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ABSTRACT ARTICLE HISTORY
We explore the comprehensive differentiation of non-photosyn- Received 19 July 2017
thetic vegetation (NPV) and soil using Landsat and Sentinel 2 Accepted 22 April 2018
wavebands through a spectral library approach. NPV and soil

spectra from online spectral libraries and an Airborne Visible

Infrared Imaging Spectrometer (AVIRIS) scene were convolved to

Landsat 5 Thematic Mapper (TM), Landsat 8 Operational Land

Imager (OLI), and Sentinel 2 bands. Several spectral-radiometric

measurements, including the spectral reflectance of analogous

Landsat and Sentinel bands, and a suite of spectral indices were

tested for the separation of NPV and soil. Reflectance of individual

bands is similar between the two categories, and vegetation

indices such as Normalized Difference Vegetation Index (NDVI)

and the Soil Adjusted Vegetation Index (SAVI) are incapable of

such differentiation. For both reference and image spectra, the

normalized difference tillage index (NDTI) based on the two short-

wave infrared bands of Landsat and Sentinel instruments per-

formed best among all spectral measurements. Classification

results suggest an NDTI value of 0.1 to be a general threshold

for separating NPV and soil, with higher values associated with

NPV. Further tests based on AVIRIS-convolved imagery show that

NDTI can dichotomize NPV and soil if either fractional cover is no

less than 50%.

1. Introduction
1.1. Non-photosynthetic vegetation and its functions

Non-photosynthetic vegetation (NPV) usually refers to any vegetation components that
do not photosynthesize (Roberts, Adams, and Smith 1993). These include both living
parts like branches or stems, and dead portions, such as crop residues or fallen leaves.
Okin (2007) made a distinction between litter from other NPV, based on the connection
of a vegetation component to a rooted plant, and argued that litter has different
structures and ecological functions. Nevertheless, they are similar in spectral and
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chemical characteristics. In this study, we use the term NPV to represent all non-
photosynthetic components of the vegetation.

NPV plays important roles in terrestrial ecosystems, with living NPV transporting
nutrients and water from soil to the whole plant, and senesced NPV, or litter, connecting
the life cycle between green vegetation and soil (Riaz et al. 2012). Litter will eventually
decompose into soil, adding organic matter and nutrients to the ground (Henry, Brizgys,
and Field 2008). Well-distributed NPV can buffer between soil and the atmosphere,
reducing soil erosion, increasing moisture retention, and balancing ground surface
temperatures (Deutsch, Bork, and Williams 2010). Increased levels of NPV can also
increase the risk of wildfire (Roberts et al. 2006). The presence of NPV is not always
beneficial, for it can attenuate sunlight, thus hindering the growth of understory
vegetation (Jackson et al. 2006).

1.2. Spectral similarity between NPV and soil

NPV and soil exhibit similar spectral signatures, with no unique spectral features in the
visible and near infrared (VNIR) wavelengths (Roberts, Adams, and Smith 1993). In the
transition wavelength zone (680-780 nm) between the red and NIR, slopes of the
spectral reflectance curves are usually greater for NPV than soil. However, the slope
magnitudes are also sensitive to moisture and decomposition conditions (Nagler,
Daughtry, and Goward 2000).

In the shortwave infrared wavelength region of the spectrum (SWIR2: 2.1-2.4 um), NPV
and soil show unique spectral derivatives signatures (Asner and Lobell 2000). Leveraging
the spectral dip at 2.1 um and the relative shoulders at 2.0 um and 2.2 um, the Cellulose
Absorption Index (CAl) is an effective indicator of NPV (Nagler, Daughtry, and Goward
2000). But for CAl to work, image data covering these specific, narrow bands must be
collected. Commonly available broadband multispectral sensors like those on Landsat
satellites do not spectrally resolve these narrow wavelength features.

Previous efforts concerning broadband multispectral imagery have focused on the two
SWIR bands. Both the Simple Tillage Index (STI) and Normalized Difference Tillage Index
(NDTI) based on Landsat Thematic Mapper (TM) Band 5 and 7 were shown by Van Deventer
et al. (1997) to effectively dichotomize between agricultural lands of conservative (more
crop residue) and conventional (less crop residue) tillage, with a prediction accuracy of
89%. Guerschman et al. (2009) provides an empirical estimation of STI based on CAl and
NDVI calculated from Hyperion and Hyperion-convolved MODIS data. In this sense, CAl can
be retrieved through linear combination of STI and NDVI. Together with NDVI, STI has also
been applied in spectral mixture analyses to identify potential NPV endmembers with
different levels of successes in identifying NPV fraction covers in arid and semiarid ecosys-
tems (Hill 2013; Smith, Hill, and Zhang 2015; Hill et al. 2017).

Given the relatively rare availability of imaging spectrometry in most areas of the world,
and the tremendous temporal and spatial coverage of broadband multispectral imagery,
the objective of this Letter is to differentiate NPV from soil cover in Landsat TM, Operational
Land Imager (OLI) and Sentinel 2 multispectral data through a spectral library approach,
and to determine which spectral measurements might be promising for distinguishing and
quantifying these land cover types. We also attempt to determine at what fractional levels
of NPV and soil the most effective spectral metrics are capable of distinguishing.
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2. Data and methods

Laboratory/ground-measured NPV and soil spectra were acquired from two online
sources. In the Jet Propulsion Laboratory (JPL) ASTER Spectral library (Baldridge et al.
2009, http://speclib.jpl.nasa.gov), 41 soil spectra and one dead grass spectrum were
available in the visible through SWIR wavelength region 0.4 to 2.5 pym. Another 25 NPV
spectra were obtained from the USGS Spectral Library (Kokaly, Clark, and Swayze et al.
2017, http://speclab.cr.usgs.gov/spectral-lib.html).

Apart from the reference spectra, supplementary image spectra were extracted from
an Airborne Visible Infrared Imaging Spectrometer (AVIRIS) scene. With a 7.5 m spatial
resolution, this scene was acquired over Santa Barbara, California on 19 July 2011
(Figure 1). Atmospheric correction and spectral reflectance retrieval was performed
with ATCOR-4 radiation transfer modeling software (Richter and Schlaepfer 2002). Only
the spectra of pixels with 75% or more coverage by one single land cover type were
considered for the spectral library. For processing details and the development of
spectral library please see Roberts et al. (2015). The image spectral library was generated
following the basic procedures in Roth, Dennison, and Roberts (2012).

All NPV and soil spectra were convolved to Landsat 5 TM, Landsat 8 OLI and Sentinel
2 bands with the spectral resampling tool in ENVI image analysis software. Spectral
separability of NPV and soil was evaluated with spectral reflectance for individual VNIR
and SWIR bands (TM Bands 1-5 and 7; OLI Bands 1-7; Sentinel 2 Bands 1-8A, 11, and 12),
and a suite of spectral indices (Table 1). The performance of each individual measure-
ment was examined through exploratory statistics, and promising ones were further
evaluated by the Receiver Operating Characteristic (ROC) curve in the R software
package (Robin et al. 2011). ROC curve is a common practice of examining the separ-
ability of a binary classifier, by plotting the true positive rate against the false positive
rate. Assessing results can be identified from Area under the Curve (AUC) values, where
an AUC of 1 indicates perfect separation.

3. Results
3.1. Reference spectra

We identified a total of 41 soil and 26 NPV reference spectra, with explanatory statistics
provided as following (Figure 2). Spectral reflectance convolved to Landsat and Sentinel
2 bands are mostly similar for NPV and soil. Although soil reflectance in SWIR2 (Landsat

19° 56" W, 34° 28'N

119° 35' W, 34° 25' N]

Figure 1. False colour AVIRIS three-band composite for a study area in Santa Barbara and Goleta,
California, USA. Red: 1.65 pum; Green: 0.83 um; Blue: 0.68 pum.
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Table 1. Spectral indices tested in this study.

Spectral Indices

References

Normalized Difference Vegetation Index
NDVI = (NIR - R)/(NIR + R)
Soil-Adjusted Vegetation Index
SAVI = (1.5NIR - R)/(NIR + R + 0.5)
Vegetation Index Green
Vig = (G - R)/(G + R)
Simple Ratio Vegetation Index
SRVI = NIR/R
Normalized Difference Moisture Index
NDMI = (NIR — SWIRT)/(NIR + SWIR1)
Normalized Burn Ratio
NBR = (NIR — SWIR2)/(NIR + SWIR2)
Normalized Difference Senescent Vegetation Index
NDSVI = (SWIRT - R)/(SWIR1 + R)
Dead Fuel Index
DFI = 100(1 - SWIR2/SWIR1)(R/NIR)
Normalized Difference Tillage Index
NDTI = (SWIR1-SWIR2)/(SWIR1+SWIR2)

Rouse et al. (1973)
Huete (1988)

Gitelson et al. (2002)
Jordan (1969)

Hunt and Rock (1989)
Key and Benson (2003)
Qi and Wallace (2002)
Cao et al. (2010)

Van Deventer et al. (1997)
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Figure 2. Boxplots of reference NPV and soil spectral reflectance convolved to (a) Landsat TM bands,
(b) Landsat OLI bands and (c) Sentinel 2 bands. ‘B1 0.48' means Band 1 reflectance centred at
0.48 um wavelength.
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Figure 3. Boxplots of indices for reference NPV and soil spectra in Landsat TM bands.

B7; Sentinel 2 B12) is generally higher than NPV, the difference is not sufficiently
prominent to warrant using this band alone as a discriminating variable for NPV and soil.

Simple ratio vegetation index, SRVI, and normalized vegetation index values, such as
NDVI, SAVI, and Vlg, are quite similar for soil and NPV making it difficult to separate
them, and they are not analysed here. Four other spectral indices, NDMI, NBR, NDTI, and
DFI, exhibit different values for NPV and soil (Figure 3). The indices’ differences between
NPV and soil are similar among spectra convolved to Landsat and Sentinel 2 bands. The
above-mentioned four measures, plus NDSVI, were further evaluated by ROC curves.
Among these five indices, NDTI has the highest AUC of 0.96 (Table 2), indicating its
superiority in differentiating NPV and soil.

3.2. Image spectra

A total of 2551 NPV spectra and 1397 soil spectra were extracted from the AVIRIS scene.
The same procedure was applied to the image spectra as with the reference spectra.
However, only the five indices listed in Table 2 were examined. Again, NDTI outper-
formed the other indices, with an AUC value extremely close to 1 and only three spectra
misclassified out of approximately four thousand NPV/soil spectra, indicating its ability
to differentiate almost all NPV and soil spectra (Table 3). Most NPV spectra have NDTI
values between 0.10 and 0.25, while soil samples are mostly negative or around zero.

ROC curve analysis also suggest optimal NDTI thresholds for separating NPV from soil
(Table 4). In reference spectra convolved to Landsat and Sentinel 2 bands, the thresholds were
set to around 0.125. In image spectra, the NDTI thresholds are 0.0846, 0.0623, and 0.0609 for
Landsat TM, OLI, and Sentinel 2, respectively.

Table 2. AUC of spectral indices for reference spectra in Landsat and Sentinel 2 bands.

NDMI NBR NDSVI NDTI DFI
™ 0.8302 0.9184 0.545 0.9662 0.9418
OLI 0.8293 0.9174 0.5422 0.9634 0.9343

Sentinel 2 0.8161 0.9137 0.5249 0.9634 0.9390
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Table 3. AUC of spectral indices for image spectra in Landsat and Sentinel 2 bands.

NDMI NBR NDSVI NDTI DFI
™ 0.8170 0.9276 0.8972 1 0.9998
oLl 0.7840 0.9380 0.8981 1 0.9999
Sentinel 2 0.8258 0.8955 0.8979 1 0.9999

Table 4. Optimal NDTI thresholds as well as the true and false positive rates.

Reference spectra Image spectra
™ OLI Sentinel 2 ™ OLI Sentinel 2
Threshold 0.1236 0.1273 0.1256 0.0846 0.0623 0.0609
True positive rate 0.9231 0.9600 0.9600 0.9996 0.9992 0.9992
False positive rate 0.0769 0.0769 0.0769 0.0008 0.0004 0.0004

4. Discussion

The key contribution of this Letter is determining which Landsat/Sentinel 2 spectral
index best differentiate NPV from soil. NDTI performed best among all spectral measure-
ments for both reference and image spectra.

In only a few cases were spectra misclassified (Table 5). In reference data, the two
misclassified soil spectra exhibited unique spectral features compared to other soil
samples (Figure 4). White gypsum dune sand (100% sand) is very bright in the VNIR,
but the reflectance curve drops sharply in the SWIR. This sample can be readily sepa-
rated with NPV using other spectral measurements like reflectance in visible wavelength,
where most NPV is darker. The other misclassified soil sample, dark yellowish brown silty
clay, exhibits a steeper slope in spectral curve between SWIR Band 1 (TM Band 5, OLI
Band 6, Sentinel 2 Band 11) and SWIR Band 2 (TM/OLI Band 7, Sentinel 2 Band 12) than
other soil samples. Dead willow spectra do not show a prominent lignin and cellulose
absorption feature in the 2.1 um wavelength. Besides, the differences of the two SWIR
bands are not prominent in mature brown cheatgrass (Bromus tectorum) and smooth
cordgrass (Spartina alterniflora). Thus, NDTI value for the dark yellowish brown silty clay
is greater than or similar to that for the three NPV spectra mentioned above.

To further validate the performance of NDTI, we randomly selected 100 validation
polygons in the AVIRIS imagery. For details, please see Roberts et al. (2015). We utilized
the fraction maps generated from multiple endmember spectral mixture analysis
(MESMA; Roberts et al. 1998) in Roberts et al. (2017) to guide our validation work.
First, we extracted all spectra in the validation polygons. We then classified validation
spectra into six categories, per endmember (NPV/soil) fractions. For example, all pixels
with NPV fractions greater than 0.75 would be aggregated into category one. Then
pixels with NPV fractions between 0.70 and 0.75 would be placed in category two, 0.65
to 0.70 to category three, etc, and at last, 0.50 to 0.55 to category six. The same

Table 5. NDTI values of misclassified NPV and soil in reference spectra.

™ oLl Sentinel 2
NPV Mature brown cheatgrass (Bromus tectorum) 0.0599 0.0397 0.0397
Smooth cordgrass (Spartina alterniflora) 0.0859 0.0722 0.0714
Dead Willow 0.1263 0.1289 0.1279
Soil Grey stoney coarse sandy soil 0.1209 0.1139 0.1123
Dark yellowish brown silty clay 0.1336 0.1259 0.1233

White gypsum dune sand 0.5609 0.6097 0.6118
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Figure 4. Continuous and convolved spectrum of misclassified NPV and soil samples in reference
spectra (a), Landsat TM wavebands (b), OLI wavebands (c), and Sentinel 2 wavebands (d).

procedure was conducted for soil fractions. In the next step, we compare NPV and soil
pixels from the same category through ROC curves. The comparison in category one
indicated how well NDTI performed for pixels dominated by NPV/soil (fraction > 0.75).
For the other categories, the purpose of the validation was to identify in what fractions
NDTI would fail as an effective indicator. Note that NPV and soil may not be the only
endmembers in the pixel, and other endmember types, such as green vegetation, rock,
pavement, etc., may also be present, although NPV or soil occupy no less than half of the
spatial extent (with fraction = 0.50). If NDTI can still routinely distinguish NPV from soil
under these circumstances, we are confident that it can do so in NPV-soil-only-mixture
situations. The validation results suggest that in almost all cases, NDTI generated AUC
values were higher than 0.9, indicating its excellence in differentiating NPV and soil
(Table 6).

We suggest two major reasons why NDTI performed better than other spectral
indices. First, the most prominent spectral difference between NPV and soil is the
cellulose absorption feature in SWIR 2 wavelengths. When convolved to broadband
multispectral sensor, the absorption will produce the descending curve between the two
SWIR bands, the basis in which NDTI was developed (Figure 2). In other words, NDTI
better captures the spectral difference between NPV and soil than other broadband
indices tested in this study. Second, the distribution of NDTI values for soil is much
tighter than any other index (Figure 3). Less variance is helpful to generate better AUC
values in ROC analysis.

Although NDTI performed well in this study, several issues should be taken into
consideration. First, the available image spectra solely represented those from
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Table 6. Sample size (# pixels) of validation NPV and soil spectra, as well as the AUC values of RUC
curves (with suggested NDTI thresholds in parentheses).

NPV or soil Sample (# pixels) AUC values and NDTI thresholds

Category Fractions NPV Soil ™ oLl Sentinel 2

1 [0.75, 1.00] 529 369 0.9735(0.1045) 0.9702(0.0758) 0.9706(0.0730)
2 [0.70, 0.75) 62 103 0.9081(0.1546) 0.9085(0.1323) 0.9120(0.1102)
3 [0.65, 0.70) 91 123 0.9457(0.1072) 0.9386(0.0973) 0.9428(0.0968)
4 [0.60, 0.65) 102 107 0.9123(0.1008) 0.8966(0.0897) 0.9010(0.0874)
5 [0.55, 0.60) m 129 0.9207(0.1227) 0.9113(0.0853) 0.9118(0.0973)
6 [0.50, 0.55) 129 220 0.9258(0.0856) 0.9111(0.0701) 0.9133(0.0687)

Mediterranean-type landscapes, and most spectra are in dry condition at least in the top
layer. Ideally, NPV and soil spectra of all kinds from different landscape, ecosystem types
and weather conditions should be tested for a comprehensive separation. Besides, we
only considered situations where NPV or soil fractions were more than 0.5. In a more
complex mixture where more endmember types are involved and their fractions are
more even, the detection limits may be very different. Nevertheless, the purpose of this
study is to highlight the potential of NDTI in differentiating NPV and soil in Landsat and
Sentinel 2 wavebands, and we encourage further testing based on other spectra sources
from other ecosystem types.
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