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Abstract: This study demonstrates a number of methods for using field sampling and observed
lake characteristics and patterns to improve techniques for development of algae remote sensing
models and applications. As satellite and airborne sensors improve and their data are more readily
available, applications of models to estimate water quality via remote sensing are becoming more
practical for local water quality monitoring, particularly of surface algal conditions. Despite the
increasing number of applications, there are significant concerns associated with remote sensing
model development and application, several of which are addressed in this study. These concerns
include: (1) selecting sensors which are suitable for the spatial and temporal variability in the
water body; (2) determining appropriate uses of near-coincident data in empirical model calibration;
and (3) recognizing potential limitations of remote sensing measurements which are biased toward
surface and near-surface conditions. We address these issues in three lakes in the Great Salt Lake
surface water system (namely the Great Salt Lake, Farmington Bay, and Utah Lake) through sampling
at scales that are representative of commonly used sensors, repeated sampling, and sampling at both
near-surface depths and throughout the water column. The variability across distances representative
of the spatial resolutions of Landsat, SENTINEL-2 and MODIS sensors suggests that these sensors
are appropriate for this lake system. We also use observed temporal variability in the system to
evaluate sensors. These relationships proved to be complex, and observed temporal variability
indicates the revisit time of Landsat may be problematic for detecting short events in some lakes,
while it may be sufficient for other areas of the system with lower short-term variability. Temporal
variability patterns in these lakes are also used to assess near-coincident data in empirical model
development. Finally, relationships between the surface and water column conditions illustrate
potential issues with near-surface remote sensing, particularly when there are events that cause
mixing in the water column.
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1. Introduction

Over the past decade, remote sensing of water quality has become more widely used and the extent
of applications has grown tremendously, especially in non-coastal environments. Notable inland water
quality applications of remote sensing include large-scale quality and clarity surveys [1–4] and real-time
tracking and forecasting of nuisance algal blooms (NABs) or harmful algal blooms (HABs) [5,6].
The general process of developing an empirical remote sensing model for algal blooms typically
involves: downloading and processing of remote sensing imagery (which may include atmospheric
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correction and conversion from digital numbers to reflectance at the near-surface of the water body),
collecting coincident (or near-coincident) field measurements of chlorophyll-a (or other parameters
related to biomass or levels of toxins), and using regression or other statistical modeling techniques to
develop a relationship between the field-measured concentrations and remotely sensed reflectance
from the corresponding pixel or group of pixels. Multiple sensors offer greater coverage with varying
overpass frequencies and extents, and band combinations which are more optimal for characterization
of water quality conditions. Increased availability of imagery data and processed data products has
also facilitated increased use and application. Despite all of these advances, there are a number of
issues that remain to be addressed to support more effective and accurate remote sensing model
development and application. Many of these issues stem from traditional assumptions associated with
the use and application of remote sensing data, and do not consider conditions and processes that are
specific to the water bodies of interest.

Water quality conditions, particularly algal growth, in lakes and reservoirs have been shown to
change relatively quickly (i.e., seasonally or sub-seasonally) [7–9]. Algal bloom variability in inland
waters also occurs on smaller spatial scales than in the open ocean. Spatial and temporal variability in
water quality may be caused by a number of processes, such as resuspension of suspended sediments
and point-source inflow of nutrients [10]. Increased variability in lake and reservoir water quality
requires that in situ data used to develop remote sensing water quality models represent conditions
at the time of the imagery acquisition–to the extent possible. Often, the historical records do not
provide exact temporal matches between the in situ samples and the satellite overpass, requiring the
use of “near-coincident” data, or some relaxation of a definition of a “match.” Coastal and lake water
clarity and quality remote sensing literature report a wide range of time-windows for considering
data to be near-coincident. Reported windows range from ±3 h [11], same day [12], one day [4,13],
seven days [2,14], to ±10 days [1] between the satellite image acquisition and the field samples used
for calibration. Often, a particular time-window for near-coincident matches is arbitrarily chosen
(e.g., using an arbitrary increase in the percentage of samples that match with a satellite image [15]),
or the study states that the relaxation of the time-window improved the model fit, without detailing
the actual improvement [1].

Another issue that is often overlooked in water quality remote sensing applications is thorough
review and evaluation of appropriate sensors in the context of a specific water body (which has unique
spatial and temporal characteristics). Sensor characteristics can have large implications for the utility
of the resulting model and dataset. Model application determines the sensor choice and could depend
on a number of factors: the spatial resolution (which is limited by the size of the water body or
multiple waterbodies in a region), the spatial variability within the water body, the desired return
time (which is influenced by the temporal variability of the water quality processes), the length of
historic record, spectral resolution (which determines the ability of the sensor to discriminate or more
accurately determine conditions and which parameters can be estimated), the available processing
resources (from the imagery data and data products to the personnel who will perform data processing
and analysis), and the scope of the application (both spatial and temporal). For empirical model
development, information from the field (e.g., concentration of chlorophyll-a measured at a single
point on the water body) is matched to information from the satellite (reflectance averaged over a
single pixel or group of pixels). Therefore, the spatial variability of the water body may influence the
choice of satellite. For example, if the algae concentrations vary substantially on the order of 20–40 m,
then a satellite with a resolution of 30 m will be sufficient, while a satellite with a resolution of 500 or
1000 m would be too coarse to adequately represent the variability of the chlorophyll concentrations.
One review suggests different medium spatial resolution satellites (e.g., Landsat) and coarser spatial
resolution satellites (e.g., MODIS) for water clarity and quality studies be selected based primarily on
the size of the water body [16], however, other characteristics of the lake, namely the ability of different
spatial resolutions (e.g., Landsat resolution of 30 m or SENTINEL-2 resolution of 10–60 m compared
to MODIS resolution of 250–1000 m) to represent spatial variability within the lake or the ability of
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more frequent overpasses to address temporal variability (e.g., Landsat every 16 days compared to
SENTINEL-2 every 5 days and MODIS every 1–2 days) are not considered.

Finally, remotely sensed data are limited by the optical depth of the water column (the depth
at which light is able to penetrate), which means that the estimates are limited to near-surface algae
populations. Optical depth is also a function of chlorophyll concentration; as the near-surface algae
populations increase, optical depth decreases. However, algae thrive not only at the surface but exist
throughout the water column. Algal population characteristics (species, diversity, etc.) may vary
with depth, especially when the water column is stratified and there are differences in oxygen or
salinity [17,18]. Concerns have been raised about the utility of only sensing and estimating the surface
of the lake given these variable conditions throughout the water column. It is therefore important to
explore the relationship between surface and water-column algae concentrations and the variability
within the water column when evaluating the limitations of remotely-sensed surface estimates.

This study uses field measurements of chlorophyll to evaluate techniques and assumptions that
are often used in remote sensing models of algae and surface water quality. While there are many
additional considerations for water quality (particularly algae/chlorophyll concentrations) this paper
focuses on the three issues outlined above: (1) selecting sensors which are suitable for the spatial and
temporal variability in the water body; (2) determining appropriate uses of near-coincident data in
empirical model calibration; and (3) recognizing potential limitations of remote sensing measurements
which are biased toward surface and near-surface conditions.

Study Area

The study area for this paper is the Utah Lake and Great Salt Lake (GSL) system. This lake system
is important for recreation and ecosystem services for the urban areas that are concentrated in the
hillsides and valleys to the east of these lakes. During the summer of 2016, Utah Lake and Farmington
Bay of the GSL experienced massive cyanobacterial algal blooms. While large algal blooms in these
lakes are not particularly rare, the rapid development and magnitude of the recent blooms spurred
widespread attention and motivated increased interest in monitoring these waters, particularly through
remote sensing because the size of the lakes make them difficult to monitor through field sampling
alone. Data were collected with water quality sondes at a number of locations throughout the system
(shown on the map in Figure 1) throughout the summer of 2016 to support this research.

Previous studies in the Utah Lake and GSL system have explored variation in algal speciation
throughout the growing season and environmental factors which contribute to species diversity [19–22].
Historical sampling campaigns on Utah Lake revealed typical algal succession, with diatoms and then
green algae dominating in early summer, and then cyanobacteria dominating during the late summer
months, and a general decrease in species diversity throughout the summer [21,22]. In Farmington Bay
and the GSL, studies have focused on speciation and presence of toxins in cyanobacteria. These studies
have found seasonal trends in algae growth and have observed stark differences between algae types in
different regions of the GSL and Farmington Bay [19,20,23,24]. These studies improve understanding
of the algae populations in this lake system; however, they lack important information about spatial or
temporal variability at scales that are necessary for improving remote sensing model development.

The Great Salt Lake is divided roughly in half by a railroad causeway which runs East-West,
separating the much more saline (roughly 28% salinity) North Arm, which includes Gunnison Bay
and Bear River/Willard Bay, from the South Arm (Gilbert Bay and Bridger Bay) and Farmington Bay,
which is further separated by an automobile causeway. These bays maintain a salinity between 11%
and 15% [25] and at the north end of Farmington Bay, salinity is typically around 8% [20]. These lakes
are relatively shallow, with an average depth of approximately 4.2 m in Gilbert Bay and an average
depth of approximately 1 m in Farmington Bay. Secchi depth (as a measure of transparency) ranges
between 2 and 5 m in the South Arm of the GSL, while in Farmington Bay, it is regularly less than
0.3 m [26]. Utah Lake, which flows into the Great Salt Lake through the Jordan River is also a shallow
lake (average depth of 2.74 m) and while it is a freshwater lake, it has high dissolved solids, resulting
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in slightly saline conditions [27]. High rates of suspended sediments result in high turbidity, and prior
to the large algal bloom in 2016, the Secchi depth in the middle of Utah Lake was roughly 0.2 m.
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2. Materials and Methods

2.1. Data Collection

The collection of water quality samples was designed to provide information about algae
biomass (measured as chlorophyll-a) and its: (1) temporal variability (through repeated sampling
visits and high-frequency sampling); (2) spatial variability (through multiple sites and/or offsets);
and (3) surface–water column relationships. Chlorophyll-a data were collected by researchers at the
University of Utah (U of Utah) using a Hydrolab DS5 (OTT Hydromet) multiparameter sonde equipped
with a submersible fluorescence Chlorophyll-a sensor (range of 0.03–500 µg/L). Chlorophyll-a data
were also provided by the Utah Division of Water Quality (UDWQ) measured using YSI EXO
2 multiparameter sonde (with submersible fluorescence Chlorophyll-a sensor (range of 0–400 µg/L)
coupled with a Nexsens CB-450 buoy platform. Sampling locations were chosen based on accessibility.
During the study period, low water levels, exposed reef-like bioherms, and deep sediments restricted
boat and individual access to many locations in the lakes that may otherwise have been sampled.
Details of the sampling at each station are summarized below and in Table 1, including the duration
of sampling periods and the types of samples collected. Durations and frequencies of data collection
were determined by the availability of equipment and personnel, and local weather conditions.
Data collected by the University of Utah are shared under the Creative Commons Attribution CC BYU
License [28] and data collected by the UDWQ are available through the iUTAH Time Series Analyst
data portal.
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Table 1. Summary of Data Collection Periods and Methods.

Lake Stations Organization Sampling Periods
(2016)

7.5 m
Offsets

Surface
(<1 m)

Water
Profiles

Approximate Lake
Depth During

Study Period (m)

Main GSL
GSL1 U of Utah 23–31 July X X - 0.8

GB2; GB3;
GB4 U of Utah 6–16 June; 6–14 July;

12–22 Aug X X X 5.1

Farmington Bay FB5 UDWQ 8 July–28 July - X - 0.5
Utah Lake U6; U7; U8 UDWQ 28 Aug–13 Sept - X - 1–1.5

U9 UDWQ 15 July–8 Aug - X - 1–1.5

2.1.1. UDWQ Data

UDWQ sondes were installed in a variety of locations in Utah Lake and Farmington Bay following
the large July 2016 algal blooms. The site names for these sites have been modified to maintain
consistency with the naming convention of the University of Utah sites. One temporary fixed sonde
was placed approximately 0.75 m below the surface at station U9 (UDWQ Site 4917310) in Utah
Lake, providing daily measurements between 15 July and 8 August, 2016. The sondes in stations
U6 (UDWQ Site 4917390), U7 (UDWQ Site WVineyard), and U8 (UDWQ Site WProvo) were installed on
buoys anchored at the locations shown in Figure 1, and provided daily measurements at approximately
0.3 m below the surface between 28 August and 13 September 2016. Water depths in Utah Lake
during this time period were between 1 and 1.5 m. Finally, a fixed sonde in Farmington Bay at
station FB5 (UDWQ Site 4895200) provided daily measurements between 8 July and 28 July, 2016 at
a depth of approximately 0.3 m below the surface (due to extremely low water levels, which were
approximately 0.5 m at this time). The measurements for these sondes (which were reported at a 15-min
frequency) were averaged between 11:00–11:30 a.m. in order to maintain consistency in day-to-day
comparisons (reducing the effect of diurnal patterns of algae on the chlorophyll measurements which
peaks during midday and then drops in the evening). These daily measurements were used in
exploring temporal variability.

2.1.2. University of Utah Data

While the fixed UDWQ sondes in Utah Lake and Farmington Bay provide stationary data for
exploration of temporal variability, data collection by the University of Utah was designed to explore
temporal variability as well as variability on different spatial scales. Data collected by the University
of Utah was focused in the main body of the South Arm of the GSL (Gilbert Bay and Bridger Bay).
Surface data at the Gilbert Bay sites were consistently collected between 9:00 and 11:30 a.m. (again, to
minimize the effects of diurnal patterns of photosynthesis). Data collection took place during three
periods: 6, 8, 9, 10 and 13 June; 6, 7, 8, 12 and 14 July; and 12, 15, 16, 17 and 22 August. At these
sites (GB2, GB3 and GB4), approximately 20–30 measurements were taken at a 1-s frequency at an
average depth of 0.4 m below the surface and averaged. The Gilbert Bay sites (prefixed with GB)
which were navigable by boat, were located approximately 1000 m apart, which is the same scale
as the coarsest MODIS spatial resolution. At each of these sites, data were also collected at offsets
to the site center to represent sub-Landsat and sub-SENTINEL-2 resolution. These offset samples
were spaced at approximately 7.5 m increments (i.e., 7.5, 15, 22.5 and 30 m) from the original sites
GB2, GB3 and GB4. The offsets were identified with suffixes a, b, c and d, so that the first offset
(7.5 m) from GB2 was identified as GB2a, the second offset (15 m) from GB2 was GB2b, etc.) At these
sites, lake current and wind patterns differed from one sampling day to the next, resulting in variable
drift directions between the GB sites and their offsets, though it was generally consistently in the
southwest direction. Nonetheless, relative distances between the original sites and the offsets were
maintained. Approximately 20–30 measurements at the GSL1 site were collected at a 1-s frequency
approximately 0.3 m below the surface and averaged in a July sampling period (23, 24, 27, 30 and
31 July). Data collection at this site also included sampling at offsets at the same increments (7.5, 15,
22.5 and 30 m) east of the original site.
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The data at Bridger Bay were averaged at approximately 0.3 m below the surface (due to low lake
levels at this location), and were consistently collected in the afternoon (due to equipment availability
and to reduce effect of diurnal patterns).

In addition to the surface data obtained at the Gilbert Bay sites, measurements were collected
throughout the water column to examine relationships between chlorophyll measurements at different
depths. At sites GB2, GB3, and GB4, data were collected over the water profile, by manually lowering
the sonde at approximately 0.3 m/s and recording at a 1-s frequency. Profiles were created by averaging
the concentrations over 1 m intervals from 0–6 m) to represent different ranges of the water column.

For the sites reached by boat, we approached the locations from the opposite direction of the lake
current and turned off the engine, allowing the boat to drift to the sites and offsets in an effort to reduce
the amount of artificial mixing caused by the engine. Despite these efforts, some amount of mixing
from the engine may have occurred which would have an effect on the measured concentrations and
subsequent variability, particularly near the surface. The FB site and offsets were reached by foot,
and mixing may have been caused by stirring up sediments.

2.1.3. Meteorological Data

In order to examine conditions that may contribute to surface mixing in the lakes, meteorological
data were collected from MesoWest weather stations located near the Gilbert Bay sampling locations
(Site UT201, at 40.72255, −112.22569) and near Provo Bay in Utah Lake (Site KPVU, at 40.21667,
−111.71667). Parameters including wind speed (kilometers per hour) and peak wind gust (kilometers
per hour) were recorded at 10 min intervals for UT201 and at 5 min intervals for KPVU. Wind
speed is averaged over a daily scale and the daily peak wind gust is the maximum peak wind gust.
Daily precipitation data totals (mm) and maximum temperatures (degrees Celsius) were obtained
from NOAA Stations USW00024127 at 40.7034, −112.109 and USC00427064 at 40.2458, −111.6508.
Comparable meteorological data near the Farmington Bay site were not available for study period.

2.2. Statistical and Graphical Analysis

To evaluate the variation over time, we computed the autocorrelation function or estimates of
autocovariance [29]. These estimates were calculated for each site with regular daily sampling (all of
the UDWQ sites in Utah Lake and Farmington Bay) using the “acf” function, which is built in to the
R statistical software [30]. At each of the lags for these sites, we tested for statistically significant
autocovariance of surface chlorophyll measurements. The autocorrelation function could not be
computed for the main GSL sites (GB and GSL), since these data were not collected at regular intervals,
and there were insufficient points for alternative analyses (e.g., constructing a temporal variogram).
Instead, for these sites, temporal variation was analyzed graphically by calculating the difference in
chlorophyll measurements between subsequent samples (for short-term variation), as well as the mean
and standard deviation for each of the sampling periods (for seasonal variation).

We also examined spatial variation of surface chlorophyll concentrations with respect to the
spatial resolutions of several commonly-used sensors. As noted, the distances between sites and
offsets for the samples are representative of the spatial resolution of Landsat/SENTINEL-2 and MODIS
band regions. The observed differences in measurements between the offsets and the sites offer
insight into fine-scale variability (<30 m) that would occur at the sub-Landsat and SENTINEL-2 spatial
resolutions and coarser-scale variability (1000 m) that corresponds with the spatial resolution of MODIS.
To evaluate the differences between offsets, we calculated the difference and percent differences in
surface measurements between the sites and their respective offsets using Equations (1) and (2):

Di f f erence = Chlx,j − Chly,j (1)

Percent Di f f erence =

(
Chlx,j − Chly,j

Chlx,j

)
∗ 100 (2)
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where Chl is the mean chlorophyll concentration between 0 and 1 m below the surface for the sampling
date j at site x (e.g., GB2) and corresponding offset y (e.g., GB2a, GB2b, etc.).

Finally, we used linear regression to evaluate relationships between conditions at the surface and
throughout the water column for the GB2, GB3, and GB4 sites for each of the sampling periods. Due to
extremely low lake levels in Farmington Bay, Utah Lake, and Bridger Bay, samples at multiple depths
were not possible at these locations. The regressions follow the general form of Equation (3):

Chlx,k = m · Chlx,l + b (3)

where Chl is the mean chlorophyll concentration at site x, at depth k below the surface, and l is the
depth of 0–1 m below the lake surface. The strength of the relationship is measured through the
correlation coefficient, or R2. For this case, the correlation coefficient translates to the amount of
variance at intermediate depths that is explained by the surface measurements.

3. Results

3.1. Temporal Variability

The results of the autocorrelation function are visualized in a correlogram, showing the
autocorrelation of surface chlorophyll values versus the lag (days). The correlograms for each of
the sites with daily sampling, shown in Figure 2, graphically illustrate how the time series is correlated
with itself, or how similar measurements are from one day to measurements from some lagged
time period.
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Figure 2. Autocorrelation for Utah Lake (U6, U7, U8 and U9) and Farmington Bay (FB5) Sites.

The null hypothesis, which is tested at each lag, is that there is no autocorrelation between
the lagged samples. The different patterns of autocorrelation in Figure 2 show that there are
major differences in the temporal autocorrelation in different parts of the lake system. At α = 0.05,
there is no statistically significant autocorrelation for all time lags for Utah Lake sites U9 and U6,
and near-statistically significant autocorrelation for a lag of one day for U8 and U7. The rapid decrease
in autocorrelation for many of the Utah Lake sites is evidence of high short-term variability in this
body. In clear contrast with the patterns observed in Utah Lake, there is significant autocorrelation for
all lags up to 11 days for the site in Farmington Bay (FB5).
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For sites where it was not possible to calculate an autocorrelation function, the differences in
chlorophyll measurements between subsequent samples for each of the sampling periods are shown
in Figure 3.
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Figure 3. Temporal Variation between Subsequent Samples by Sampling Periods at the GB and
GSL Sites.

In the samples from June and July, there is relatively small variation (<2 and 5 µg/L, respectively),
even at 8 and 10 days between subsequent samples. In August, however, the data show a clear positive
trend of increasing differences between surface chlorophyll measurements, that is, the difference
between the subsequent samples increases as time between the samples increases. The data also
show the variation in between subsequent measurements increases throughout the summer season.
For example, in June, the mean difference at seven days between subsequent samples is 1.02 µg/L,
while the mean differences in July and August at seven days are 3.05 µg/L and 9.67 µg/L, respectively.
This seasonal increase in variability is also evident in comparisons of the standard deviation of surface
measurements during each sampling period, shown in Figure 4. There was also a general positive
trend in chlorophyll concentrations throughout the sampling period (meaning that both magnitudes
of chlorophyll and variance increased throughout the summer).
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3.2. Spatial Variability

To illustrate the differences in spatial resolution of several commonly-used sensors, Figure 5
compares the coverage of a portion of the study area (Utah Lake) with resolutions ranging from 30 m
(Landsat 8, Band 2, 19 July 2016), to 60 m (SENTINEL-2, Band 1, 22 July 2016) and 500 m (MODIS,
Band 3, 20 July 2016).
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The resolutions of Landsat and SENTINEL-2 show clear definition between the lake and the shore,
and variability in surface conditions (including the extent of the large algal bloom) can be detected at
both these scales. On the other hand, the coarse resolution of the MODIS image makes it difficult to
delineate the shoreline and while there is some variability between the in-lake pixels, the extent of the
bloom is difficult to distinguish. In the GB sites, surface chlorophyll data collected at sites and offsets
correspond with the range of spatial scales for these sensors. The differences in surface chlorophyll for
fine spatial scales (corresponding with Landsat/SENTINEL-2) and coarse spatial scales (corresponding
with the coarsest resolution of MODIS, 1000 m) are shown in Figures 6 and 7.
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For site groups (where each site group includes the site and its offsets) GSL1, GB2, GB3 and GB4,
there was generally less than 30 percent difference between the surface measurements at the offsets
and those at the site. The plots show that the highest differences between the offsets and the sites
occur in the later summer months, while relatively small differences are observed in early summer.
Throughout the entire season, the maximum difference in magnitude between a site and its offsets is
1.7 µg/L.

Remote Sens. 2017, 9, 409  10 of 15 

 

For site groups (where each site group includes the site and its offsets) GSL1, GB2, GB3 and GB4, 
there was generally less than 30 percent difference between the surface measurements at the offsets 
and those at the site. The plots show that the highest differences between the offsets and the sites 
occur in the later summer months, while relatively small differences are observed in early summer. 
Throughout the entire season, the maximum difference in magnitude between a site and its offsets is 
1.7 µg/L. 

 
Figure 7. Variability between Sites (Approximately 1000 m distances, or MODIS Scale) in the Great 
Salt Lake (GB Sites). 

This figure shows that even at this larger scale, the differences are still generally small (below 30 
percent), though the actual difference in magnitude was higher (with a maximum difference of 3.4 
µg/L) than those at the sub-pixel distances on the Landsat/SENTINEL-2 scale. Again, greater 
differences are observed in later summer months compared to early summer. 

3.3. Surface/Water Column Measurements 

The linear relationships between average surface measurements (0–1 m below the surface) and 
various depths (1–2 m, 2–3 m and 3–4 m) from data collected in Gilbert Bay (where water depths 
allowed for water column measurements) are shown in Figure 8.  

 
Figure 8. Relationships between Surface and Depths throughout the Water Column for GB Sites. 

Figure 7. Variability between Sites (Approximately 1000 m distances, or MODIS Scale) in the Great Salt
Lake (GB Sites).

This figure shows that even at this larger scale, the differences are still generally small
(below 30 percent), though the actual difference in magnitude was higher (with a maximum difference
of 3.4 µg/L) than those at the sub-pixel distances on the Landsat/SENTINEL-2 scale. Again, greater
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3.3. Surface/Water Column Measurements

The linear relationships between average surface measurements (0–1 m below the surface) and
various depths (1–2 m, 2–3 m and 3–4 m) from data collected in Gilbert Bay (where water depths
allowed for water column measurements) are shown in Figure 8.
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For 1–2 m, the overall (across all sampling periods) R2 is 0.79; for 2–3 m it is 0.97; and for 3–4 m it
is 0.96. However, the relationship is highly dependent on the sampling period, particularly at depths
of 1–2 m. For June and July, there are virtually no relationships between the surface chlorophyll and
chlorophyll at 1–2 m below the surface, and the relationships at other depths are weaker for these
sampling periods than for the August sampling period.

3.4. Meteorological Record

Short-term weather events such as rainfall and high wind events have the potential to cause
surface mixing and subsequently affect the observed temporal and spatial variability patterns, as well as
conditions throughout the water column. Records of the daily average values for wind speed, peak
daily wind gust, total daily precipitation and maximum temperature are shown for two weather
stations near the Great Salt Lake and Utah Lake are shown in Figure 9.

During the periods of data collection for Utah Lake sites, conditions were relatively stable with
respect to precipitation and temperature. The extremely shallow lake was likely heavily influenced
by the wind, allowing for a great deal of mechanical mixing to occur. This corresponds with the low
autocorrelation values in the Utah Lake sites. Other seasonal patterns in variability, such as the general
increase in concentrations observed in the GB sites, correspond with the fairly stable and favorable
weather conditions (lack of any large precipitation events during the mid-summer months, sustained
high temperatures in late July, and a steady cooling through August).

The seasonality of the surface/water column relationship may be partially explained by weather
conditions and short-term events, such as the variable temperature in June and July, and the slightly
higher wind and precipitation events in the GSL in June. It is important to note that poor correlations
between surface and 1–2 m depths may also be influenced by mechanical mixing caused by turbulence
from the boat, which could create artificially high variability near the surface.
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4. Discussion

The measures of variability over time (including autocorrelation, magnitude of differences
between subsequent samples, and standard deviation for different sampling periods) suggest that the
water bodies in the Great Salt Lake system have distinct temporal characteristics. These characteristics
have important implications for remote sensing modeling techniques. The Utah Lake samples showed
non-significant autocorrelation after one day, while the Farmington Bay samples showed statistically
significant autocorrelation for up to 11 days. This indicates that the Utah Lake conditions are much
more variable than those in Farmington Bay, with Utah Lake variation on a daily scale, rather than the
near-weekly scale exhibited in Farmington Bay. In a remote sensing context, this means that shorter
time windows may be needed for calibrating Utah Lake models, while longer time windows may
be justified for Farmington Bay models. In the GB and GSL locations, where sampling frequencies
were irregular, there was a general trend of increasing differences in chlorophyll concentrations as the
time between samples increased. These differences and the overall variation increased throughout the
summer, indicating that the temporal correlation may not be stationary, but decreases throughout the
growing season. This increase in variability could justify a shorter time-window for near-coincident
data in the later summer months than the earlier summer months.

The observed temporal patterns provide additional information for evaluating suitability of the
Landsat, SENTINEL-2, and MODIS sensors for this lake system. For example, events in Utah Lake
may be completely missed by the revisit time of Landsat sensors, requiring the use of multiple sensors
to adequately capture the rapidly changing conditions and acknowledgment of the limitations of the
temporal resolution of this sensor and its ability to describe short-term changes.

The comparisons of surface measurements between the GB and GSL sites and offsets as well as
among sites were also useful in evaluating different spatial resolutions of commonly-used sensors.
The relatively small variation between sites and offsets indicates that there is low variability over
the distances measured by a single pixel for Landsat/SENTINEL-2 or MODIS. This suggests that
these platforms, or others with similar spatial resolution, are suitable for monitoring the main body
of the GSL. These results also suggest that finer spatial resolution products (such as those obtained
by airborne sensors) would not necessarily provide significantly more information for this part of
the system.

Finally, the linear models between concentrations at the surface and those at different depths in the
water column in the GB sites show that these relationships are both depth and seasonally dependent.
This result is interesting because it shows a stronger relationship between the measurements at
the surface and greater depths (2–3 and 3–4 m) than between the surface and subsurface (1–2 m)
measurements. If the data are analyzed by sampling period, the relationship between the surface data
and the 1–2 m data exhibit a relatively strong fit for August, but not in June or July. The data at greater
depths, however, exhibit relatively strong relationships during all of the sampling periods. The high
variability observed at the surface and near-surface depths indicates that surface-biased estimates
may be influenced by short-term weather events or human activity that causes mixture. The strong
linear relationships for the other depths and for 1–2 m depths during August suggest that near-surface
estimates provided by remote sensing may be strongly correlated with conditions throughout the
water column, especially during periods of low surface mixing. In summary, the different relationships
between surface and water column conditions highlight that surface conditions do not always reflect
the conditions throughout the water column, and that the mechanical mixing processes which are
unique to each water body should be taken into account before assuming any relationship between
surface and water column conditions.

The spatial and temporal patterns observed in these lakes add to previous observational studies in
these lakes which have focused largely on speciation and the diversity of algal populations. As species
diversity decreases throughout the summer, the observations in this study also show that overall algae
biomass magnitudes and variability in algae biomass increases. This relationship has both positive and
negative implications for remote sensing; it provides additional motivation for using remote sensing
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methods during the late summer months when conditions are highly variable and more likely to be
worse than early summer months, but it also highlights potential challenges associated with remote
sensing of conditions when there is high species variability (leading to greater potential variability in
the spectral signature of the surface waters).

5. Conclusions

The observations and analysis provided valuable insights into the Utah and GSL lake systems;
however, it is important to acknowledge that the results may not be representative for all portions of
the system. In particular, the surface/water column analyses in the lower portion of the GSL are not
representative of the surface water/water column relationship in Utah Lake. Utah Lake is consistently
much more turbid than the southern arm of the GSL, in general is shallower, and has far different
mixing patterns. We recommend that this kind of analysis should be conducted in areas where unique
or localized hydrodynamic disturbances exist (such as elevated exposure to wind and surface mixing,
or near outfalls from wastewater treatment plants or streams where there may be increased mixing or
stirring up of bottom sediments).

The temporal and spatial analysis presented in this study supports development of specific
methods for future remote sensing work in this region. This support includes selecting appropriate
sensors and defining appropriate time-windows for using near-coincident data. The seasonal
differences in temporal correlation (as inferred by differences between subsequent samples) suggest
the use of a shorter time-window for near-coincident data in calibrating empirical models in the late
summer season than in the earlier summer months. We recommend that for modeling development
in the main body of the GSL, near-coincident matches be limited to ±2 days, though more relaxed
time-windows could be used for early summer matches. Based on the autocorrelation of the samples
in Utah Lake and Farmington Bay, we recommend limiting the time windows for considering
near-coincident matches to ±1 day for Utah Lake, while Farmington Bay may use a more relaxed
time window.

Our spatial analysis showed small variations between offsets and sampling sites, indicating that
Landsat/SENTINEL-2 resolution and MODIS resolutions would be appropriate for the southern arm
of GSL, while finer-scale resolutions may be unnecessary as there is little variation at these smaller
scales. As with the surface/water column analysis, this type of sampling in other parts of the lake
system would be helpful in determining the most appropriate methods based on their unique spatial
variability characteristics. From a temporal standpoint, the Landsat return time of 16 days is offset by
the fact that there are multiple sensors which may be used, for example both Landsat 5 and 7 provide
data for historical applications, while Landsat 8 and SENTINEL-2 provide data for more recent and
ongoing applications (from 2013 and 2015, respectively). These instruments provide imagery on a
more frequent basis (assuming no interference from cloud cover). However, our temporal analysis of
the sensor data in Utah Lake and the main body of the GSL, shows that lake conditions change on
shorter periods, and this revisit frequency may miss important changes in surface algae conditions.
This is contrasted by Farmington Bay, where the conditions do not change as drastically over these
time scales.

The information about spatiotemporal patterns should be considered along with other factors
including: the spectral resolution of the sensors and how well the spectral measurements can describe
the measures of algal biomass in certain lake environments [31], data availability (both field samples
and imagery), and the historical scope (which may restrict the types of sensors which can be used)
in order to meet the needs of the specific region of interest and the application. While focused on
the GSL region and its unique characteristics, this study demonstrates a number of sampling and
analysis techniques that could be applied in other settings to inform and improve the design of remote
sensing studies. Information about the unique spatial and temporal variability patterns in a water
body should be incorporated into the process of remote sensing model development, to help guide
modeling decisions and assumptions.
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