the crown-level spectral and structural signatures of
canopy defoliation by herbivorous insects, as well as underlying bio-
physical effects, across a defoliation severity gradient using bi-temporal
airborne IS and LiDAR measurements. Our results showed that: (1) red
edge and NIR spectra are most sensitive to crown-level defoliation se-
verity; (2) LiDAR metrics including B70, intensity skewness, and in-
tensity kurtosis can effectively detect overall canopy structural changes
by herbivorous insects and thus can be used for mapping canopy de-
foliation; (3) In addition to canopy leaf loss, crown-scale biophysical
effects of insect herbivory also included increased exposure of unders-
tory (e.g., shrub) and NPV (e.g., branch and trunk), which can affect the

overall spectral and structural signatures; (4) the IS+ LiDAR OLS
model (Adj. R-squared= 0.81, RMSE=14.46%) performed better for
measuring canopy defoliation severity than the IS-only (Adj. R-
squared=0.63, RMSE=19.11%) or LiDAR-only OLS models (Adj. R-
squared=0.77, RMSE=15.37%). Our aerial survey-based approach,
in combination with the current and next generation of spaceborne
sensors (e.g., Landsat-8, HyspIRI, EnMap, GEDI, WorldView-3, Sentinel-
2), can provide critical information on canopy defoliation over large
spatial-temporal scales and thus improve our understanding of the
ecological and economic consequences of forest infestations (e.g., re-
duced growth and increased mortality), as well as implications for
forest carbon dynamics. This study serves as one of first efforts for
understanding VHR spectral and structural signatures of gypsy moth-
caused defoliation in a mixed oak-pine forest, and future work should
focus on extending our proposed framework to other types of forests
and defoliators/pests.
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