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A B S T R A C T

Atmospheric methane has been increasing since the beginning of the industrial era due to anthropogenic
emissions. Methane has many sources, both natural and anthropogenic, and there continues to be considerable
uncertainty regarding the contribution of each source to the total methane budget. Thus, remote sensing tech-
niques for monitoring and measuring methane emissions are of increasing interest. Recently, the Airborne
Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) has proven to be a valuable instrument for
quantitative mapping of methane plumes. Despite this success, uncertainties remain regarding the sensitivity of
the retrieval algorithms, including the influence of albedo and the impact of surfaces that may cause spurious
signals. To explore these sensitivities, we applied the Iterative Maximum a Posterior Differential Optical
Absorption Spectroscopy (IMAP-DOAS) methane retrieval algorithm to synthetic reflected radiances with vari-
able methane concentrations, albedo, surface cover, and aerosols. This allowed for characterizing retrieval
performance, including potential sensitivity to variable surfaces, low albedo surfaces, and surfaces known to
cause spurious signals. We found that dark surfaces (below 0.10 μWcm−2nm−1sr−1 at 2139 nm), such as water
and green vegetation, and materials with absorption features in the 2200–2400 nm range caused higher errors in
retrieval results. We also found that aerosols have little influence on retrievals in the SWIR. Results from the
synthetic scene are consistent with those observed in IMAP-DOAS retrievals for real AVIRIS-NG scenes con-
taining methane plumes from a waste dairy lagoon and coal mine ventilation shafts. Understanding the effect of
surface properties on methane retrievals is important given the increased use of AVIRIS-NG to map gas plumes
from a diversity of sources over variable landscapes.

1. Introduction

Methane (CH4) is a potent greenhouse gas that contributes sig-
nificantly to global climate change. Methane is estimated to be re-
sponsible for about 20% of the total global warming induced by an-
thropogenic greenhouse gases (Kirschke et al., 2013) and abundances
have been increasing since the industrial revolution (Ciais et al., 2013).
However, from 1999 to 2006 the growth rate stagnated only to rise
again starting in 2007 (IPCC, 2016; Nisbet et al., 2014). The cause of
this stagnation and subsequent rise is still debated. Some argue that the

increase in methane is due to the natural gas industry while others
argue it is due to increased emissions from wetlands (Nisbet et al.,
2016; Schaefer et al., 2016; Schwietzke et al., 2016). Other studies
point to changes in the methane lifetime (Rigby et al., 2017; Turner
et al., 2017). Regardless of cause, the recent unexpected rise in methane
reflects our uncertainty regarding the contribution of various sources to
the total methane budget. In addition, recent increases in atmospheric
methane have revived concern about its relative contribution to global
warming, which has resulted in some states, such as California, en-
acting new regulations to curb emissions (SB-1383, Lara, 2016; AB-
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1496, Thurmond, 2015). These policy measures underscore the im-
portance of unraveling sectoral contributions through deployment of
effective techniques for monitoring and quantifying methane emissions.

Using remote sensing to study greenhouse gases, such as methane,
has gained prominence over the last decade (Jacob et al., 2016). There
have been a variety of instruments launched into space with the goal of
observing methane and other greenhouse gases. The Atmospheric In-
frared Sounder (AIRS), the SCanning Imaging Absorption SpectroMeter
for Atmospheric CHartographY (SCIAMACHY), and the Greenhouse
gases Observing SATellite (GOSAT) are three such examples
(Frankenberg et al., 2011; Strow et al., 2003; Yokota et al., 2009).
These sensors generate global maps of gas concentrations with coarse
spatial resolutions on the order of kilometers. AIRS, SCIAMACHY, and
GOSAT have greatly increased our understanding of global methane
distribution and quantity, but lack the spatial resolution to directly
attribute observed emissions to individual sources. Finer spatial re-
solution sensors are necessary to improve sensitivity to local emissions
sources. For example, the 30m pixel resolution of the Hyperion imaging
spectrometer enabled the space-based detection of a methane plume
from Aliso Canyon (Thompson et al., 2016). However, the Aliso Canyon
plume was anomalously large and Hyperion was not well suited for
methane detection given an aged focal plane at the time of detection
and low signal-to-noise ratio in wavelength regions capturing methane
absorption (Green et al., 2003).

In addition to space-based observations, airborne observations have
also been used to detect and measure methane. Airborne remote sensing
has fine spatial resolution and is well suited to resolving individual
sources, although these retrievals are limited in time. Current airborne
sensors used to measure methane emissions include the Methane
Airborne MAPper (MAMAP), a non-imaging spectrometer specifically
designed to map methane and carbon dioxide (Gerilowski et al., 2011).
This sensor was able to obtain flux estimates from point sources such as
landfills and coal mine ventilation shafts (Krautwurst et al., 2017;
Krings et al., 2013). MAMAP and other similar sensors are able to make
very accurate column concentration estimates but must fly many
downwind transects in order to map a full plume. This makes detection
of emissions from unknown sources difficult, and these sensors are best
suited for studying known methane sources. More recently, imaging
spectrometers have been used to map methane. Thermal imaging
spectrometers such as Mako and the Hyperspectral Thermal Emission
Spectrometer (HyTES) have successfully mapped methane plumes from
multiple sources (Hulley et al., 2016; Tratt et al., 2014). However, the
sensitivity of these sensors to emissions near the ground depends on the
thermal contrast between the ground and atmosphere and decreases as
flight altitude increase, which in turn limits ground coverage.

The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)
and the Next Generation instrument (AVIRIS-NG) are imaging spec-
trometers that measure reflected solar radiation in the visible and
shortwave infrared (VSWIR) and have also been used to map methane
emissions (Frankenberg et al., 2016; Roberts et al., 2010; Thompson
et al., 2015; Thorpe et al., 2013, 2017). AVIRIS measures a spectral
range between 400 and 2500 nm and has a 10 nm spectral sampling
(Green et al., 1998) while AVIRIS-NG measures the same spectral range
with 5 nm spectral sampling and improved signal to noise ratio (SNR)

(Hamlin et al., 2011). AVIRIS-NG has a 34° field of view with a 1 mrad
instantaneous field of view that results in spatial resolutions that typi-
cally range between 1 and 8m depending on the flight altitude. These
sensors were not originally designed to map greenhouse gases but their
sensitivity to gas absorption features between 900 nm and 2500 nm has
allowed for detection and quantitative mapping of methane, carbon
dioxide, and water vapor (Bradley et al., 2011; Dennison et al., 2013;
Gao and Goetz, 1990; Roberts et al., 2010; Thorpe et al., 2017). Re-
cently, quantitative retrievals have been developed to estimate column
concentrations of methane from AVIRIS-NG data (Thompson et al.,
2015; Thorpe et al., 2014; Thorpe et al., 2017). For example, the
Iterative Maximum a Posterior Differential Optical Absorption Spec-
troscopy algorithm (IMAP-DOAS; Frankenberg et al., 2004) was
adapted for AVIRIS-NG (Thorpe et al., 2017). Success using AVIRIS-NG
for methane mapping has prompted multiple flight campaigns in the
Western United States focused on mapping methane emissions from the
energy sector (Thompson et al., 2015; Frankenberg et al., 2016; Thorpe
et al., 2017).

Although AVIRIS-NG has been used successfully to map methane
plumes, there are still uncertainties regarding the sensitivity of the re-
trieval algorithms, including the influence of albedo on results and the
impact of surfaces that can cause spurious signals. Low albedo surfaces
reduce the observable difference in reflected radiance between a
background methane concentrations and enhanced concentrations. At
the 5 nm spectral sampling of AVIRIS-NG, surfaces with absorption
features in the shortwave infrared can mimic the absorptions caused by
methane. In this study, we apply the IMAP-DOAS algorithm to a syn-
thetic image with variable methane concentrations, surfaces, and al-
bedo. In an observed AVIRIS-NG scene we cannot control the exact
column concentration of a gas, but synthetic radiances based on accu-
rate radiative transfer modeling allows us to control these values and
therefore test the accuracy of the algorithms used to estimate the gas
concentrations (Dennison et al., 2013; Guanter et al., 2009; M. Zhang
et al., 2017). In addition, the land cover properties, such as albedo and
surface type, can be controlled, allowing us to test the sensitivity of the
algorithms to these factors. The ability to manipulate these parameters
allows us to quantify how the retrieval algorithm is impacted by var-
iations in albedo, surface type, and specific surfaces known to cause
spurious signals in order to improve our understanding of retrieval
results. In this study, we will first create a synthetic image, run the
IMAP-DOAS retrievals algorithm on the synthetic image, and then
compare the retrieved CH4 values to the known values.

2. Methods

The general method for this study is to create a synthetic image and
to run the IMAP-DOAS algorithm on the synthetic image. Fig. 1 sum-
marizes the workflow for creating the synthetic image and the steps to
achieve the results discussed subsequently. Details on the synthetic
image and IMAP-DOAS algorithm are discussed below.

2.1. Synthetic image

The synthetic image used in this study consists of three main

Fig. 1. Workflow framework for the study.
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components; it has 30 different surface types modeled at 50 surface
albedos and 25 different methane concentrations. MODTRAN 5.3, a
radiative transfer model, was used to simulate reflected solar radiance
spectra for the synthetic image (Berk et al., 2005). MODTRAN is com-
monly used to create lookup tables for many atmospheric correction
algorithms including ACORN (Kruse, 2004; Miller, 2002) FLAASH
(Adler-Golden et al., 1999; Matthew et al., 2002), and ATCOR (Gao
et al., 2009; Richter, 1996). It has also been used in a similar way to
retrieve water vapor and carbon dioxide from AVIRIS images (Gao and
Goetz, 1990). We generated a radiance look up table that consisted of
radiance files with 1000 brightness levels and 25 methane concentra-
tions. The methane concentration within the lowest 1 km of the atmo-
sphere, intended to simulate a methane plume or local emission source,
ranged from 0 ppm to 12.5 ppm above a background of 1.864 ppm with
a 0.5 ppm step (Fig. 3). The MODTRAN atmospheric profiles used to
generate these synthetic radiances were modified to match profiles used
in the IMAP-DOAS retrieval (see Section 2.2). Assuming a 4 km sensor
height and a nadir view zenith angle, two-way transmittance (upwel-
ling and downwelling) was calculated for the atmospheric layers below
the sensor, including the 1 km layer with variable methane concentra-
tions (Fig. 2). The solar reflected radiance was then convolved to the
AVIRIS-NG wavelengths using the AVIRIS-NG sensor response function;
this produced 432 bands with approximately 5 nm full width half
maximum.

The additional atmospheric and geometric variables included in the
model were held constant and are listed in Table 1. These variables
reflect typical conditions under which AVIRIS-NG data are collected.
The sensor height in the original studies using AVIRIS Classic to detect
methane was 8.95 km (Bradley et al., 2011; Roberts et al., 2010). Re-
cent AVIRIS-NG flight campaigns that have targeted methane emissions
had sensor heights ranging from 0.43 to 3.8 km with the average
around 3 km (Duren et al., 2017; Thorpe et al., 2016a, 2016b). In this
study, a height of 4 km was chosen to reflect the upper limit of typical
AVIRIS-NG flights for methane mapping. Given this sensor height,
methane concentrations were calculated in units of mixing ratio-path
length (ppm-m) for the 0 to 4 km layer to permit direct comparison

between the modeled concentrations in the synthetic image and the
IMAP-DOAS retrieval results. The volume mixing ratios (VMRs) gen-
erated by MODTRAN for each kilometer layer of the 0–4 km layer were
multiplied by 1000m and summed. The lowest methane concentration
modeled in the image is 6264 ppm-m and the highest concentration,
with a 12.5 ppm enhancement above background, is 18,764 ppm-m.
The background carbon dioxide, water vapor, location, date, and time
of day all represent typical conditions for AVIRIS-NG data collection.
The MODTRAN visibility was set at 30 km for a rural atmosphere, in-
cluding scattering components comprised of 70% ammonium, calcium
sulfate, and other organic compounds and 30% dust like aerosols (Carr,
2005). Additional testing was done to determine that a single visibility
was sufficient.

Scattering from aerosols in the atmosphere is hypothesized to have a
minimal impact on AVIRIS-NG methane retrievals due to the small
amount of scattering in the shortwave infrared (SWIR; 1100 to
3000 nm; Dennison et al., 2013). In order to test this assumption and to
be confident that the use of a single 30 km visibility was sufficient, we
created a small synthetic image with all of the same attributes described
below but with a 5 km visibility for a rural atmosphere. The 30 km
visibility atmosphere has a total column extinction coefficient of 0.177
and the 5 km visibility atmosphere has a 1.082 total column extinction
coefficient (MODTRAN normalizes the extinction coefficient to 1 at
550 nm). The 5 km visibility value was chosen because it is an extreme
example, therefore any effects from aerosols should be apparent based
on the differences between 5 and 30 km visibility. This image had the
same variable land cover and albedo (described below) but only had
three methane concentration (1.864 ppm, 2.864 ppm, 9.864 ppm). The
IMAP-DOAS algorithm was run on this image in the same way described
later (see Section 2.2) and the results are reported in Section 3.1.

The spectra selected for this study represent surface types common
in both natural and urban areas. The surfaces include common cover
types imaged by AVIRIS-NG and surfaces hypothesized to be challen-
ging for methane mapping. The majority of the surface spectra used to
construct the synthetic image were derived from a spectral library
originally developed by Roberts et al. (2017) that consists of spectra
representing urban and natural environments in Southern California.
The spectra were originally collected from a combination of Analytical
Spectral Device (ASD) measurements and AVIRIS Classic data. Two
additional spectra were obtained from other sources, a calcite spectrum
from the US Geological Survey and oil coated vegetation from an
AVIRIS Classic image of the Louisiana coastline following the Deep
Water Horizon oil spill (Kokaly et al., 2013). The spectral library was
convolved and resampled to AVIRIS-NG band centers and full-width
half maxima. The surface types are broken up into eight main cate-
gories: Green Vegetation (GV), Non-Photosynthetic Vegetation (NPV),
soil (or bare soil), water, paved material, roofs, rocks, and “confusers”.

Fig. 2. The left panel is the methane profile modeled by MODTRAN for an
atmosphere with no methane enhancement. The bottom 0–4 km layer is plotted
on a different scale then the 5–100 km layer. The middle panel is a schematic of
how the synthetic image models methane in the atmosphere. The far right panel
shows IMAP-DOAS retrieval layers, and the light blue layer is below the sensor
where the algorithm allows for methane perturbation. For the IMAP-DOAS
retrieval, the methane profile above the sensor (white layer) remains constant.
The red square represents the sensor and the red line represents transmittance
path from the sun to the sensor. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Table 1
AVIRIS-NG inputs for the MODTRAN simulation. The attributes are the
environmental factors affecting the radiative transfer model and the va-
lues are the modeled values. All attributes remain constant except for
albedo and methane.

Attribute Values

Sensor height 4 km above sea level
Wavelengths 350–2500 nm
Carbon dioxide 405 ppm
Water vapor 1.535 cm
Visibility 30 km
View zenith angle 0 degrees
Latitude 34.1
Longitude −118.4
Day of Year (Julian Day) 262
Time (UTC) 21.30
Solar Zenith Angle 29.77 degrees
Methane (in 1 km layer) 1.864 ppm–14.364 ppm
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Previous studies have hypothesized that surfaces with strong hydro-
carbon absorptions can be potential confusers (Thorpe et al., 2013),
therefore the spectra in the confuser class were selected because they
contained hydrocarbons or similar SWIR absorptions, which might in-
terfere with the methane absorption features. This class consists of
materials such as white painted commercial roof (WPCR), calcite,
plastic covered vegetation (greenhouse), and oil-coated vegetation. The
individual spectra used in all the classes are listed below in Table 2.

The spectral library reflectance data were converted to radiance
using the aforementioned look up table. For each wavelength of each
reflectance spectrum, the reflectance value was matched with the clo-
sest simulated reflectance value for a specified methane concentration
(Dennison et al., 2013). The corresponding radiance from the lookup
table was then extracted, and the process was repeated for the next
wavelength. This was then repeated for every methane concentration
and every reflectance spectrum, to create a synthetic image of radiance
spectra with known atmospheric parameters.

The layout of the synthetic image is such that there are 30 “boxes”
on the grid, and each box represents a single background spectrum. The
bottom half of the box has methane concentrations grading from 0 to
12.5 ppm above background in 25 steps. The top half of the box uses
background methane throughout the entire atmosphere. The re-
flectance of the background spectrum varied from 2% on the left to 52%
on the right. Fig. 3 depicts how the surface type, methane, and albedo
vary across the image. The gridded layout allowed for easy visual
analysis of the performance of IMAP-DOAS algorithm. A noise com-
ponent aimed at mimicking sensor noise was added using noise
equivalent delta radiance (NEdL) to parameterize random noise
(Dennison et al., 2013). NEdL is the minimum change in radiance dis-
tinguishable from sensor noise and varies by wavelength and radiance
level. For each pixel at each wavelength, the NEdL value is calculated
by using the original radiance value and NEdL coefficients that were
calculated by Dennison et al. (2013). A random number between 0 and

2 was generated and multiplied by the NEdL value so that different
amounts of noise were added to each pixel with the average amount
being the original NEdL value. The result was then added to the original
radiance value. The purpose of varying NEdL was not to simulate the
radiance distribution of sensor noise, but rather to create random but
true to life variation in each pixel. The total size of the image was 500
by 612 pixels.

2.2. The IMAP-DOAS retrieval algorithm

Based on the Beer-Lambert law, Differential Optical Absorption
Spectroscopy (DOAS) describes the relationship between incident in-
tensity for the vertical column and measured intensity after passing
through a light path containing an absorber (DOAS, Platt, 1994). The
IMAP-DOAS retrieval incorporates optimal estimation theory to adjust
the column densities of gases until there is optimal agreement between
the measured and modeled radiances (Frankenberg et al., 2005) and
has been modified for use with AVIRIS-NG (Thorpe et al., 2017). For
this study, IMAP-DOAS was setup to model reflected solar radiation
using a two layer model. Above the aircraft, the vertical optical den-
sities were combined with an air mass factor (AMF) calculated to ac-
count for one-way transmission. Below the aircraft, vertical optical
densities were also combined and an AMF calculated to account for
two-way transmission (Fig. 2). Atmospheric profiles from the LOW-
TRAN/MODTRAN U.S. standard atmosphere (Kneizys et al., 1996) were
updated to reflect background concentrations, including 1.864 ppm
methane near the surface and volume mixing ratios (VMR) that de-
creased with altitude. These atmospheric profiles and spectral para-
meters for methane, water vapor, and nitrous oxide from the HITRAN
database (Rothman et al., 2009) were used to calculate vertical optical
densities.

Methane retrievals were performed between 2215 and 2410 nm and
included fits for the additional absorbing species of water vapor and
nitrous oxide. The resulting state vector (→xn) has six entries (three gases
for two atmospheric layers). Modeled radiance was calculated for each
wavelength with a forward radiative transfer model using the following
equation:
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layers and repeated for each gas), →τ n
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is the reference total optical

density for each n number of atmospheric state vector elements (in-
cluding optical densities of methane, water vapor, and nitrous oxide),
→xn i, is the gas related state vector at the i-th iteration (gas scaling
factor), which scales the prior optical densities of methane, water
vapor, and nitrous oxide in each n layer (6 rows). ak are polynomial
coefficients to account for broadband variability in surface albedo. The

high resolution modeled radiance
⎯→⎯
F

hr
is then convolved with the ILS

and sampled to the center wavelengths of each AVIRIS-NG spectral
band. This results in a low resolution modeled radiance at the i-th

iteration of the state vector (
⎯→⎯ →F x( )

lr
i ), calculated using a known →τ n

ref

scaled by →xn i, .
The IMAP-DOAS algorithm was run using the same parameters used

to generate the synthetic image, including the sensor height, location,
date, time, and solar zenith angle (Table 1). In this study, the IMAP-
DOAS algorithm assumed background concentrations above the aircraft
and perturbed the absorbing species in the lowest layer of the model
(from 0 to 4 km). The resulting gas state vector for the lowest layer of
the model at the last iteration (gas scaling factor, see →xn i, ) was then
multiplied by the product of the VMR for the lowest layer of the

Table 2
The surface type and spectra used to create the synthetic image.

Land cover class Surface name

Confusers Oil coated vegetation
White painted commercial roof 1
(WPCR1)
Calcite
Plastic covered crops
White painted commercial roof 2
(WPCR2)
White painted commercial roof 3
(WPCR3)

Green Vegetation (GV) Ceanothus (CEME)
Wetland Vegetation (MARSH)
Coyote brush (BAPI)
Willow (SASP)
Golf course grass
Palm tree

Water Hope Lake
Ocean water (glint)

Rock Rock
Non-Photosynthetic Vegetation (NPV) Dead grass

Evergreen bark
Bark
Needle litter

Paved Surfaces Airport asphalt
Concrete bridge
Concrete parking structure 1
Concrete parking structure 2
Tennis court

Roof Asphalt & gravel roof
Red tile roof

Soil Soil 1
Soil 2
Soil 3
Soil 4
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reference atmosphere and the distance between the aircraft and the
ground, resulting in gas concentrations in units of ppm-m. Therefore,
IMAP-DOAS retrievals reflect the methane concentrations present in the
atmospheric subcolumn beneath the aircraft (from 0 to 4 km). Addi-
tional details on the IMAP-DOAS retrieval can be found in Thorpe et al.
(2014, 2017).

3. Results

3.1. Aerosol scattering

We first tested the effects of aerosol scattering on the IMAP-DOAS
results. We found that the differences between the modeled methane
and IMAP-DOAS retrieved methane is much larger than the differences
between the 5 and 30 km visibility (Fig. 4A), indicating that more error
is associated with surface type or albedo than visibility. Fig. 4B shows
that the distribution of the difference for 5 km and 30 km is very similar
with a slight offset between the peaks, corresponding to a mean dif-
ference of 1559.9 ppm-m for the 5 km visibility and 1712.39 ppm-m for
the 30 km visibility. In addition to the differences between the 5 and
30 km histograms being relatively minor, 5 km visibility is an extremely
low visibility and in practice there would be smaller differences in re-
trieved concentrations across a more realistic range in visibilities.

3.2. IMAP-DOAS

The IMAP-DOAS algorithm was successful in retrieving the modeled

methane enhancement in the synthetic image (Fig. 5). In addition, the
pattern and values of retrieved methane enhancement was consistent
with the methane enhancement modeled in the synthetic image. Initial
visual analysis indicates that the IMAP-DOAS retrieved methane con-
centration ranged from between 5000 and 6000 ppm-m and then gra-
dually increased until it reached the 18,000 to 20,000 range (Fig. 5).
The most notable exception was the Hope Lake box (the box displayed
white). This water spectrum had very low reflectance between 2215
and 2410 nm, resulting in no ability to retrieve or detect methane using
IMAP-DOAS.

Fig. 6 shows the correlation between the methane concentration
from the synthetic image and the IMAP-DOAS retrieved concentrations
for the entire image except pixels using the Hope Lake spectrum. The
best fit trend was close to the 1:1 line, however IMAP-DOAS under-
estimated the modeled concentrations by an average error of
385.11 ± 1568.33 ppm-m (Table 3) and the RMSE for the entire image
was 1614.92 ppm-m. These results incorporate all land cover types
except the lake water and include confusers. The average RMSE
dropped to 862.75 ppm-m and the average error dropped to an over-
estimate of 5.93 ± 862.73 ppm-m when the confuser and Hope Lake
background spectra were excluded. When we organize the results by
land cover class, it becomes clear that each class responds differently,
and a few classes are primarily responsible for the spread in the data.
Fig. 7 plots the IMAP-DOAS results against the modeled methane for
eight different land cover classes (rock is combined with the soils and
lake water and sun glint are separated) and Table 3 summarizes the
mean error for each land cover class. We found roofs, soil, NPV, and sun

Fig. 3. The organization of the synthetic image. A. The location of the surface types in the synthetic image. B. The modeled albedo levels for each background
spectrum varied from 2% on the left to 52% on the right. C. The modeled methane concentrations in ppm-m for the atmosphere between 0 and 4 km.
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glint all had good agreement and low spread (Fig. 7, Table 3). The lake
water, green vegetation, and confusers all had relatively poor agree-
ment and larger spread (Fig. 7, Table 3).

3.3. Surface type

In addition to looking at the correlation between IMAP-DOAS re-
trieved concentration and synthetic image concentration, we also
looked at the per-pixel error. Fig. 8 shows the error between IMAP-
DOAS retrieved and synthetic image concentrations (synthetic image
minus IMAP-DOAS). In total, 90% of the error (excluding Hope Lake)
fell between−1941.65 and 3793.06 ppm-m. Excluding the confusers as

well, the 90% range decreased from the afore mentioned range to
−1609.96 ppm-m to 998.36 ppm-m. We observed a few distinct pat-
terns in error (Figs. 8 and 9). First, the error seems to be related to
individual surface types because different background spectra boxes
have distinctive error patterns. Some surface types (Lake water, white

Fig. 4. A) The green histogram shows the
difference in the retrieved IMAP-DOAS re-
sults for the 5 km visibility and the 30 km
visibility. The gray histogram is the differ-
ence between the methane modeled in the
synthetic image and the methane retrieved
by IMAP-DOAS for both visibilities. B) The
blue histogram is the difference between
the methane modeled in the synthetic
image and the IMAP-DOAS results for the
5 km visibility atmosphere. The red histo-
gram is the difference between the methane
modeled in the synthetic image and the
IMAP-DOAS results for the 30 km visibility
atmosphere. (For interpretation of the re-
ferences to colour in this figure legend, the
reader is referred to the web version of this
article.)

Fig. 5. The methane concentration in ppm-m modeled by A) MODTRAN, and B)
retrieved by IMAP-DOAS. Scaling in the two plots is the same, with results
outside of the displayed range shown in white. See Fig. 3 for the configuration
of the synthetic image.

Fig. 6. The mean IMAP-DOAS retrieved concentration for each synthetic image
concentration, plotted against the image concentration for all pixels except
Hope Lake. The error bars represent one standard deviation. The dotted line
represents the one to one line and the blue solid line is the linear fit. The linear
model has a slope of 1.01, an intercept of −494.2, and an R-squared of 0.88.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 3
The mean error between the synthetic image and retrieved IMAP-DOAS me-
thane concentrations. The mean error is the average of the residuals between
the known methane concentrations from the synthetic image and IMAP-DOAS
retrieved methane concentrations (negative means are overestimations and
positive means are underestimations).

Land cover class Mean error ppm-m

Confusers 1884.10 ± 2490.45
Paved −243.92 ± 382.39
GV −62.51 ± 1466.72
Soil 372.45 ± 307.40
Lake Water (Hope Lake) −32,757.44 ± 16,661.13
NPV 22.44 ± 462.67
Sun Glint 645.49 ± 310.57
Roofs −168.62 ± 428.80
All (except Hope Lake) 385.11 ± 1568.33
All (except Hope Lake and Confusers) −5.93 ± 862.73
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painted roofs, and calcite) exhibited a large degree of error, with error
increasing with methane concentration. A number of other surfaces also
exhibited heteroscedastic errors, with the error tending towards over-
estimation with increasing methane.

In order to summarize the pattern of error, we averaged the re-
siduals and calculated the root mean square error (RMSE) for each
background spectrum (Table 4). In addition, we plotted the error for
each background spectrum as box plots (Fig. 9). The Hope Lake (water),
the white painted roofs, calcite, coyote brush, and golf course grass had
high mean errors and had the largest RMSE. The remaining GV and
confuser surfaces also had high RMSE. The soils, the paved surfaces,
NPV, and roofs were the surfaces with lower mean error and lower
RMSE.

Apart from the patterns associated with surface type, the results
shown in Fig. 8 exhibit two characteristic error patterns: the residuals
scale with the methane concentration and the results indicate slight
vertical banding. We observed a greater overestimate at higher

methane concentrations and underestimation at low methane con-
centrations. These relationships between the error and the modeled
methane may be due partly to the difference in how MODTRAN and
IMAP-DOAS model radiance. MODTRAN accounts for multiple scat-
tering while IMAP-DOAS does not. This means the path radiance for
MODTRAN is larger than for IMAP-DOAS, and therefore an equivalent
methane concentration will have a more pronounced absorption feature
(Roberts et al., 2010), which is consistent with the observed IMAP-
DOAS overestimates. Additionally, varying degrees of vertical banding
are observed in Fig. 8. The banding results from the combined effects of
the layout of the albedos in the synthetic image and the retrieval fit
errors. For example, two adjacent pixels with the same concentration of
modeled methane, the same surface, but with a 1% albedo difference
(Fig. 3) can result in differing retrieved methane concentrations. This
effect is more pronounced for certain surface types like confusers and
green vegetation and less visible for bright surfaces such as soils and
paved surfaces.

3.4. Albedo

We also evaluated the effect of albedo on retrievals. To determine
the albedo of a spectrum we used the radiance value at 2139 nm. The
radiance at this wavelength is a good indicator of albedo because there
are no atmospheric absorptions from any of the major greenhouse gases
(Roberts et al., 2010). In addition, 2139 nm is in the SWIR, which
means the radiance values represent the albedo in the region of the
electromagnetic spectrum of interest. To test the influence of albedo on
the IMAP-DOAS retrieved concentration, the residuals were binned by
radiance level and then plotted as box plots (Fig. 10). The lowest ra-
diance bin, with values ranging between 0 and
0.104 μWcm−2nm−1sr−1 at 2139 nm, had the largest spread in the
residuals and the poorer results. The pixels with radiance between
0.206 and 0.611 μWcm−2nm−1sr−1 at 2139 nm had a much smaller
range of residuals compared to the darkest pixels but still exhibited
some spread. The pixels above 0.611 μWcm−2nm−1sr−1 had the least
spread and the most accurate results. Lastly, the outlying residuals
around and below 5000 and −2500 ppm-m, can all be attributed to the
confusers.

4. Discussion

Surface type and albedo both have an effect on the methane re-
trieval results for the synthetic image. By isolating and quantifying the
effect of different surface types, we can better understand detection
limits and potential error sources of methane concentration retrievals.

Fig. 7. The mean IMAP-DOAS retrieved concentration for each synthetic image
concentration, plotted against the image concentration within each land cover
class. The error bars represent one standard deviation from the mean. The
dashed line represents a one-to-one relationship and the blue line is the linear
regression. The slope, intercept, and r-squared for the linear model are reported
for each plot except lake water. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The error between the synthetic image and IMAP-DOAS retrieved me-
thane concentrations (image minus IMAP-DOAS). The white areas represent
values outside of the displayed range. The all white box is lake water and the
partially white box is one of the white painted roofs. See Fig. 3 for the complete
configuration of the synthetic image.
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We found that soils, paved surfaces, roofs, and NPV generally possess
high reflectance and no confusing absorption features in the SWIR and
resulted in good methane retrievals. Low reflectance materials (water,
green vegetation) and materials with confusing absorption features
(confusers) produced large uncertainties for methane retrievals. In the
following sections, we will discuss the surfaces and albedos that caused
poor retrieval results, reasons for the poor results, and possible solu-
tions.

4.1. Albedo

Albedo has a significant effect on the accuracy of the results but only
for the lowest albedos. We found that surfaces (independent of surface
type) with very low radiance, below 0.10 μWcm−2nm−1sr−1 at
2139 nm, had extremely poor results with large error. This finding is
consistent with Thorpe et al. (2017) who found that dark surfaces

resulted in anomalously high retrievals and removed spectra if there
were radiance values less than 0.01 μWcm−2nm-1sr−1 at any band in
the fitting window. M. Zhang et al. (2017), Z. Zhang et al. (2017) also
examined the effects of many factors, including albedo, on a different
retrieval technique and concluded that albedo was a significant factor
in determining the bias of the methane concentration retrieval. In
contrast, we found that the impact of albedo on retrieval accuracy was
small, except at the lowest albedos. We found no linear correlation
between albedo and error. For the darkest surfaces
(0.10 μWcm−2nm−1sr−1 and below), there is insufficient reflected ra-
diance to discern methane absorptions. Surfaces that fell between 0.10
and 0.60 μWcm−2nm−1sr−1 at 2139 nm had a detectable methane
signature but the error in the results was higher than for brighter sur-
faces. For pixels with radiance above 0.60 μWcm−2nm−1sr−1 at
2139 nm the range in the residuals was much lower and the column
concentrations in this range are fairly accurate. In addition, all outlying
error in Fig. 10 is attributed to the confusers. Although albedo affects
the accuracy of the column concentration, the effect is far less sig-
nificant than described in M. Zhang et al. (2017). In addition, although
column concentration accuracy may be poor at low albedos, detection
is still possible at all radiance values save for the lowest. As shown in
Figs. 5 and 7, methane retrieval accuracy is poor for the dark lake water
example however water with sunglint results in high retrieval accuracy.

4.2. Surface type

Previous studies that tested the IMAP-DOAS retrieval technique on
AVIRIS Classic imagery concluded that the results were also influenced
by the underlying surface (Thorpe et al., 2014). Different surface types
can affect the accuracy of the IMAP-DOAS results either through the
spectral shape of the material in the SWIR or with their inherent albedo.

Fig. 9. Box plots of the error for every surface type. The colors, as indicated in the legend, represent the larger land cover class. Lake water is omitted. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Table showing the surface name, the mean error, and root mean square error
(RMSE). The surface types are organized by RMSE.

Surface type Mean Error
ppm-m

RMSE

Hope Lake water −32,757.44 36,750.73
White painted commercial roof 3 (WPCR3) 4632.82 4748.20
White painted commercial roof 1 (WPCR1) 3799.22 3890.31
White painted commercial roof 2 (WPCR2) 2759.16 2826.87
Calcite −2647.97 2728.81
Golf course grass 602.23 1996.17
Coyote brush (BAPI) −1754.34 1793.47
Oil coated vegetation 1381.89 1791.71
Willow (SASP) −1203.39 1558.20
Plastic covered crops 1379.49 1477.71
Wetland Vegetation (MARSH) 998.93 1262.71
Palm tree 689.21 1193.34
Ocean water (glint) 645.50 716.32
Rock −429.51 657.00
Concrete parking structure 1 −488.67 608.21
Soil 4 516.57 606.86
Dead grass 545.54 593.19
Asphalt & gravel roof −464.08 591.98
Ceanothus (CEME) 292.32 532.02
Soil 1 454.77 518.77
Tennis court −283.93 507.79
Bark −139.65 491.13
Concrete parking structure 2 −338.11 449.42
Needle litter −274.18 430.17
Soil 2 318.41 393.68
Soil 3 200.05 374.79
Airport asphalt −196.72 360.06
Evergreen bark −41.94 283.02
Red tile roof 126.83 272.32
Concrete bridge 87.84 263.07

Fig. 10. The residuals between the image and IMAP-DOAS retrieved con-
centration (image minus IMAP-DOAS) binned by radiance at 2139 nm
(μWcm−2nm−1sr−1) and then plotted as box plots. The x-axis represents the
upper level of the radiance threshold used to bin the residuals. The plot on the
left has a different y-axis to accommodate the larger range in error.
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To explore this idea further and to better understand the error asso-
ciated with surface type we looked at the spectral shape of the re-
flectance data in the SWIR. Fig. 11 shows the four spectra with worst
accuracy, the four spectra best accuracy (accuracy is defined by the
RMSE as reported in Table 4), and a GV spectrum.

4.2.1. Green vegetation
Thorpe et al. (2014) noted that retrieval performance was poorer for

areas dominated by green vegetation compared to areas dominated by
soil. Green vegetation spectra, especially the golf course grass and
coyote brush, are generally very dark in the SWIR (Fig. 11B), which was
the main cause of the error. Green vegetation is not as dark as water and
therefore the results are far better for green vegetation than for water.
In addition, despite green vegetation having little reflectance in the
SWIR, the spectral shape is relatively flat which causes improved results
compared to the confuser class. Green vegetation is a very common
surface type especially in natural and agricultural landscapes and
therefore can make accurate quantification of methane plumes in these
areas more challenging. However, green vegetation in AVIRIS-NG
images can easily be classified and an estimate of uncertainty applied.
In addition, future sensors with finer spectral resolution and improved
gas sensitivity should have improved accuracy over vegetation (Thorpe
et al., 2016a, 2016b). Lastly, although IMAP-DOAS results have some
uncertainly, methane detection remains possible over vegetated sur-
faces.

4.2.2. Confusers
The confusers had large mean error and RMSE. After lake water, the

confuser class had the most error with the worst results attributed to the
white painted roofs and calcite. These surfaces, although bright in the
visible portion of the spectrum and part of the SWIR, have significant
drops in reflectance in the methane absorption bands. In the case of the
white painted roofs, the SWIR absorption is due to hydrocarbon ab-
sorptions from oil-based paints. In the case of calcite, this feature is due
to the vibrational absorption bands found in carbonate minerals (Clark,
1999). These absorption features are thought to be the cause of the poor
results. Other studies have also found that surfaces with strong ab-
sorption features between 2200 and 2400 nm can cause error. Thorpe
et al. (2013) used a cluster-tuned matched filter to detect methane in
various AVIRIS Classic scenes concluding that surfaces with hydro-
carbon absorptions or any significant absorptions in the 2200 to
2500 nm window were likely to confuse the matched filter and result in
a spurious signal. Our study specifically tested these types of surfaces
and found that they caused error in IMAP-DOAS concentration retrieval
as well but not necessarily a spurious signal. Interestingly, these sur-
faces did not all cause an overestimation in the methane concentration

as would be expected. Of the four surfaces with the most pronounced
absorptions in the 2300 nm window, only calcite caused over-
estimations and the other surfaces (white painted roofs 1, 2, and 3)
caused underestimations. Fig. 11 shows the spectra of calcite, white
painted roof 1, and white painted roof 2. The calcite is much brighter
and has a more prominent absorption versus the other white painted
roofs. White painted roof 2 also has a clear absorption feature but does
not have overestimation. The other white roofs, the oil coated vegeta-
tion, and the plastic covered crops also had very poor results but the
cause of the error for these surfaces was due to low reflectance in the
SWIR. These types of surfaces, especially the white painted roofs, are
common in urban and commercial areas and can pose challenges when
detecting methane plumes in these types of environments. Similar to
green vegetation, these surfaces can be classified and masked out of
images so as not to cause spurious signals or inaccurate results.

4.2.3. Water
The largest source of error in the IMAP-DOAS results was Hope

Lake. In general, water has extremely low reflectance in the SWIR
(Fig. 11) and this is the source of the error in the results. Given the low
reflectance over water bodies, mapping methane sources over water
bodies with AVIRIS-NG will remain challenging. Despite this, methane
plumes originating from water bodies, like manure lagoons and was-
tewater treatment plants, will still offer opportunities for plume de-
tection and quantification as the plume moves over background sur-
faces with higher reflectance (Fig. 12A and B). For larger water bodies,
sun glint reflected off the surface of the water can provide an excellent
means of detection (Bradley et al., 2011; Roberts et al., 2010; Thorpe
et al., 2014). In addition, this study concluded that results from sun
glint are fairly accurate. On a global scale, wetlands are the largest
natural source of atmospheric methane and are predicted to become a
more important source in the future (Bridgham et al., 2013; Z. Zhang
et al., 2017). This study suggests that methane detection should be
possible for wetlands covered in vegetation.

4.3. Comparison to real AVIRIS-NG images

These patterns are consistent with previous studies and results from
IMAP-DOAS applied to real AVIRIS-NG images (Fig. 12). In Fig. 12,
IMAP-DOAS methane retrievals are shown for a dairy and a coal mine
ventilation shaft imaged by 2015 AVIRIS-NG flights over Bakersfield,
California and the Four Corners region of the United States respectively.
In both of these images, there are clear examples of the underlying
surface reflectance affecting the methane retrievals. In Fig. 12B the
methane plume emanates from the waste lagoons and extends southeast
over the combination of buildings with metal roofs, soils, and green

Fig. 11. A) The transmittance spectra for methane cal-
culated from MODTRAN and convolved to the AVIRIS-
NG bandpass function. B) The reflectance spectra in the
SWIR (2100 nm to 2500 nm) for calcite, water, the white
painted roofs, soil, evergreen bark, red tile roof, coyote
brush, and concrete. The solid lines represent surface
types that had high amounts of error. The dashed lines
represent surface types that had the lowest amount of
error. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web ver-
sion of this article.)
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vegetation shown in Fig. 12A. The plume is most visible over the soil
and roof but seems to disappear over the green vegetation due to dif-
ficulty in detecting methane over vegetation. The plume is more visible
over the metallic roofs and less visible over low albedo shaded areas
between the buildings. In addition, it appears that there is no methane
directly over the dairy waste lagoons, due to the difficulty of methane
retrieval over water. The image of a coal mine ventilation shaft
(Fig. 12C) has a much larger methane plume (Fig. 12D), and the plume
is clearer in this image compared to the dairy waste lagoon example.
The majority of the surfaces in this image are soil, NPV, and paved
surfaces, all surfaces that are ideal for retrieving methane. The one
exception is the pond; the plume seems to disappear as it passes over
the water due to very low radiance. The same surfaces in these images
and the synthetic images cause poor detection, providing assurance that
the synthetic image is accurately capturing patterns found in real
imagery.

4.4. Limitations and potential solutions

While this study provided an opportunity to control and test the
effect of the surface properties on methane quantification, there are
some limitation to this study. As mentioned previously and illustrated
in Fig. 8, there was not perfect agreement between the retrieved IMAP-
DOAS methane concentrations and the known concentrations from the
synthetic scene. As expected, some of this was due to the underlying
surface, however, some patterns in the error were unexpected and likely

due to differences in the radiative transfer calculations used in IMAP-
DOAS and MODTRAN. The most notable error in the image is the slight
overestimation of methane at higher concentrations. We believe this
can be partly attributed to the fact that MODTRAN incorporates mul-
tiple scattering while IMAP-DOAS does not. To investigate this possi-
bility, we ran MODTRAN without the multiple scattering component,
created a small synthetic image, and ran IMAP-DOAS. We found that
the overestimation decreased but not enough to explain all of the error
in the results. This study primarily focused on the effect of the surface
on methane detection but also determined that aerosols have a minimal
influence on methane retrievals. Despite these limitations, the synthetic
image remains a powerful tool to study the sensitivities of surface type
and other factors on detection.

This study found that some surface types can influence the accuracy
of the IMAP-DOAS results. A potential solution to account for the in-
fluence of land cover is to classify the underlying surface. In addition to
the SWIR, AVIRIS-NG collects data in the visible and near infrared
portion of the spectrum. This additional information can be used to
classify the underlying land cover and a measure of error could be
applied to each class. This could be done for classes such as vegetation
and soil or for albedo classes. Additionally, a higher spectral resolution
sensor will reduce sensitivity to land cover type. AVIRIS-NG has a 5 nm
spectral resolution, which is well suited for mapping land cover and
other surface properties. However, at 1 nm spectral resolution the
spectral signatures of gases are more pronounced and have higher
frequency variations compared to the surface, which should decouple

Fig. 12. A) True colour AVIRIS-NG image of a dairy in Bakersfield. CA April 29, 2015. The sensors height was 2.9 km resulting in a 2.6 m pixel. B) IMAP-DOAS
methane retrieval for image A shows methane plumes emanating from dairy waste lagoons. C) True colour AVIRIS-NG image of coal mine ventilation shafts near the
Four Corners region of the United States from April 22, 2015. The sensor height was 2.9 km resulting in a 2.7 m pixel. D) IMAP-DOAS methane retrieval for image C
shows methane plumes that originate from known coal mine ventilation shafts. For all scenes north is up.
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the spectral signature of the atmosphere from the surface (Thorpe et al.,
2016a, 2016b). A 1 nm instrument specifically designed for gas map-
ping will provide increased gas sensitivity (Thorpe et al., 2016a, 2016b;
Duren et al., 2017) and its performance could be tested empirically
using a similar sensitivity study.

5. Conclusion

The synthetic AVIRIS-NG image provided an excellent framework
through which we were able to test the effects of land cover and albedo
on methane retrievals with the IMAP-DOAS algorithm. The synthetic
image allowed us to model known methane concentrations, albedo,
land cover, and other atmospheric variables. By quantifying the effects
of the surface on methane retrievals, we were able to characterize the
sensitivity of the IMAP-DOAS algorithm applied to AVIRIS-NG data.
Overall, we found excellent agreement with the modeled methane and
the IMAP-DOAS results. We found that the most accurate retrievals
were over soils and paved surfaces. Conversely, we found that low al-
bedos, below 0.10 μWcm−2nm−1sr−1 at 2139 nm, caused higher error
in the retrieval results but above that threshold, there was significantly
less error. Green vegetation had high error due to low albedo in the
SWIR. Water, the darkest surface, had the most error. Confusers also
had higher error due to the absorption features in the 2200–2400 nm
window but not all caused a spurious signal as hypothesized. Changes
in the surface can affect our ability to retrieve column concentration
accurately. This means that methane plumes over water bodies will
present a greater challenge and require further study and attention.
Potential solutions to dealing with these challenging surfaces include
using other regions of the electromagnetic spectrum to classify then flag
or mask out these surfaces. Finer spectral resolution provided by future
imaging spectrometers will provide greater gas sensitivity as well. The
synthetic image has strength in its versatility and therefore can be
modified to test the sensitivity of these future sensors or other retrieval
algorithms, gas species, and land cover. Overall, the results from this
study help us to understand the capabilities of the AVIRIS-NG sensor for
methane retrievals and aid in understanding the limitations and un-
certainty in mapping methane over large regions with variable surface
types.
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