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Abstract. Escape routes are essential components of wildland firefighter safety, providing pre-defined pathways to a
safety zone. Among themany factors that affect travel rates along an escape route, landscape conditions such as slope, low-

lying vegetation density, and ground surface roughness are particularly influential, and can be measured using airborne
light detection and ranging (LiDAR) data. In order to develop a robust, quantitative understanding of the effects of these
landscape conditions on travel rates, we performed an experiment wherein study participants were timed while walking

along a series of transects within a study area dominated by grasses, sagebrush and juniper. We compared resultant travel
rates to LiDAR-derived estimates of slope, vegetation density and ground surface roughness using linear mixed effects
modelling to quantify the relationships between these landscape conditions and travel rates. The best-fit model revealed

significant negative relationships between travel rates and each of the three landscape conditions, suggesting that, in order
of decreasing magnitude, as density, slope and roughness increase, travel rates decrease. Model coefficients were used to
map travel impedance within the study area using LiDAR data, which enabled mapping the most efficient routes from fire
crew locations to safety zones and provided an estimate of travel time.
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Introduction

Wildland firefighter escape routes are pre-planned routes fire-
fighters take to move to a safety zone or other low-risk area

(National Wildfire Coordinating Group 2016). Escape routes are
an essential component of the Lookouts, Communications,
Escape Routes, and Safety Zones (LCES) system and 10 standard

firefighting orders for firefighter safety planning (Gleason 1991;
Ziegler 2007). They should be established in advance of fire-
fighting, known to all members of a fire crew, and re-evaluated as
conditions change throughout the day (National Fire Protection

Agency 2011). The goal in selecting escape routes is to determine
the path of least resistance and lowest risk between fire crew
location and safety zone. To maintain a margin of safety

(Beighley 1995), firefighters must have a keen awareness of both
fire behaviour and their own ability to traverse a given landscape.
There is an extensive body of literature and several well estab-

lished tools for modelling fire behaviour (e.g. Finney 2004;
Finney 2006; Andrews 2014), and some data on fire crew phys-
iological performance (Ruby et al. 2003). However, few studies

have explored the interaction between landscape conditions and
escape-route travel.

There are several landscape conditions that can affect travel rate
in a wildland environment, including terrain slope (henceforth,

‘slope’), low-lying vegetation density (‘density’) and ground
surface roughness (‘roughness’). Of these factors, slope has
been the most extensively studied for its effects on travel rate.

Butler et al. (2000) examined the effects of slope on travel
rate using data from two fires with significant firefighter
fatalities, South Canyon and Mann Gulch. Alexander et al.

(2005) performed experiments with Alberta firefighters to
determine the effects of not only slope, but also vegetation type,
load carriage and trail improvement on travel rates. Tobler’s
Hiking Function (THF) is an empirically derived model for

estimating travel rates based on slope (Tobler 1993) that has
been widely used in a variety of contexts, including urban
evacuation modelling (Wood and Schmidtlein 2012), outdoor

recreation planning (Pettebone et al. 2009) and historical migra-
tion simulation (Kantner 2004), but has rarely been applied to the
wildland firefighting environment, one exception being Fryer

et al. (2013). Another common slope-travel rate function is
Naismith’s Rule, developed in 1892 by Scottish mountaineer
William Naismith, which states that hiking 1 flat mile

(,1600 m) should take 20 min with an additional 30 min for
every 1000 feet (,300 m) of elevation gain, though it does not
account for downhill travel (Norman 2004). More recently,
Davey et al. (1994) derived a function based on a series of
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treadmill experiments that predicts sustainable uphill travel rates
over long distances based on a baseline travel rate on flat slopes.
Thoughmathematically similar toNaismith’s Rule andTHF, the

function ofDavey et al. (1994) provides a flexible framework for
adjusting to individual-level fitness. Studies that have quantified
slope effects on travel rate universally demonstrate that travel-

ling up and down steep slopes reduces travel rate. However,
methodological differences make it difficult to compare experi-
mental data relevant to firefighter evacuation (e.g. Alexander

et al. 2005) to models like THF, Naismith’s Rule and Davey
et al. (1994). Given the importance of slope as a predictor of
travel rate, and the importance of travel rate on the effectiveness
of escape routes, continued study is essential.

Few studies have examined the effects of vegetation and
ground surface conditions on travel rates. Alexander et al.

(2005) compared experimentally derived travel rates to a range

of vegetation types, as categorised by Canadian Fire Behaviour
Prediction fuel type. Taller, denser spruce (Picea spp.) and
lodgepole pine (Pinus contorta) fuel types resulted in slower

travel rates than shorter, less dense grass and slash fuel types.
Anguelova et al. (2010)modelled pedestrian evacuation due to a
wildfire using a qualitative, heuristic approach to characterise

the effects of common vegetation types in Southern California
on relative travel rates. However, the use of categorical fuel and
vegetation types in these studies limits applying these relation-
ships on a broad scale. No studies to date have explored the

effects of roughness on escape route travel explicitly, but
research in the field of applied physiology has produced relevant
results. The Pandolf equation is a function for estimating the

metabolic cost of travelling across various types of terrain and
land cover, using a variety of ‘terrain factors’ first introduced by
Soule andGoldman (1972), which are categorical multiplicative

factors used for estimating energy expenditure including black-
top road (1.0), dirt road (1.1), light brush (1.2), heavy brush
(1.5), loose sand (2.1) and soft snow (2.5) (Pandolf et al. 1976).
Schmidtlein and Wood (2015) used these terrain coefficients to

model evacuation times in the event of a tsunami, but point out
how their categorical nature does not easily translate to more
commonly used measures of land cover and highlight the

importance of continued study to determine the degree to which
such coefficients match reality.

Two fatality events, the 1994 South Canyon fire and the 2013

Yarnell Hill fire, highlight the critical effect that slope, density
and roughness can have on travel rates. On the South Canyon
fire, firefighters perished when trying to outrun flames up rocky

slopes as steep as 55% (298) in an area dominated by dense
Gambel oak and pinyon–juniper woodlands (Butler et al. 2000).
On the Yarnell Hill fire, firefighters were entrapped as they
travelled along an escape route through terrain characterised by

boulders and covered with thick chaparral brush (Arizona State
Forestry Division 2013).

To maximise the effectiveness of escape routes, we need to

deepen our understanding of how slope, density and roughness
affect travel rate in a precise, quantitative manner. These three
landscape conditions can all be readily modelled using airborne

light detection and ranging (LiDAR) data. LiDAR is a type of
active remote sensing system in which pulses of laser light
are emitted from an airborne platform towards the earth’s
surface and reflected back to the sensor, the timing of which

enables the precise measurement of three-dimensional ground
and aboveground structure (Lefsky et al. 2002). Airborne
LiDAR has been used extensively for mapping terrain (e.g.

Kraus and Pfeifer 2001; Reutebuch et al. 2003), vegetation
structure (e.g. Bradbury et al. 2005; Hudak et al. 2008) and
roughness (e.g. Glenn et al. 2006; Sankey et al. 2010). As such,

the use of LiDAR has great potential for mapping escape routes.
However, in the absence of a complete understanding of how
these landscape conditions affect travel, the effectiveness of

such an approach is limited. Accordingly, the objectives of this
study are to: (1) perform an experiment to test the effects of
slope, density and roughness on travel rates, and (2) use the
resulting data to develop a LiDAR-based geospatial model for

optimising firefighter escape routes and estimating travel time to
safety on a spatial scale most useful for wildland firefighting
operations.

Methods

For this study, an airborne LiDAR dataset spanning Utah’s
Wasatch Front was obtained from the OpenTopography LiDAR
data portal (opentopography.org). The data were acquired by

Watershed Sciences, Inc. on behalf of the State of Utah between
October 2013 and May 2014 and have an average point density
of 11.93 points m�2. The data are reported to have a respective
average vertical accuracy of�2.43,�3.68 and�5.41 cm in hard

surface, shrub and forested areas. A subset of the broader
Wasatch Front dataset within Levan Wildland Management
Area (3983501500N, 11184905600W) was chosen as the study area

based on diversity of topography and vegetation, public land
ownership, and road accessibility (Fig. 1). Elevations range
between 1650 and 1775 m with dominant vegetation types of

Utah juniper (Juniperus osteosperma) woodlands, big sage-
brush (Artemisia tridentata) shrublands and mixed perennial
grasslands.

To test the effects of slope, density and roughness on travel

rates, an experiment was conducted in which volunteer study
participantswere timed as theywalked a series of linear transects.
Twenty-two 100-m transects were placed to capture a range of

vegetation and topographic conditions (Fig. 1). They were
selected from a randomly generated set of transects to minimise
within- and maximise between-transect landscape condition

variability. Transectswere established in the field using aTrimble
Geo 7X GPS (Trimble, Inc., Sunnyvale, CA, USA, www.trimble.
com/Survey/Trimble-Geo-7x.aspx, accessed 13 September 2017)

with $200 point averaging for transect start and end points
and a Laser Technology TruPulse 360 rangefinder (Laser
Technology, Inc., Centennial, CO, USA, www.lasertech.com,
accessed 13 September 2017) for azimuth and distance mea-

surements. Sign posts were placed at each transect start and end,
and coloured flagging was placed in between at intervals of
,5–10 m, depending on visibility.

There were 31 study participants, none of whom had previ-
ously worked as firefighters (Table 1). Participants were part-
nered together and each individual walked the transects twice,

once in each direction, and timed themselves as they walked,
from which travel rates were computed. Participants walked the
numbered transects in sequential order, but to avoid the poten-
tially confounding effects of fatigue, partner groups were each
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assigned different starting transects. The experiment took place
over 2 days, each lasting,6 h, with a 30-min lunch break in the

middle of the day. Participants were additionally allowed to rest
while their partner was walking the transect. Given that indivi-
duals have different average walking rates (e.g. because of

different fitness levels, heights, weights, gaits), participants
were asked to maintain a consistent level of effort when walking
each transect. Additionally, participants were asked to stay as

close to the flagged transect centreline as possible exceptwhen it
intersected impassable vegetation, in which case participants
were permitted to walk around obstacles.

Travel rates were compared with LiDAR-derived estimates

of slope, roughness and density. These metrics were generated
for each transect using a combination of LAStools LiDAR

processing software (radpidlasso GmbH, Gilching, Germany,
www.rapidlasso.com), ESRI ArcGIS geospatial software (ESRI

Inc., Redlands, CA,USA,www.esri.com, accessed 13September
2017), and R statistical software (R Core Team, Vienna, Austria,
www.r-project.org, accessed 13 September 2017). LiDAR data

were first classified into ‘ground’ and ‘non-ground’ points,
using the lasground algorithm (Isenburg 2015). Several iterative
classifications were performed, adjusting algorithm parameters

as needed until the classification was deemed satisfactory
according to a careful visual interpretation and comparison of
the resulting classified LiDAR point cloud to high-resolution
aerial imagery. Although no field validation was performed to

obtain a quantitative, point-level accuracy assessment, it is likely
that misclassifications between very low-lying non-ground points

Table 1. Study participant summary

n Mean age (years) Mean height (m) Mean weight (kg) Mean exercise (h week�1)

All subjects 31 26.97 1.76 73.22 7.00

Male 19 26.11 1.81 81.65 7.78

Female 12 28.33 1.67 59.87 5.83

Transects

Contour interval: 5 m

Fig. 1. Study area map, with background imagery care of ESRI (ESRI Inc., Redlands, CA, USA,

www.esri.com).
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and ground points occurred. Slope was calculated by first creating
a digital terrain model (DTM) at a spatial resolution of 1 m using
the las2dem algorithm. For each transect (t), average slope (s) was

then computed in degrees according to the difference in elevation
in metres (e) at the start (a) and end (b) of each transect and the
horizontal distance in metres (h) between a and b, such that:

st ¼ tan
eb � ea

h

� �
ð1Þ

Roughness was calculated following an approach similar to that
of Glenn et al. (2006) as the difference between a fine-scale
DTM (0.25-m spatial resolution) and a ‘smoothed’ DTM (also

0.25 m) generated by calculating a focal mean of elevation
values within a 2.5-m-radius circular kernel. The resulting raster
dataset contained pixel values representing local deviations (e.g.

bumps, pits) from the broader topography (Fig. 2). Linear
transects were buffered by 5 m and the absolute values of the
roughness raster data were averaged within each buffer to obtain
a transect-level roughness in metres.

As vegetation density in different portions of the vertical
canopy profile will have different effects on travel rates, it was
first necessary to determine a suitable range of aboveground

heights that would most directly affect travel. For example, very

dense vegetation in a very high or very low height stratum will
likely have little effect on travel rates, as one could readily
traverse under or over the vegetation unimpeded. LiDAR point

clouds can be used to estimate vegetation density in distinct height
strata by calculating normalised relative point density (NRD).
NRD is a calculation of the relative proportion of point returns that

fallwithin a given height range as comparedwith the total number
of points that fall within and below that height range, such that:

NRDij ¼
Pj

i nPj
0 n

ð2Þ

where n is the number of LiDAR point returns, i is the floor (low
value) of the height range and j is the ceiling (high value) of the
height range (USDA Forest Service 2014). To calculate NRD,

aboveground height for each non-ground LiDAR point was first
calculated using the lasheight algorithm, which uses the ground
points to generate a triangulated irregular network (TIN) repre-
senting the ground surface, and then computes the height of each

non-ground point above the TIN surface. Transects were buff-
ered by 5 m, and the point cloud was extracted within the buffer
area. Eqn 2was then used to calculate a single NRDvalue for the

entire transect. Fig. 3 depicts an example height range along a

1663.1 m

1665.8 m

�0.23 m

�0.32 m
100-m transect

5-m buffer

Subtract

Roughness

Fig. 2. Roughness calculation; digital terrain model (DTM) elevation values exaggerated 3� to highlight texture.
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Fig. 3. Example transect with associated light detection and ranging (LiDAR) point cloud cross-section

and example height range (0.15–2.75 m); heights scaled for clarity, with background imagery care of

ESRI (ESRI Inc., Redlands, CA, USA, www.esri.com).
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100-m transect, where i ¼ 0.15 m and j ¼ 2.75 m. NRD values
range from 0 to 1, with 1 being indicative of very dense
vegetation in a given height range and 0 representing very little

or no vegetation.
In order to determine the height range that had the most

significant effect on travel rates, a series of linear mixed effects

regression (LMER) analyses were performed. As stated earlier,
some study participants consistently walk faster than others
regardless of landscape conditions, and, although this is poten-

tially useful information, of primary interest are the relative

effects (i.e. howmuch does vegetation density reduce travel rate
independent of individual performance?). LMERmodelling fits
a series of models with variable (or, ‘random’) y-intercepts,

providing an account of the fixed effects (the underlying trend)
and the random effects (variability caused by individuals).

Two different LMER analyses were run using travel rate as

the dependent variable. The first LMER analysis was designed
to determine optimal NRD height range that best predicted
travel rates. In order to minimise the confounding effects of

slope, only data from transects with slopes of less than 58
(n ¼ 16) were used in this analysis. For every possible contigu-
ous height range between 0 and 5 m, at intervals of 5 cm, a

LMERmodel was generated in R using the lme4 package (Bates
et al. 2015) to test the predictive power of NRD on travel rates
and assessed for model fit. Models were assessed for fit using
Nakagawa and Schielzeth (2013)’s measures for marginal and

conditional R2 (henceforth R2
m and R2

c), representing variance
explained by the fixed effects and the variance explained by both
the fixed and random effects respectively as implemented in R

using the MuMIn package (Bartoń 2016). NRD for the height
range that was able to best predict travel rates was selected for
further use throughout the study as a representation of density.

The second LMER analysis assessed the combined effects of
slope, density, and roughness on travel rates, again accounting
for variability individuals’ travel rates. The best-fit fixed effects
LMER model took the form:

travel rate ¼ aþ b1densityþ b2roughnessþ b3slopeþ b4slope
2

ð3Þ

where a is the y-intercept, representing travel rate for zero

density, roughness and slope, and b are multiplicative model
coefficients, representing relative effects of the landscape vari-
ables on travel rates. In order to use these travel impedancemodel

coefficients derived from transect-level experimentation in a
landscape-level geospatial model for escape route optimisation,
each of the three landscape variableswas computed on a per-pixel

basis across the entire study area at a 5-m spatial resolution.
Rasterised landscape variables were then multiplied by their
model coefficients to derive travel impedance raster data through-
out the study area. A route optimisation analysis was then

performed inR using the raster and gdistance packages (Hijmans
2015; van Etten 2015). The gdistance package uses transition
matrices to calculate the relative resistance of moving between

eight directionally adjacent cells in a raster dataset. For each of
the landscape conditions of interest, a transition matrix was
generated such that for each cell, a travel cost (s) was computed

for travelling to each of its adjacent cells, according to the LMER
model coefficients (b1, b2, b3 and b4 above). The transition
matrices were combined to enable an analysis of travel time for
travelling between any two locations throughout the study area.

Lastly, a series of simulations were performed to create escape
routes between simulated fire crew and safety zone locations.
Each route was generated automatically to identify the fastest

route to safety, according to the combined transitionmatrix, using
Dijkstra’s algorithm (Dijkstra 1959). Dijkstra’s algorithm com-
putes the relative travel impedance of all possible routes from

origin to destination based on a defined set of nodes (raster cells)
and paths between them (connections between adjacent cells) and
identifies the single, most efficient path.

Results

Fig. 4 depicts the three landscape parameters of interest (slope,

density, and roughness) throughout the study area with the 22
transects overlaid to highlight the range of conditions captured
in the experiment. Slopes ranged from 0 to 39.48, density

(0.15–2.75 m) ranged from 0 to 100%, and roughness ranged
from 0 to 0.4 m. The majority of the juniper woodlands were
found on steeper slopes at higher elevations, with sagebrush and

0 39.4� 0 100% 0 0.4 m

Fig. 4. Landscape parameters with transects.
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grasslands dominating the lower-slope, lower-elevation terrain.
In general, juniper woodlands tended to have the highest vege-
tation density, though a few of the sagebrush-dominant transects

had higher vegetation densities (e.g. transects 15 and 16,
Table 2). Roughness values were highest on steeper slopes and
in dry streambeds, where erosional and depositional processes

have created rocky ground surfaces.
In all, there were 1276 timed walks, with 10 subjects walking

22 transects, 19 subjects walking 20 transects, and two subjects

walking 19 transects, all in both transect directions. All resultant
travel rates were used in the subsequent analyses, with no outlier
removal. The results of the first LMER analysis to determine the
NRD height range that best predicted experimentally derived

travel rates on slopes,58, as approximated by R2
m, can be seen

in Fig. 5 and Table 3. Those height ranges with floors of 2 m or
higher (e.g. 2–3 m, 3–4 m) had very little predictive power,

indicating that vegetation solely above the heads of study
participants (average height¼ 1.76 m) had little effect on travel
rates. Conversely, those ranges with ceilings below 1 m (e.g.

0–0.5 m, 0–1 m) have low predictive power as well, suggesting
that low-lying density alone does not account for much of the
variability in travel rates. Consistently, the height ranges with

floors between 0 and 0.5 m and ceilings between 2 and 4 m tend
to be the best predictors of travel rates. Although several similar
height ranges resulted in similarly high predictive power
(Table 3), the single best height range of prediction was

0.15–2.75 m, with a R2
m of 0.54 and R2

c of 0.84 (Fig. 5). This
range was used throughout the remaining analyses.

Fig. 6 highlights the fairly wide dispersal of travel rate values

at each transect, as represented by the spread in the y direction at
each x location. This spread represents the tendency for some
individuals to travel faster than others regardless of landscape

conditions, and was accounted for by using LMER.

The second LMER analysis to determine the combined
effects of slope, density, and roughness on travel rates took
the following form (R2

m ¼ 0.59; R2
c ¼ 0.82):

travel rate ¼ 1:662� 1:076� density� 9:011� roughness�
5:191� 10�3
� �

� slope� 1:127� 10�3
� �

� slope2

ð4Þ

Each of the landscape parameters had a significant (P, 0.001)
negative effect on travel rates, suggesting that as slope, density
and roughness increase, travel rates decrease (Table 4). Fig. 7

provides a visualisation of the fixed and random effects of each

Table 2. Transect landscape parameter mean values

Transect Length (m) Slope (8) Density (%) Roughness (m)

1 99.77 3.04 33.24 2.02� 10�2

2 99.96 3.55 25.17 1.91� 10�2

3 99.77 3.52 31.50 1.81� 10�2

4 99.80 3.71 16.83 1.78� 10�2

5 100.04 1.74 9.76 2.06� 10�2

6 100.07 3.29 3.57 2.18� 10�2

7 100.01 0.09 1.86 2.47� 10�2

8 100.20 15.23 4.75 2.61� 10�2

9 102.49 13.22 9.35 3.57� 10�2

10 99.70 14.61 17.87 2.16� 10�2

11 100.77 14.02 16.72 2.46� 10�2

12 99.97 2.60 4.08 1.64� 10�2

13 99.69 3.15 13.27 1.76� 10�2

14 99.99 2.07 19.94 1.97� 10�2

15 100.31 2.96 34.17 2.25� 10�2

16 100.48 2.16 34.65 1.89� 10�2

17 100.52 1.98 27.44 2.41� 10�2

18 100.51 0.44 13.79 2.18� 10�2

19 100.17 2.21 5.61 1.71� 10�2

20 99.95 1.61 2.98 1.80� 10�2

21 99.96 15.90 40.20 2.04� 10�2

22 100.06 15.57 30.47 1.83� 10�2
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Fig. 5. Power of light detection and ranging (LiDAR) normalised relative

point density (NRD) height ranges from 0 to 5 m for predicting travel rates

along slopes of,58 as approximated by Nakagawa and Schielzeth (2013)’s

measures for marginal and conditional R2 (R2
m) compared with average

study subject height. Best interval (0.15–2.75 m) shown.

Table 3. Results from regression analyses to determine optimal light

detection and ranging (LiDAR) normalised relative point density (NRD)

height range for predicting travel rate along slopes of less than 58
A total of 5053 NRD height ranges were tested, each representing a unique

range between a floor and ceiling height. R2
m and R2

c are Nakagawa and

Schielzeth (2013)’s measures for marginal and conditional R2 representing

variance explained by the fixed effects and the variance explained by both

the fixed and random effects

Rank NRD height range R2
m R2

c

1 0.15–2.75m 0.540 0.839

2 0.15–2.70m 0.540 0.838

3 0.15–2.65m 0.539 0.838

4 0.15–2.60m 0.539 0.837

5 0.15–2.80m 0.539 0.837

y y y y

5053 4.85–4.90m 0.008 0.272
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landscape parameter. In order to display these relationships in
two dimensions, for each landscape parameter (e.g. slope), the
other two (e.g. density and roughness) were assumed to be the

median value of those parameters among all of the transects. As
can be seen from the magnitude of the standardised model
coefficients (bstandardised, Table 4), and an analysis of variable-

specific partial R2
m, density had the greatest effect on travel

rates, followed by slope and roughness.
Using the model coefficients from Table 4, Dijkstra’s algo-

rithm (Dijkstra 1959), as implemented in the R gdistance

package (van Etten 2015) was performed to generate a series
of simulated least-cost escape routes throughout the study area.
Example resulting escape routes in Fig. 8 highlight the aniso-

tropic effects of slope across this landscape, where the least-cost
route from a to b differs from that of the reverse direction.
Whereas the least-cost routes are actually longer than the

straight-line distance between these two points, the travel time
along the optimised routes were lower than the straight-line
routes (Table 5). Similarly, whereas the b to a route was longer

than the a to b route, the travel time from b to a is shorter.
A series of 1000 escape-route simulations was performed

between randomly generated location pairs to illustrate the

effects of landscape parameters on route designation (Fig. 9).
Slope has a major effect on route placement, given the greater
amount of route overlap in areas where slopes are low and the
sparseness in steep areas. Density is more locally variable on the

landscape, allowing for least-cost paths to traverse small avenues
of comparably low density within broader swaths of dense
vegetation. Roughness is inconsistently distributed throughout

the study area, with sparse pockets of high roughness typically
found in drainage channels bearing little apparent effect on the
placement of escape routes. The straight north–south line with a

high degree of escape route overlap that appears in the western
portion of the study area is a road, highlighting the model’s
implicit bias towards low-slope, low-density and smooth
surfaces.
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Fig. 6. Effect of density, as approximated by the optimal light detection

and ranging (LiDAR) normalised relative point density (NRD) height range

(0.15–2.75 m), on travel rates along slopes less than 58.

Table 4. Fixed effects for model predicting travel rates

Probabilities are significant at: ***, a ¼ 0.001. Residual degrees of

freedom ¼ 1269

Parameter b s.e. bstandardised t P

intercept (a) 1.662 0.025

density �1.076 0.024 �0.551 �45.67 ,0.001***

roughness �9.011 0.743 �0.171 �12.13 ,0.001***

slope �5.191� 10�3 3.675� 10�4 �0.168 �14.12 ,0.001***

slope2 �1.127� 10�3 3.649� 10�5 �0.263 �30.89 ,0.001***
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Fig. 7. Predicted results of linear mixed effects regression (LMER) for each landscape condition within the range of values found on transects

throughout the study area, assuming a median value of the other two conditions.
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Discussion

This study examined the effects of slope, density and roughness

on travel rates in order to develop a geospatial model for wild-
land firefighter escape route optimisation. It represents a valu-
able contribution to the existing body of research surrounding

the effects of slope on travel rates, and a novel attempt at
quantifying the effects of density and roughness. At present,
escape routes are designated by firefighting personnel based on

the recommendations of the National Wildfire Coordinating
Group’s Incident Response Pocket Guide, which suggest
avoiding steep uphill escape routes, and scouting for loose soils,
rocks, and vegetation (National Wildfire Coordinating Group

2014). Although these are important recommendations, the
language is inherently subjective (e.g. ‘steep’, ‘loose’), which
can result in judgment error. This study introduces a standar-

dised method for quantifying these variables and providing an
experimentally derived account of their effects on travel. It also
provides a framework for mapping travel rates across large

areas, something that has not previously been possible. Provided
that there are LiDAR data available within a given area, the
resulting geospatial escape route optimisation model can be

used as a decision support tool, providing fire crew members
with objective insight to aid in the identification of efficient
escape routes.

An important finding from this study was the determination

of the aboveground density height range that most directly

Table 5. Resulting travel distances, times and rates for simulated escape routes

Route Straight-line distance (m) Route distance (m) Travel time (s) Straight line mean travel rate (m s�1) Route mean travel rate (m s�1)

a - b 941.5 1038.9 969.6 0.97 1.07

b - a 941.5 1157.8 950.0 0.99 1.22

0 39.4� 0 100% 0 0.4 m

20�Number of overlapping routes: 0

Fig. 9. Results of least-cost routes between 1000 randomly generated point location pairs throughout the study area with route overlap

displayed against landscape parameters.

a b escape route

b a escape route

Fig. 8. Two simulated escape routes representing the least-cost paths

between points a and b in both directions; background imagery: ESRI (ESRI

Inc., Redlands, CA, USA, www.esri.com).
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affected travel rates (0.15–2.75 m). The range floor (0.15 m)
demonstrates that vegetation shorter than 15 cm in stature will
most likely have little or no effect on one’s ability to traverse a

given landscape. The range ceiling, however, is nearly a meter
taller than the mean height of study participants (1.76 m).
Although we did not collected GPS data to track individual

movement, anecdotal evidence gleaned from experimental
observation suggested obstacle avoidance, rather than passage
through obstacles, was a primary cause of travel rate reduction.

Given the subjectivity associated with obstacle avoidance and
individual route selection, it is possible that study participants
tended to avoid vegetation slightly overhead based on percep-
tion of travel efficiency, even if passage under said vegetation

would not greatly impede travel. It is also possible that the
specific vegetation types found within the study area are partly
responsible for the modelled importance of overhead vegetation.

Particularly in the case of Utah juniper, the densest portion of the
canopy lies between ,2 and 4 m in height (Fig. 10). It is likely
that density in these higher portions of the canopy are highly

correlated with density in the lower portions of the canopy as
well. In other words, dense vegetation lying above the heads of
study participants, although not directly affecting travel, likely

indicates similarly dense vegetation at height ranges that do
directly affect travel.

Although the 0.15–2.75-m height range was identified as the
best range for predicting travel rates, as Table 3 highlights, there

are several very similar ranges that possess similar predictive
power. When combined with the inherent error in the ground
point classification process and subtle LiDAR vertical inaccu-

racies, we can more broadly state that vegetation that generally
occupies the same vertical space as a human (e.g. 0–3 m) most
directly impedes travel.

This study has several assumptions and limitations that
warrant further discussion. Perhaps the most important limita-
tion is that the experiments were performed with non-firefighting
personnel and without typical firefighting gear. That said, the

test population was not entirely dissimilar to the firefighting
community, demographically. According to the National Wild-
land Firefighter Workforce Assessment, almost 50% of aid- and

tech-level USDA Forest Service firefighting personnel were
between the ages of 26 and 35, as comparedwith themean age of
our study participants, which was 27 (USDA Forest Service

2010). Additionally, given the physical demands of the fire-
fighting profession, firefighters tend to be of a high fitness level.
By comparison, the study population was of generally above-

average fitness, exercising a self-reported average of 7 h per
week. One key difference is that this study population had a
relatively large female population as compared with that of the
firefighting community (39 v. 16% in the USDA Forest Service;

USDA Forest Service 2010).
Regardless of the specific sample population used to derive

the relative effects of landscape conditions, estimating travel

rates should be done with great caution, particularly when
simulating escape routes travel in a potentially dangerous
wildfire environment. The most valuable contribution of this

study is the analysis of relative effects of landscape conditions
on travel rates, which are more robust to slight differences in
individuals’ heights, weights and fitness levels. Our data con-
firm this robustness, with an R2

c value of 0.82, which suggests

that when accounting for the small differences in individual

travel rate biases, 82% of the variance in overall travel rate is
explained by slope, density, and roughness. The resulting model
enables the automated generation of the fastest route to safety,

irrespective of specific resulting travel rates and times.
It is worth noting that study participants walked, rather than

ran, the transects. If subjects were asked to run the transects, the
resulting between-subject variability would make a robust

analysis muchmore difficult. Additionally, the effects of fatigue
between running the first and last of 22 transects would be more
pronounced than those of walking, making the within-subject

variability problematic for modelling purposes. Although one
might typically associate escape routes being a measure of last
resort, the ideal escape route evacuation scenario is one in which

a fire crew proceeds along an escape route in line at a controlled,
walking pace. Although subjects were asked to maintain a
consistent level of effort while walking transects, there

remained a level of uncertainty in the computation of relative
travel impedance due to a lack of quantitative control for energy
expenditure levels. To further refine the relationship between
landscape conditions and travel rates would require the collec-

tion of more robust measures of physical exertion, such as
oxygen consumption rates, which was beyond the scope of our
analysis. In addition, having subjects walk the same transects

several times could have provided an estimate of uncertainty;
however, given experimental time constraints, this would have
limited the total number of transects and, by proxy, the range of

landscape conditions tested. Fig. S1 in the Supplementary
material provides a graphical depiction of the relative consis-
tency of travel rates, according to how each study participant’s
travel rates ranked among all participants for each transect.

Another limitation of this study is the limited range of
landscape conditions sampled throughout the 22 transects.
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Fig. 10. Density plot of light detection and ranging (LiDAR) point return

heights, measured as a proportion of all returns, for a transect with dense

juniper.
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Although a wide range of conditions was captured, obtaining an
exhaustive sample was impossible given the practical con-

straints of testing human subjects. This is particularly true of
slope, where our maximum sampled slope was ,158. As a
result, we must extrapolate the effects on travel rates of slopes

steeper than 158, which may in reality take a different form than
our proposed model. For example, THF, Naismith’s Rule and
Davey et al. (1994)’s function all flatten out towards the ‘tails’

on very steep slopes, but never quite reach a travel rate of zero,
whereas our model calculates a travel rate of zero above slopes
of ,368 and below slopes of ,�408 (Fig. 11). The model fit

presented in Fig. 11 represents the effects of slope assuming zero
density and roughness. As Fig. 11 depicts, the effects of slope as
determined in ourmodel are less pronounced than the other three
models, likely due to differences in methodology. Whereas our

study provides an account of the effects of slope over relatively
short distances in wildland environments (100 m), the other
three are based on long distance hiking on improved trails or

treadmills.
The strength of the approach taken in this study lies in the

broad applicability of LiDAR metrics tested. Regardless of

geography, the quantitative measures that were computed from
LiDAR data can be calculated in any environment. However,
airborne LiDAR pulse density and overstorey vegetation con-

ditions can have significant effects on the precision with which
these measures are computed. The calculation of slope is fairly
robust to these limitations, given the coarse scale of analysis.
However, accurate estimation of understorey vegetation density

and roughness relies on a sufficient amount of LiDAR pulse
energy reaching the understorey and ground surface, requiring a
balance between LiDAR pulse density and overstorey vegeta-

tion density. Though no sensitivity tests were performed to
determine the effect of pulse density or overstorey conditions on

characterising landscape conditions, it is likely that lower pulse
densities or denser upper vegetation canopies than those in our
study would reduce the effectiveness of our approach. The very

nature of the roughness calculation we performed relies on
assessing the difference between microtopography and macro-
topography. As ground point densities decrease, those two

measures begin to converge, reducing the ability to characterise
small perturbations in the ground surface. Similarly, the under-
storey vegetation density calculation assumes that LiDAR pulse

spacing will be sufficiently dense, so as to enable interaction
with multiple features within the vertical canopy profile. With a
much lower pulse density, deciphering between those points that
reflect off of the top of the canopy and the middle of the canopy

becomes much more difficult. Vegetation density, in particular,
would also be difficult to characterise in vegetation types with
very dense upper canopies, where relatively little airborne

LiDAR pulse energy can reach the understorey. However,
particularly in the fire-prone coniferous forests throughout the
western United States, with comparably permeable upper cano-

pies, this method should translate well.
A key assumption made in the development of this method-

ology is that the fastest route to safety is always the best route to

safety, when in reality, this may not be the case. There are two
key variables not assessed in our model: (1) road or trail access
and (2) the location of the wildland fire. As Alexander et al.
(2005) revealed, travelling along improved trails (flagged,

cleared of brush) significantly reduced travel time along an
escape route. Although this is implicitly accounted for in our
model (presumably roads or trails have lower slope, density and

roughness than off-trail areas), it is not explicitly built into the
model. In a wildland firefighting environment, where high
winds and smoke can greatly reduce visibility, travelling along

a clearly defined road or trail could prove to be highly advanta-
geous, even if slower than the ‘optimal’ route. That being said,
by using a GPS and flagging the route identified by our
algorithm, firefighters could reduce travel time by a potentially

critical amount. Second, this model makes no attempt to
characterise fire behaviour or identify current fire location. As
such, it is conceivable that the fire would spread in a direction

that would render the escape routes unsuitable or even fatal, as in
the case of the Yarnell Hill fire in 2013. To address these points,
future work could include model refinement to include an

optional bias towards roads or trails and incorporation of fire
location or a fire behaviour model, such as was done by Fryer
et al. (2013) andAnguelova et al. (2010), to bias themodel away

from potentially dangerous routes.

Conclusions

The infusion of high resolution-high precision geospatial data,
such as airborne LiDAR, into fire safety planning has the
potential to greatly improve the consistency, reliability and

efficiency of designating escape routes. However, escape routes
are merely one component of the LCES system and must be
connected to a safety zone or other low-risk area. As such, this

research compliments recent work byDennison et al. (2014) and
Campbell et al. (2017), who have demonstrated methods for
taking advantage of the advanced capabilities of LiDAR for
safety zone identification and evaluation. Taken together, these
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methodologies can eliminate much of the potential for costly
errors in the decision-making process when implementing
LCES.

This study provides several important fire safety manage-
ment implications:

� When designating escape routes, every attempt should be
made to avoid steep slopes, dense vegetation, and rough
ground surfaces.

� The use of airborne LiDAR to precisely quantify these
landscape conditions can help select the most efficient escape
routes.

� Mean walking travel rate on flat slopes, with minimal
vegetation and ground surface roughness was 1.66 m s�1.

� Travelling up slopes of 5, 10 and 158 reduced the travel rate by

3, 10 and 20% respectively.
� Travelling down slopes of 5, 10 and 158 reduced the travel rate

by 0, 4 and 11% respectively.
� Travelling through dense juniper (NRD ¼ 0.33) and dense

sagebrush (NRD ¼ 0.35) reduced the travel rate by 22 and
23% respectively.

� Travelling along rough ground surfaces (roughness ¼
3.57 � 10�2 m) reduced the travel rate by 19%.

Particularly in light of the push to collect nationwide LiDAR

data throughout the United States within a decade as part of the
USGS 3D Elevation Program (Snyder 2012), methods such as
those presented in this study have the potential to enhance

wildland firefighting safety. More work is certainly needed to
validate and refine the results obtained in our experiments, and
to test the additional effects of carrying packs, increased travel

distance, and other external conditions such as temperature and
humidity on firefighter travel rates, but this study represents a
novel contribution in a direction that, as yet, has remained
largely unexplored in the scientific and applied literature.
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