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A B S T R A C T

The ability to quantify understory vegetation structure in forested environments on a broad scale has the po-
tential to greatly improve our understanding of wildlife habitats, nutrient cycling, wildland fire behavior, and
wildland firefighter safety. Lidar data can be used to model understory vegetation density, but the accuracy of
these models is impacted by factors such as the specific lidar metrics used as independent variables, overstory
conditions such as density and height, and lidar pulse density. Few previous studies have examined how these
factors affect estimation of understory density. In this study we compare two widely-used lidar-derived metrics,
overall relative point density (ORD) and normalized relative point density (NRD) in an understory vertical
stratum, for their respective abilities to accurately model understory vegetation density. We also use a boot-
strapping analysis to examine how lidar pulse density, overstory vegetation density, and canopy height can affect
the ability to characterize understory conditions. In doing so, we present a novel application of an automated
field photo-based understory cover estimation technique as reference data for comparison to lidar. Our results
highlight that NRD is a far superior metric for characterizing understory density than ORD (R2

NRD= 0.44 vs.
R2
ORD= 0.14). In addition, we found that pulse density had the strongest positive effect on predictive power,

suggesting that as pulse density increases, the ability to accurately characterize understory density using lidar
increases. Overstory density and canopy height had nearly identical negative effects on predictive power, sug-
gesting that shorter, sparser canopies improve lidar's ability to analyze the understory. Our study highlights
important considerations and limitations for future studies attempting to use lidar to quantify understory ve-
getation structure.

1. Introduction

Understory vegetation plays a large number of critical roles in forest
ecosystems. It is often the most species rich and diverse portion of a
forest (Eskelson et al., 2011). Low-lying vegetation cover provides prey
species with visual cover to aid in avoiding predation (Lone et al.,
2014). For forest-dwelling mammals, much of the nutritious and pala-
table forage is found in the understory (Nijland et al., 2014). The
quantity and size of tree regeneration has important implications not
only for forest health, but also economic importance for timber pro-
duction (Korpela et al., 2012). Understory biomass contributes to
carbon sequestration and soil nutrient cycling (Estornell et al., 2011;
Suchar and Crookston, 2010). Understory plants also play an important
role in maintaining soil structure and reducing erosion (Suchar and
Crookston, 2010). Surface fuel loading and bulk density are some of the

most important predictors of wildland fire intensity and rate of spread
(Keane, 2014). The presence of ladder fuels in the understory of a
forested environment can facilitate the transition from a surface fire to
a crown fire, which can have dramatic impacts on post-fire ecosystems
(Kramer et al., 2016; Stephens, 1998). Understory vegetation density
has also been linked to firefighter safety, given that more dense un-
derstories can reduce the ability to efficiently traverse wildland en-
vironments (Campbell et al., 2017a) and impacts safety zone suitability
(Campbell et al., 2017b). For these reasons and many others, it is es-
sential to be able to quantify the abundance and spatial distribution of
understory vegetation in forested environments.

As with many biophysical variables, there are two primary ap-
proaches for characterizing forest understory vegetation structure: (1)
in the field; and (2) through the use of remote sensing technology.
Performed in isolation, each approach has its strengths and weaknesses.
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Field-based forest biometry benefits from the accuracy and precision of
ground-based, physical mensuration of a targeted set of variables, and
being able to control for extraneous, confounding factors. However,
field work is both labor-intensive and time-consuming, particularly
when considering the limited spatial extent of the data that result from
a plot- or transect-based field campaign. The strengths and weaknesses
of remote sensing are very much the inverse of those inherent to field
work: remote sensing-based analyses of forest structure benefit from
broad, “wall-to-wall” spatial coverage, rather than a plot-based sam-
pling of the landscape. However, data collected from a remote per-
spective does not measure forest biometrics directly; instead, remote
sensing data typically characterize objective measures of the interaction
of electromagnetic energy with objects on the earth's surface. Indeed,
the very nature of a forest understory – existing underneath a forest
canopy – complicates the analysis thereof from a remote perspective,
where the ability to “see through” the canopy can be severely limited.
Accordingly, in order to accurately map understory conditions in
complex forested environments, it is necessary to link the objective
measures of light interaction provided by remote sensing to field-based
measures of specific biometrics, such as vegetation density.

There are many ways to characterize understory vegetation in the
field (Higgins et al., 2005). One of the most common methods for doing
so is through the use of cover boards, which rely on visually estimating
of the relative proportion of a board of known dimensions that is being
obscured by vegetation from a given vantage point (Jones, 1968;
Nudds, 1977). Cover boards have received widespread use for esti-
mating vegetation density for decades, particularly in the field of
wildlife biology, benefitting from their conceptual simplicity and effi-
ciency of field implementation (Duebbert and Lokemoen, 1976; Griffith
and Youtie, 1988; Jones, 1968; Musil et al., 1994; Sage et al., 2004;
Winnard et al., 2013). Although cover boards have been rarely used as
such, they have much potential for use in conjunction with remote
sensing technologies such as airborne light detection and ranging
(lidar) (Kramer et al., 2016). A widely-acknowledged limitation of
cover board analysis, however, is that the subjectivity inherent to the
visual estimation of cover board cover is prone to error (Collins and
Becker, 2001; Limb et al., 2007; Morrison, 2016). This has motivated
the more recent implementation of digital image processing into the
semi-automated analysis of cover board photos (Jorgensen et al., 2013).

In recent decades, lidar has emerged as a leading technology in the
mapping of three-dimensional vegetation structure. Lidar is particularly
useful in characterizing understory structure, as narrow beams of laser
light emitted in rapid succession from an airborne sensor can exploit
small gaps in a forested canopy. The pulses interact with features in the
understory (tree leaves, branches, and boles, shrubs, grasses and forbs)
and reflect back to the sensor; the timed pulse returns can provide
detailed information on understory structure. Particularly in the past
15 years, as lidar technology and associated data processing capacities
have improved, the number of studies involving the use of lidar to
characterize understory conditions has grown rapidly (Alexander et al.,
2013; Campbell et al., 2017a; Chasmer et al., 2006; Clark et al., 2004;
Estornell et al., 2011; Hamraz et al., 2017; Korpela et al., 2012; Kramer
et al., 2016; Kükenbrink et al., 2017; Maltamo et al., 2005; Martinuzzi
et al., 2009; Morsdorf et al., 2010; Mutlu et al., 2008; Nijland et al.,
2014; Riaño et al., 2003; Singh et al., 2015; Su and Bork, 2007).
However, like any remote sensing dataset, lidar does not make direct
measurements of forest understory structure. Particularly under dense
forest canopies, where pulse energy can occlude prior to reaching the
understory, it is essential to select appropriate ground reference in-
formation capable of linking ground conditions to remotely sensed
data. Given their widespread use as an efficient and reliable method for
characterizing vegetation density, cover boards could conceivably form
an ideal link between ground-based and remotely-sensed measure-
ments. Thus, developing a robust workflow for combining digital cover
board analysis to airborne lidar analysis could greatly benefit the many
disciplines in which understanding and mapping conditions in the

forest understory are critical.
In addition, the selection of relevant lidar-derived metrics for sta-

tistical comparison is of critical importance. Many such metrics have
been used throughout the literature, but two height stratum-based
metrics have dominated in characterizing the understory: overall re-
lative point density (ORD) and normalized relative point density (NRD).
A roughly equal number of studies have employed the use of ORD
(Hudak et al., 2008; Jakubowksi et al., 2013; Maltamo et al., 2005;
Martinuzzi et al., 2009; Mutlu et al., 2008; Riaño et al., 2003; Singh
et al., 2015) and NRD (Campbell et al., 2017a; Goodwin et al., 2007;
Kramer et al., 2016; Lone et al., 2014; Seielstad and Queen, 2003;
Skowronski et al., 2007; Su and Bork, 2007), but none has compared
the two for their respective predictive capabilities. Lastly, there are
many factors that can affect the accuracy of the resulting understory
structural models that must be carefully considered when attempting to
characterize the understory, including lidar pulse density, overstory
vegetation density, and canopy height. Although these factors are often
assumed to affect lidar's ability to model understory conditions, their
specific, quantitative effects have only been studied sparingly.

The objectives of this study are to: (1) develop a method for auto-
mated cover board photo analysis for use as reference data in lidar
understory density estimation; (2) compare two widely-used lidar ver-
tical stratum metrics (ORD and NRD) for their respective abilities to
accurately characterize understory vegetation density; and (3) de-
termine the relative effects of lidar pulse density, overstory vegetation
density, and canopy height on the ability to accurately characterize
understory vegetation density.

2. Background

2.1. Characterizing understory structure using cover boards

There are a number of ways to characterize forest understory
structure in the field. Higgins et al. (2005) present a comprehensive
review of these methods. Some of the most oft-employed field methods
for estimating understory cover are visual obstruction methods. Though
the specific methods vary slightly, the assessment is generally based on
the determination of the degree to which a distant reference object of
known dimensions is being covered by vegetation from a given vantage
point. The underlying assumption is that denser vegetation will result in
a greater proportion of the object being covered. The two most common
reference objects are cover poles (Robel et al., 1970) and cover boards
(Jones, 1968; Nudds, 1977), the former enabling obstruction estimation
in one dimension, the latter in two. Cover poles are simpler to analyze,
given the ease with which one can quantify the proportion of vegetation
cover in a single dimension, but cover boards, with their larger sample
area, provide more detailed information to the analysis. Cover boards
have been used extensively, particularly in wildlife habitat studies
(Duebbert and Lokemoen, 1976; Griffith and Youtie, 1988; Jones, 1968;
Musil et al., 1994; Sage et al., 2004; Winnard et al., 2013).

The main problem with cover board analyses is the subjectivity of
field- or photo-based cover interpretation. Studies have repeatedly de-
monstrated significant variability in individual analysts' cover estimates
Collins and Becker, 2001; Limb et al., 2007; Morrison, 2016. A number
of authors have attempted to overcome the issue of interpreter sub-
jectivity by capturing a digital photo of the cover board and subse-
quently classifying between board and non-board pixels in some semi-
automated fashion (Boyd and Svejcar, 2005; Carlyle et al., 2010;
Jorgensen et al., 2013; Limb et al., 2007; Marsden et al., 2002; Winnard
et al., 2013). Limb et al. (2007) compared this procedure to visual in-
terpretation of a cover board and cover pole, finding that the classifi-
cation approach greatly reduced the variability in cover estimates and
attained the highest degree of correlation with field-sampled biomass.
However, many of these studies rely on manually thresholding the pixel
value brightness to distinguish between board and vegetation, which
can be even more error-prone than visual interpretation (Booth et al.,
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2005; Jorgensen et al., 2013). Accordingly, a small number of studies
have begun using more advanced image analysis, including supervised
classification (Jorgensen et al., 2013).

Another key limitation of cover board-based studies – and, by ex-
tension all solely field-based studies – is that they represent a mere
sampling of the broader landscape. Remote sensing is one potential
solution to this problem, provided that a robust, statistical relationship
can be determined between a field-based measure such as cover board
cover and some remote sensing dataset capable of characterizing un-
derstory vegetation structure, such as lidar. To our knowledge, there
has only been one published study to date that has attempted to bridge
this divide (Kramer et al., 2016). Kramer et al. (2016) used cover board
cover as training data in a lidar-based model aimed at quantifying
ladder fuels for fire behavior prediction, demonstrating a high degree of
predictive power. In a plot-level study of deer predation, Lone et al.
(2014) used both cover board and lidar-derived estimates of understory
cover as predictors in a logistic regression model, finding that both
variables were strong predictors of predation; however, there was no
analysis of the degree to which the two measures were correlated.
Given that Kramer et al. (2016) and Lone et al. (2014) employed
manual visual interpretation of cover board photos to assess understory
cover, no studies, to date, have linked digitally-classified cover board
photos to lidar-derived understory metrics.

2.2. Characterizing understory structure using lidar

Airborne discrete-return lidar has been widely used for modeling
overstory forest conditions, such as height (Ben-Arie et al., 2009;
Hopkinson et al., 2006; Khosravipour et al., 2015; Popescu et al., 2002),
basal area (Bright et al., 2013; Chen et al., 2007; Hudak et al., 2006;
Lefsky et al., 1999), canopy cover/closure (Ahmed et al., 2015;
Holmgren et al., 2003; Korhonen et al., 2011; Smith et al., 2009),
species composition (Brandtberg, 2007; Korpela et al., 2010; Vaglio
Laurin et al., 2016), and leaf area index (Korhonen et al., 2011; Riaño
et al., 2004; Richardson et al., 2009; Tang et al., 2014). However,
comparably few studies have examined the ability of lidar to char-
acterize understory conditions. Among these studies, the most common
approach to doing so is the area-based approach of Næsset (2002). This
method relies on statistically relating one or more lidar-derived metrics
within an area of a given size and dimensions to some ground-based
vegetation biometric data collected within that same area (Næsset,
2002). The development of an associated predictive model based on
that relationship enables broad-scale biometric mapping across un-
sampled areas (Wulder et al., 2013). A variety of different statistical
modeling techniques have been employed to develop these predictive
relationships, including more traditional, parametric modeling techni-
ques such as ordinary least squares regression (Clark et al., 2011),
multiple regression (Hudak et al., 2006), and stepwise regression
(Drake et al., 2002), and more advanced, non-parametric modeling
techniques such as k-nearest neighbor (Falkowski et al., 2010), support
vector machines (Dalponte et al., 2011), and random forests
(Martinuzzi et al., 2009). Parametric models have the advantage of
conceptual simplicity, being based on statistical relationships between a
set of normally-distributed predictor (or independent) variables and a
single, normally-distributed response (or dependent) variable, the re-
sults of which can be easily interpreted and evaluated for logical con-
sistency (Penner et al., 2013). However, non-parametric models –
particularly advanced machine learning algorithms such as random
forests – can often result in higher imputation accuracies, albeit at the
expense of model transparency and potential for overfitting (Hudak
et al., 2008; Latifi et al., 2010).

One of the most important steps in the area-based analytical process
is the selection of lidar metrics. Evans et al. (2009) provide an extensive
list of metrics that have been used throughout the lidar literature. These
metrics, ranging from basic descriptive statistics such as mean, standard
deviation, and range, to more advanced parameters such as skewness

and kurtosis, can be computed on an entire lidar point cloud extracted
within a given x by y area (e.g. mean lidar point return height within a
30× 30m area) (Evans et al., 2009). However, one of the great
strengths of lidar is the ability to analyze point clouds in discrete ver-
tical strata. Thus, instead of computing these metrics on the entire
vertical extent of a given area, you can first subdivide the point cloud
into a series of voxels, based on one or more aboveground height
thresholds. This approach is particularly useful when attempting to
characterize understory structure in forested environments (Goodwin
et al., 2007; Mutlu et al., 2008; Riaño et al., 2003; Seielstad and Queen,
2003; Skowronski et al., 2007).

Two important vertical stratum metrics that are often used in ana-
lyzing understory structure are ORD and NRD (USDA Forest Service,
2014). A key assumption of both ORD and NRD is that as vegetation
density increases, the likelihood of a given lidar pulse interacting with
vegetation increases, thus increasing the proportion of aboveground
vegetation point returns. ORD for a given height range between i and j
is defined as the number of points (n) that fall between i and j divided
by the total number of points in a given area, from the ground level
(height= 0) to the height of the highest point (k), as follows:
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∑

∑
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NRD is very similar, but it characterizes point density as compared
only to the number of points within a given height range and below,
defined as follows:
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This is an important distinction, as NRD is theoretically more robust
to differences in overstory conditions (USDA Forest Service, 2014). In
the presence of a dense overlying canopy, much of the lidar pulse en-
ergy is likely to be absorbed in the upper canopy, thus reducing the
amount of energy, and in turn the proportion of point returns, in the
understory, regardless of actual understory density. Fig. 1 contains a
figurative example of lidar point cloud in a conifer forest with both a
dense overstory and a dense understory of regeneration. As can be seen,
the majority of the point returns are found within the overstory as a
result of lidar pulse occlusion. If one were to calculate understory ORD
in this example, the result would be relatively low (e.g. 0.1), suggesting
that understory density is low, when it is, in fact, relatively high.
Conversely, NRD, ignoring the overstory returns, would be much higher
(e.g. 0.6), more accurately representing true understory density. De-
spite the apparent conceptual advantage of NRD over ORD, particularly
for characterizing understory structure, there is no clear evidence in the
literature as to which metric results in improved model accuracy. Nor is
there any sort of agreement on which metric to use, with a similar
number of studies using ORD and NRD (see Introduction section for
references). No studies to date have directly compared the respective
efficacy of ORD and NRD at characterizing understory conditions.

2.2.1. Characterizing understory structure with ORD
Riaño et al. (2003) characterized understory conditions using lidar

by first performing a cluster analysis to distinguish between overstory
and understory returns, and then computing both understory cover
using ORD, and understory height by calculating the 99th percentile of
understory returns. Jakubowksi et al. (2013) modeled understory shrub
cover and shrub height for fire fuel structural assessment using a
modified ORD that calculated point density in a series of different
height strata as a proportion of all non-ground points. Maltamo et al.
(2005) modeled understory tree number and heights using lidar,
finding that ORD bore no significant predictive power for estimating
either parameter, instead finding that maximum lidar return height,
proportion of all vegetation returns, and height percentiles were more
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effective predictors. Mutlu et al. (2008) fused lidar ORD data calculated
in a series of height bins ranging from 0 to 2m in height with QuickBird
imagery to generate a high resolution surface fire behavior fuel type
map. Martinuzzi et al. (2009) modeled understory shrub cover and
standing dead snags using random forest modeling of a range of pre-
dictor variables, determining that three predictors were most valuable
for characterizing understory structure: (1) ORD of ground points; (2)
ORD between 1 and 2.5 m; and a slope-aspect transformation terrain
variable. Singh et al. (2015) included several understory ORD metrics in
a random forest model for the detection of an invasive understory plant
in North Carolina, but found that they bore little importance in the
resultant best-fit prediction model.

2.2.2. Characterizing understory structure with NRD
Seielstad and Queen (2003) provided one of the earliest examples of

lidar-based understory vegetation structural characterization, demon-
strating how NRD (referred to as “obstacle density”) between 0 and 6 ft
in aboveground height can be used to distinguish between several of
Anderson (1982)'s 13 fire behavior surface fuel models. Goodwin et al.
(2007) compared NRD between 0.5 and 4m in height to field-based
ocular estimates of understory cover, finding that NRD alone was a
strong predictor of cover. Skowronski et al. (2007) analyzed ladder
fuels in the understory through the analysis of a series of vertical strata,
finding that NRD between 1 and 2m in height and NRD between 2 and
3m in height were strongly correlated to the presence of ladder fuels.
Su and Bork (2007) used a clustering technique to separate understory
from overstory returns, and further between shrub and herbaceous
layers. They attempted to model shrub and herbaceous cover using NRD
as the sole predictor; however, no significant relationships were found.
Wing et al. (2012) used a modified form of NRD, which involved an
intensity-based filter aimed at minimizing the inclusion of ground
points.

2.2.3. Effects of pulse density
Airborne lidar is, in essence, a sampling instrument. Laser pulses

emitted in rapid succession from an airborne sensor interact with fea-
tures on or above the ground surface and reflect back to the sensor. The

time difference between pulse emission and return, when combined
with aircraft GPS location and pulse emission geometry, results in a
cloud containing millions of individual points with precise x, y, and z
coordinates. The spacing between pulses is a function of emission fre-
quency and angle, as well as aircraft altitude and speed. Lower altitudes
and slower speeds result in lower pulse spacing (higher pulse density).
With higher pulse density, there are more pulses per unit area to po-
tentially interact with more features on or near the ground, providing a
more detailed sampling of the earth's surface. Accordingly, higher pulse
density lidar data collections enable the generation of more precise,
high-resolution models of three-dimensional structure (Estornell et al.,
2011; Hamraz et al., 2017; Kükenbrink et al., 2017; Pesonen et al.,
2008; Wing et al., 2012). While this general relationship is widely ac-
cepted, the specific effects of pulse density on the ability of lidar to
accurately characterize understory structure have scarcely been ex-
plored in the scientific literature (Hamraz et al., 2017; Kükenbrink
et al., 2017). By comparing airborne lidar to terrestrial lidar in a de-
ciduous forest, Kükenbrink et al. (2017) demonstrated significant ef-
fects of airborne lidar pulse density on vegetation volumetric estima-
tion, with low pulse densities (1.3 pulses/m2) underestimating
vegetation volume by 64%, particularly in the understory. Similarly,
Hamraz et al. (2017) found that in a dense, mixed conifer-deciduous
forest, point densities upwards of 170 points/m2 would be necessary to
accurately identify and segment tree crowns in the understory.

2.2.4. Effects of overstory density
One of the great advantages of using airborne lidar in forested en-

vironments is the ability of individual laser pulses to exploit gaps in the
overstory to reach understory vegetation and thus facilitate the struc-
tural characterization thereof. However, as the density of overstory
vegetation increases, the size and number of those gaps decreases.
Accordingly, it has been acknowledged by a number of authors that
denser canopies reduce the ability to accurately characterize sub-ca-
nopy vegetation (Chasmer et al., 2006; Falkowski et al., 2008; Goodwin
et al., 2007; Hill and Broughton, 2009; Jakubowksi et al., 2013;
Maltamo et al., 2004; Martinuzzi et al., 2009; Mutlu et al., 2008;
Richardson and Moskal, 2011; Su and Bork, 2007; Wing et al., 2012).

Fig. 1. Three-dimensional lidar point cloud example
of a multi-aged lodgepole pine (Pinus contorta) forest
stand containing both a dense overstory and un-
derstory. The yellow circles represent simulated lidar
point returns. The dotted lines distinguish between
vertical strata representing ground returns
(< 0.25m), understory returns (0.25–2m), and
overstory returns (> 2m). (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of this article.)
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Chasmer et al. (2006) demonstrated how lidar pulse occlusion in
dense forest canopies negatively affects live crown base height esti-
mation. Maltamo et al. (2004) highlighted the degree to which the
presence of overstory trees negatively impact both sub-canopy tree
identification and height estimation. Falkowski et al. (2008) similarly
found that subdominant trees were more difficult to delineate using
automated tree identification algorithms as canopy cover increased. Su
and Bork (2007) compared lidar-understory cover model predictive
power between open- and closed-canopy aspen forests; however, they
were unable to obtain any statistically-significant predictive relation-
ships in either environment, thus nullifying the comparative ability.
Korpela et al. (2012) provide a detailed analysis of lidar pulse trans-
mission in a forested environment, highlighting the effects of species-
specific canopy cover on the likelihood of given pulses interacting with
features in the understory. They also suggest a potentially significant
effect of scan angle, indicating that including a variety of scan angles
may provide more opportunity for canopy penetration. Wing et al.
(2012) found no effect of canopy cover on understory cover prediction
accuracy; however, they suggest that this may be a unique effect of the
distinct vertical stratum differences between understory and overstory
vegetation in the ponderosa pine (Pinus ponderosa) forests they were
studying.

Several studies have quantified the effect of overstory vegetation
cover and/or density on the resultant accuracy of lidar-derived digital
terrain models (DTMs) (Clark et al., 2004; Hopkinson et al., 2006;
Reutebuch et al., 2003; Su and Bork, 2006; Takahashi et al., 2006).
These studies consistently demonstrate decreasing DTM accuracy with
increasing overstory cover. However, very few studies have explicitly
tested the effect of overstory conditions on the ability to characterize
the understory, with the exception of Su and Bork (2007) who found no
effect and Wing et al. (2012) who suggest that the specific vegetation
type they studied may be anomalous with respect to its overstory-un-
derstory relationship. One of the key challenges of examining the effect
of overstory density on the ability of lidar to characterize understory
density is that there tends to be a negative correlation between overs-
tory density and understory density, because as canopy cover increases,
less light is able to reach the forest floor, limiting the ability of light-
dependent understory plants to regenerate (Alexander et al., 2013;
Bartemucci et al., 2006; Kerns and Ohmann, 2004; Martinuzzi et al.,
2009; Wing et al., 2012). Accordingly, when analyzing the effects of
overstory lidar occlusion, one must be aware of this potentially con-
founding ecological relationship.

2.2.5. Effects of canopy height
While much of the canopy occlusion effect can be explained by

overstory density, we hypothesize that there is an additional, in-
dependent effect of canopy height. This effect is likely to manifest
primarily on off-nadir (higher emission angle) pulses. In the presence of
very tall trees, even if those trees are widely spaced (low density), an
angular lidar pulse is more likely to interact with multiple overstory
surfaces prior to reaching the understory (Fig. 2). For example, in a
forest of 150 ft tall trees, a 20° pulse can interact with two trees almost
55m apart. This may be a partial explanation for the lack of an effect of
overstory cover on the ability to accurately characterize understory
conditions found by Wing et al. (2012). They were working in forests
typically characterized by tall and widely-spaced ponderosa pine trees.
Although many have implicated the effects of overstory vegetation on
lidar-based understory characterization, none have explicitly related
the effect to a continuous measure of canopy height.

3. Methods

3.1. Study area

This study was conducted in the Monroe Mountain area of Fishlake
National Forest in central Utah (Fig. 3). This area was selected

primarily due to the availability of recent, high quality lidar data col-
lected during leaf-on conditions. The lidar data were acquired by Di-
gital Mapping, Inc. on behalf of the USDA Forest Service and Utah
Automated Geographic Reference Center between August and Sep-
tember of 2016 with an average point density of 16.43 pts/m2. The
711 km2 area ranges in elevation from 1711m to 3418m. The domi-
nant vegetation types within the study area include black sagebrush
(Artemisia nova) and big sagebrush (Artemisia tridentata) shrublands,
pinyon-juniper (Pinus edulis and Juniperus osteosperma), Gambel oak
(Quercus gambelii), and curlleaf mountain mahogany (Cercocarpus ledi-
folius) woodlands, and quaking aspen (Populus tremuloides), Engelmann
spruce (Picea engelmannii), white fir (Abies concolor), and subalpine fir
(Abies lasiocarpa) forests. The area has seen significant changes in ve-
getation conditions over the past few decades, including widespread
beetle-induced Engelmann spruce mortality, and aspen decline due to
decreased fire frequency and increased grazing (USDA Forest Service,
2017). In recent years, along with a number of partner organizations,
the Forest Service has enacted extensive forest management in the
Monroe Mountain area, including mechanical treatment and prescribed
burning, to promote aspen regeneration. These changes have combined
to produce a landscape mosaic of diverse forest types and conditions in
both the understory and overstory.

3.2. Field data

3.2.1. Field site selection
In order to facilitate direct comparison to the lidar data, field data

were collected exactly one year after the lidar data were acquired
(between August and September of 2017). Field sites had to meet the
following criteria to facilitate accessibility, promote data collection
efficiency, and reduce potential edge effects. Sites had to be: (1) within
100m of major roads; (2) at least 25m from all roads and water fea-
tures; (3) on slopes of< 10°; and (4) on public lands. By imposing these
site selection criteria, it is possible that vegetation structure sampled in
our study is not representative of the study area as a whole, including
areas that exceeded the sampling constraints (e.g. steeper slopes). In
addition, with the primary goal being to analyze understory vegetation
in forested environments, sites had to be located within areas where
vegetation equal to or> 2m in height occupied at least 20% of a given

Fig. 2. The relationship between tree height and theoretical tree separation
distance under which individual lidar pulses could interact with multiple trees
at various scan angles.
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30×30m area. This required the creation of a canopy height model
(CHM) from lidar. A study area-wide CHM was generated at a 1m
spatial resolution as the difference between a DTM, interpolated from
lidar points classified as “ground” points, and a digital surface model
(DSM), interpolated from all first-return lidar points. In this remote,
largely undeveloped study area, we assumed that first-return points are
either vegetation or bare ground. As such, no filtering of first-return
points by surface type (e.g. “vegetation” vs. “building”) was performed
prior to interpolating a DSM, given the lack of manmade structures in
the area. A height-based classification was performed to classify CHM
pixels as either tree (≥2m) or non-tree (< 2m). A percent tree cover
map was then generated by calculating the relative proportion of 1m
tree pixels within each 30×30m cell of an aggregated raster grid
throughout the study area.

Within the resulting area of eligibility for field site placement, we
employed a conditioned Latin hypercube sampling (CLHS) strategy in
order to capture a broad range of vegetation conditions. CLHS is a
stratified random sampling procedure that enables the selection of
samples that simultaneously maximize the variability captured in each
of a defined set of variables (Minasny and McBratney, 2006). All of the
following CLHS input datasets were generated at a spatial resolution of
30m, in order to identify patches of forest within which to place
transects that maximized topographic and vegetation diversity: (1)
lidar-derived elevation; (2) lidar-derived understory (0.15–1.85m)
NRD (NRDunder); (3) lidar-derived overstory (> 1.85m) NRD

(NRDover); (4) lidar-derived vegetation height; and (5) Landsat 8 OLI-
derived normalized difference vegetation index (NDVI). NDVI was
added to ensure that not only would a variety of vegetation structural
settings be sampled, but also different vegetation types. For example,
conifer and aspen forests may appear structurally similar using lidar
alone, but typically possess significantly different NDVI values due to
their unique reflectance properties. All lidar data processing was per-
formed using LAStools (Isenburg, 2015).

Fifty sample point locations were identified within the area of
eligibility using the CLHS algorithm, strategically placed to maximize
the variability captured among the five aforementioned vegetation
variables, as implemented in the clhs package in R statistical software
(R Core Team, 2016; Roudier, 2017) (Fig. 3). Each point was then
converted to a 10m transect line, by extending a line 5m in each di-
rection perpendicular to the terrain aspect (along the contour), to en-
sure relatively flat transects. Aspect was calculated from the lidar-de-
rived DTM.

3.2.2. Cover board photos
Cover boards are most often designed to facilitate visual photo in-

terpretation, typically comprising a grid of alternately-colored boxes,
like a checkerboard. Thus, when analyzing a cover board photo, one
can readily judge how many boxes, or what portions of each box, are
covered by vegetation, the averaging of which can provide an estimate
of overall cover for the entire board. However, in order to reduce the

Fig. 3. Study area map of the Monroe Mountain area (a) within Fishlake National Forest (d), in the state of Utah (c), United States (d).
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potential for interpretation error and/or observer bias in cover esti-
mation, we opted to create a cover board that could be analyzed in an
objective, automated fashion. To do so, the board needed to be both
easily distinguished from natural vegetation, and a single, uniform
color. Through preliminary experimentation with several different
cover board colors (neon yellow, orange, blue, and magenta) it was
determined that a magenta-colored cover board would be the most
spectrally separable from vegetation. This experiment was performed
using the approach described in this section (3.2.2) and the next (3.2.3),
after which an accuracy assessment of the resulting classified cover
board photos revealed that the magenta board yielded the highest
classification accuracy. Accordingly, we created a 1.5× 1.5m magenta
cover board using heavy-duty canvas and PVC pipes (Fig. 4). In addi-
tion, our preliminary work highlighted the fact that small differences in
viewing angle could result in significant differences in the resultant
cover estimate. Accordingly, we created a 1.5× 1.5m photo viewing
grid, also using canvas and PVC, with 25 equally-spaced, round, 10 cm-
diameter viewing holes through which cover board photos would be
taken (Fig. 4).

We navigated to each transect start point, staked the photo viewing
grid into the ground, ensuring that the stake was perfectly vertical using
a bubble level, and collected a GPS point using a Trimble Geo7x with
200+ point averaging. We then used a tape to measure 10m from the
start point to the end point using a compass to navigate in the direction
of the azimuth defined during the transect generation process. We then
staked the cover board into the ground and collected another GPS
point. Lastly, we took photos through each of the viewing grid holes
towards the cover board, totaling 25 photos per site using a SONY HX-
50V digital camera, with a fixed, 8× optical zoom. In order to ensure
that each photo had the same lens-cover board distance (10m), the
camera was placed such that the lens was in line with the vertical plane
of the photo grid, centered in the viewing hole.

3.2.3. Photo classification
As a result of the field data collection effort, there were 1250 cover

board photos (50 sites× 25 photos). Rather than attempt to visually
estimate the cover in each of these photos, an automated “board” vs.
“non-board” classification was performed as follows. A program was
written in R using the raster package (Hijmans et al., 2016) to load each
photo sequentially, and generate 4 random points within a square area
generally occupied by the cover board (square length and height equal
to 2/3 of the photo height). Each point was then visually interpreted as

either “board” or “non-board”. “Non-board” is an inclusive class that
represents pixels containing anything besides the cover board, pri-
marily live and dead vegetation. There were 5000 photo interpreted
points in total, 4800 of which were randomly designated as training
data, and 200 of which were designated as accuracy assessment data
(100 “board” points, 100 “non-board” points).

For each of the 4800 training points, red, green, and blue (RGB)
pixel value means were extracted within a 5× 5 pixel square im-
mediately surrounding it. A number of derivative variables were also
calculated to improve classification accuracy (Table 1). We performed a
stepwise logistic regression, beginning with a full model that contained
all of the independent variables in Table 1 and iteratively removing
them until an optimal balance between model complexity and variance
explained, as approximated by the Akaike Information Criterion (AIC).
The resulting model was used to classify “board” and “non-board” for
every pixel in all 1250 photos. We assessed overall and class-specific
user's and producer's accuracies of the photo classification using the
accuracy assessment data.

Given that every photo was taken from a fixed distance (10m), with
a consistent zoom (8×), towards a board of the same size
(1.5× 1.5m), relative cover could be easily calculated, provided that a
relative scale could be determined between photo pixel size and cover
board size. To calculate this scale, we first needed to identify a single
photo from each transect that had at least one entire cover board di-
mension (either a full width or height) visible. There were only 4
transects where no such dimensions were clearly visible. For the re-
maining 46, a measurement was taken in Adobe Photoshop of equiva-
lent number of pixels for each cover board height or width, depending
on which was more clearly visible. From this, an effective per-pixel area
could be calculated. This effective pixel area was then multiplied by the
number of pixels classified as “board” for each photo, which was then
compared to the entire board area (2.25m2) to determine relative
cover. Overall understory cover was then calculated for each transect
by taking the mean value for all 25 photos.

3.3. GIS and lidar data processing

The GPS points representing transect start and end points were
differentially corrected to a mean absolute positional error of 52 cm
using base station data from nearby Scipio, UT and converted to sha-
pefile format for use in GIS. A line was drawn between points re-
presenting the transect, and a buffer created around each transect
within which the lidar data would be analyzed. A 0.75m rectangular
buffer was generated around the transect line to represent the precise

Fig. 4. Cover board photo setup.

Table 1
Spectral variables used in stepwise logistic regression to classify board vs. non-
board on cover board photos.

Variable Abbreviation Calculation

Red R 8-bit R pixel mean
Green G 8-bit G pixel mean
Blue B 8-bit B pixel mean
Normalized red Rnorm R / (R+G+B)
Normalized green Gnorm G / (R+G+B)
Normalized blue Bnorm B / (R+G+B)
Magenta M (R+B) / 2
Cyan C (B+G) / 2
Yellow Y (G+R) / 2
Normalized magenta Mnorm M / (M+C+Y)
Normalized cyan Cnorm C / (M+C+Y)
Normalized yellow Ynorm Y / (M+C+Y)
Normalized difference red-green NDRG (R –G) / (R+G)
Normalized difference green-blue NDGB (G – B) / (G+B)
Normalized difference blue-red NDBR (B – R) / (B+R)
Normalized difference magenta-cyan NDMC (M – C) / (M+C)
Normalized difference cyan-yellow NDCY (C – Y) / (C+Y)
Normalized difference yellow-magenta NDYM (Y –M) / (Y+M)
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area between cover board and photo grid (10m long×1.5m wide).
However, given the small uncertainty in the GPS data, we performed an
additional buffer around the rectangle of 0.25m (Fig. 5).

Lidar point cloud data were extracted within each transect plus GPS
uncertainty buffer. The following metrics were derived for each transect
point cloud: (1) understory NRD from 0.15–1.85m (NRDunder); (2)
understory ORD from 0.15–1.85m (ORDunder); (3) overstory ORD
from>1.85m (ORDover); (4) 95th height percentile; and (5) pulse
density. Even though the cover board ranged in height from
0.25–1.75m, we opted to add 10 cm to both ends to account for small
uncertainty in the vertical accuracy of lidar returns and to create a more
inclusive voxel to increase the number of point returns analyzed. We
did not calculate overstory NRD because overstory ORD and NRD are
the same metric, since it was inclusive of all points higher than 1.85m.

3.4. Analysis

In order to assess their respective abilities to predict understory
vegetation density, individual ordinary least squares regression models
were generated for ORDunder and NRDunder. Both ORD and NRD dis-
played non-normal, right-skewed distributions. Accordingly, log re-
gression was performed in both cases. The models were compared ac-
cording to the degree to which the lidar-based independent variables
were able to explain variance in the cover board-based dependent
variable, as approximated by R2, and AIC.

In order to determine the relative effects of lidar pulse density,
overstory vegetation density, and canopy height, we performed a
bootstrapping analysis. This approach allowed us to assess the effects of
these limiting factors on the ability to accurately model understory
vegetation density using lidar by successively generating random sub-
sets of data, each of which possessed a slightly different set of lidar and
vegetation conditions, and each of which yielded a slightly different
statistical relationship between understory NRD and cover board den-
sity. Ten-thousand random samples of 20 were taken, without re-
placement, from the 50 original transect-level data points. For each
sample data subset, the mean pulse density, the mean overstory ORD,
and the mean 95th height percentile were calculated. In addition, a
regression model was generated comparing understory NRD (in-
dependent variable) to cover board cover (dependent variable) for each
subset as well, from with R2 values were computed. We then compared
the subset data pulse density, overstory ORD and 95th height percentile
to the resultant model R2 in a series of individual ordinary least squares
regression analyses to determine the relative effects of these variables
on the degree to which understory NRD can predict understory vege-
tation density in a series of regression analyses. Lastly, in order to ac-
count for the potentially confounding effects arising from correlation
between overstory ORD and 95th height percentile, we performed a
multiple regression containing all three predictor variables (pulse
density, overstory ORD, and 95th height percentile).

4. Results

In total, 1250 photos were classified according to a binary “board”
vs. “non-board” classification (Fig. 6). Of the 18 spectral variables

generated for each photo, a stepwise regression algorithm determined
that a combination of 8 variables was best for distinguishing between
those image pixels that contained primarily board and those that con-
tained primarily non-board (predominantly vegetation) (Table 2). Each
predictor variable was significant at a level of α=0.1. The model
coefficients were used to develop a prediction equation, as follows:

= − + + + +

− − −

y R G B R NDGB NDBR

NDMC NDYM

0.039 0.077 0.052 423.9 8.678 57.57

237.0 62.63 0.015
norm

(3)

where variable names are listed in Table 2. Resulting pixel values
greater than or equal to 0.5 were classified as board (1); those pixels
with values < 0.5 were classified as non-board (0). Randomly-selected
accuracy assessment points were compared to the resultant classifica-
tion (Table 3). Overall accuracy was high, at 97.5%. Inaccuracies arose
solely in the over-mapping of pixels classified as non-board, suggesting
that the resulting classified images tended to slightly overestimate
cover by a small margin.

For each transect, a single density estimate was obtained by taking
the mean percent cover for each of the 25 gridded photos. Transect-
level cover board density was then compared to lidar-derived ORDunder

and NRDunder (Fig. 7). NRDunder far outweighed ORDunder in terms of
predictive power (R2: 0.442 vs. 0.137) and model quality (AIC:
−15.802 vs. 5.966). ORDunder bore almost no recognizable relationship
to cover board density (Fig. 7a).

The results of the bootstrapping analysis to determine the relative
effects of pulse density, overstory vegetation density, and canopy height
on the ability to accurately model understory density can be seen in
Fig. 8 and Table 4. Although there is much spread in the resulting
scatterplots, each variable was found to have a statistically significant
relationship to the NRD-cover board density model R2 values in a
multiple regression environment (α=0.001). As the standardized
coefficients suggest, pulse density had the effect of greatest magnitude
on R2, followed by overstory density and canopy height, which had very
similar effects. Accordingly, as pulse density increases, the ability to
model understory density using lidar NRDunder increases. Conversely, as
overstory vegetation density (as approximated by lidar ORDover) in-
creases, the ability to model understory density using lidar NRDunder

decreases. And lastly, as canopy height (as approximated by lidar 95th
height percentile) increases, the ability to model understory density
using lidar NRDunder decreases.

5. Discussion

Lidar is unique in its ability to characterize understory structure at a
high spatial resolution across broad tracts of forest land. While this
ability has widespread application in fields ranging from wildlife
biology to wildland firefighter safety, there are some key considerations
that require addressing before engaging in such an analysis. We have
presented and quantified the effects of a number of these considerations
in this study. The first consideration is the selection of appropriate
understory lidar metrics for use in modeling understory vegetation
density. We compared two widely-used metrics, ORD to NRD, for their
respective abilities in predicting understory density as measured in the
field, finding that NRD was far superior in this regard. NRD was able to
explain nearly half of the variance in field-measured understory den-
sity, whereas ORD explained next to none. This significant difference is
likely a result of overstory conditions. Many authors have pointed to the
fact that overstory vegetation can result in lidar pulse energy occlusion,
thus limiting the ability to characterize understory conditions (e.g.
Hamraz et al., 2017; Kükenbrink et al., 2017). NRD accounts for dif-
ferences in overstory vegetation, as it only takes into consideration
those portions of a given lidar pulse that have already penetrated the
canopy in computing relative proportion. ORD does not. Accordingly, if
one's goal is to characterize understory conditions in a forested en-
vironment – particularly one with a dense overstory – the results of our

Fig. 5. Transect layout.

M.J. Campbell et al. Remote Sensing of Environment 215 (2018) 330–342

337



study suggest using NRD. In the absence of an overstory, however, NRD
and ORD are, in fact, the exact same measure.

The results of our study also suggest that NRD, though preferable to
ORD, does not account for all overstory effects. The very fact that NRD
only accounted for roughly half of the variance in field-measured
density highlights this fact. This relatively low R2 is not uncommon
among lidar-based studies of understory vegetation and highlights the
complexity of undertaking such an endeavor. In order to determine

what factors contributed to this limited explanatory power, we ex-
amined the effects of two overstory conditions on understory model fit.
Using a bootstrapping analysis, we found that as overstory density and
canopy height increase, the ability to effectively model understory
conditions decreases. In addition, as pulse density increases, so too does
the ability to model understory conditions. Thus, it comes as no surprise
that superior the ability of NRD to accurately quantify understory
density is maximized with a high pulse density lidar dataset in areas
with shorter, sparser canopies. For example, if we take the uppermost
97.5 percentile of pulse density (17.90 pulses/m2) and the lowermost
2.5 percentile of overstory density (0.38) and canopy height (9.04 m) in
our bootstrapped data – representing “ideal” conditions while avoiding
extrapolation – the resultant R2 for using NRD to predict understory
would be 0.59, according to our multiple regression results.
Presumably, with an even higher pulse density, and even lower overs-
tory density and canopy height, this relationship could improve even
more.

However, even in these optimal conditions, a noteworthy amount of
variance is still left unexplained. There are several reasons why this
may be the case. First, as in all lidar-based studies but particularly in
those that examine near-ground vegetation conditions, the accuracy of
the classification between ground and non-ground points is critical
(Meng et al., 2010). The ground point classification is the basis upon
which lidar point aboveground heights are calculated prior to calcula-
tion of metrics for predictive modeling. Particularly when working in as
narrow of a height range with a low-end threshold as low as we did in
this study (0.15–1.85m), a few misclassified ground points can have a
dramatic effect on resultant NRD calculations. The dataset we used in
this study has a self-reported vertical root mean square error of 6.1 cm
for ground points, and a 95% confidence interval of± 11.9 cm. Thus, it
is highly likely that some of the points we considered aboveground
vegetation were in fact ground points, and vice versa. In this study area

Fig. 6. Cover board photo classification example results. In the lower two panels, white indicates pixels classified as “board” and black indicates pixels classified as
“non-board”.

Table 2
Stepwise logistic regression model results for cover board photo classification.
Null deviance=6131.12 on 4799 degrees of freedom. Residual de-
viance=658.92 on 4791 degrees of freedom.

Model parameter Coefficient Standard error z Value p

Intercept −0.015 38.00 −3.907 < 0.001
R 0.039 0.009 4.456 < 0.001
G −0.077 0.015 −5.127 < 0.001
B 0.052 0.016 3.323 < 0.001
Rnorm 423.9 113.6 3.730 < 0.001
NDGB 8.678 4.980 1.743 0.081
NDBR 57.57 24.56 2.344 0.019
NDMC −237.0 58.06 −4.082 < 0.001
NDYM −62.63 16.24 −3.856 < 0.001

Table 3
Cover board photo classification accuracy assessment.

Reference data Accuracy

Board Non-board User Producer Overall

Classified data Board 95 0 100.0% 95.0% 97.5%
Non-board 5 100 95.2% 100.0%
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in particular, there was an abundance of downed coarse woody debris,
which a ground filtering algorithm may have difficulty distinguishing
from the ground (Pesonen et al., 2008).

A second factor than may have negatively impacted the lidar-un-
derstory density relationship found in our study stems from the nature
of our field data. As discussed earlier, cover boards are an invaluable
tool for characterizing understory conditions, widely used for their ef-
ficiency of implementation, conceptual simplicity, and applicability in a
range of disciplines. Our study represents one of the first attempts at
using cover boards as ground reference data for direct comparison to
lidar, with Kramer et al. (2016) being the only other published example
to date. While it shows great promise as a source of training and vali-
dation data, there are limitations that emerge, primarily from the ef-
fects of viewing geometry. To avoid biasing our dataset towards open
understories, we made every attempt to place our viewing grid on the
precise, computer-generated GPS location to the extent that it was
physically possible. Likewise, we attempted to place the cover board
exactly 10m from the viewing grid along a pre-defied azimuth. While
this facilitated an unbiased sample, occasionally it resulted in, for ex-
ample, the viewing grid falling right behind the bole of a tree. Thus,
even in a relatively open stand, cover could appear relatively high, due
to the relationship between viewing geometry and tree proximity. Fig. 9
demonstrates one such example, where mean cover is increased almost
entirely due to the presence of a single tree bole. Our use of a 25-photo,
multi-angle viewing grid was explicitly aimed at reducing these effects.
And, in fact, the calculation of standard deviation between individual
photo cover estimates allowed us to quantify the effects of this viewing
geometry-based structural complexity on lidar-understory density
model fit. As can be seen in Fig. 10, as structural complexity increases,
the ability to accurately characterize understory density using lidar

decreases.
A third potential factor that may have contributed to the disagree-

ment between lidar and cover board density estimates is the difference
in vegetation conditions between when the field and remote sensing
data were collected. Although we attempted to minimize the differences
between vegetation phenological conditions between these two time
frames by collecting the field data exactly one year after lidar data
collection, conditions could have been slightly different during
August–September in 2016 and 2017. In fact, an analysis of MODIS
Terra enhanced vegetation index (EVI) 16-day average data (MOD13Q1
product) captured within the Monroe Mountain area (as defined by the
study area boundary, Fig. 3) between 2016 and 2017 revealed that
average EVI values were slightly higher in August–September of 2017
(EVI2017= 0.235) than August–September of 2016 (EVI2016= 0.219)
(ORNL DAAC, 2017). EVI is a good predictor of leaf area index (Zhang
et al., 2003), which suggests that leaf index may have been higher
during field data collection than during the lidar data collection.

Although every attempt was made to maximize the variety of

Fig. 7. Comparison between ordinary least squares regression models predicting cover board density using lidar-based understory overall relative point density
(ORD) (a) and normalized relative point density (NRD) (b).

Fig. 8. The bootstrapped effect of lidar pulse density (a), overstory canopy density (as approximated by lidar overall relative point density of all points higher than
1.85 m) (b), and canopy height (as approximated by 95th percentile of lidar point return height) (c) on the ability of lidar to model understory cover (as ap-
proximated by the amount of variance in cover board cover explained by lidar understory normalized relative point density).

Table 4
Results of multiple regression analysis between bootstrapped R2 values and
pulse density, overstory density, and canopy height (R2=0.104, p < 0.001).

Model
parameter

Coefficient Standardized
coefficient

Standard
error

t Value p

Intercept 0.029 0.476 0.054 0.525 0.6
Pulse density 0.050 0.024 0.003 17.64 <0.001
Overstory

density
−0.489 −0.018 0.048 −10.15 <0.001

Canopy
height

−0.017 −0.017 0.002 −9.281 <0.001
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conditions sampled in our study, continued study is needed in a broader
range of vegetation conditions – especially overstory conditions – to
expand the spatial applicability of the results we obtained from our
study area in Monroe Mountain, UT. For example, the highest overstory
lidar ORD found in our study area was 0.80, which is to say that the
densest canopy we encountered still allowed 20% of point returns to
penetrate through to the understory and ground. In a dense, broadleaf,
tropical environment, for example, one might expect that there would
be some canopies so dense that no lidar energy at all could penetrate
them. However, no such density was found in the Rocky Mountain
mixed conifer-aspen forests found in our study area. That being said,
the objective, quantitative nature of the lidar and cover board-based
measures of vegetation density presented in this study are thought to be

fairly vegetation condition- and type-independent, making the work-
flow presented in this research a viable option in a wide range of en-
vironments. In addition, while the use of cover boards as ground re-
ference data for lidar-based quantification of understory vegetation
density is promising, more research is required to determine metho-
dological optimality (e.g. plot layout, board material/color/dimen-
sions).

6. Conclusions

Lidar is an incredibly powerful remote sensing dataset capable of
assessing a wide range of vegetation structural conditions; however, it
is not without its limitations. In this study, we inquired into several
important considerations that studies aimed at quantifying understory
structure in forested environments must take into account. Specifically,
we highlight that lidar NRD is far superior to ORD in terms of its
modeling capacity. This is a particularly impactful result, as no one has
yet quantitatively compared the two, and yet each is widely used
throughout the lidar literature. We also provide robust, quantitative
backing to the oft-cited but scarcely-quantified effects of pulse density,
overstory vegetation density, and canopy height on the ability to
characterize forest understory vegetation density.
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