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Question 1, Part (A) – Fire Science and Application targets 
Key questions regarding the role of fire in the Earth system (Figure 1) include: 

A. How does fire affect ecosystem services (e.g., clean air and water, habitat, and biodiversity) and 
which ecosystems are the most vulnerable to changes? 

B. What is the radiative forcing of wildfire globally accounting for greenhouse gas and aerosol 
emissions, post-fire recovery, and changes in surface albedo?   

C. How do fuel type, structure, amount, and condition influence fire?  
D. How do these smoke emission influence atmospheric dynamics and health and air quality as they 

are globally transported?   
Answering these questions will improve understanding of fire in the Earth system, and will require 
continued and improved coverage of observations of ecosystems pre- and post-fire. To address these 
questions, the following science and application targets (“objectives”): 

1. Monitoring post-fire recovery using ecosystem composition and 3-D structure 
2. Mapping vegetation carbon and nitrogen 
3. Mapping ecosystem condition: soil moisture and vegetation productivity, moisture, stress and 

mortality 
4. Mapping fire emissions and smoke transport 

require global observations with frequent revisit to capture before and after disturbance conditions. 
To accomplish these objectives, it is imperative for continuity of observations not only to 
provide long-term analyses of fire’s role in the Earth system, but also to sustain integration into 
operational decision support systems. 

Question 1, Part (B) – Importance of Targets to the Themes 

The aforementioned objectives “cross-cut” Themes 2-4 as wildfires can be extreme events that 
directly affect the carbon cycle and have direct implications for applications’ science. 
These objectives are important to Theme 2 because smoke emissions from fire are directly injected 
into the atmosphere, acting as air pollutants, altering atmospheric chemistry downwind of fire (gases 
and aerosols), and atmospheric thermodynamics, affecting local-to-regional weather and larger-scale 
climate systems (Figure 1). Fire emissions feedback to the climate system by producing cloud 
condensation nuclei (CCN)1–3, aerosols that directly and indirectly affect radiative forcings2,4–6, and 
altering the radiation balance (vegetation change, deposition on ice)7–10. Emissions also act as sources of 
pollution that are transported beyond localities and have the potential to affect global atmospheric 
chemistry and the hydrologic cycle11–18. Aerosols can influence the micro- and macro-physical and 
properties of clouds thus impacting the energy balance and the hydrological cycle.  Smoke also contains 
limiting nutrients that provide necessary nutrients at both land and ocean interfaces19,20. 
These objectives are important to Theme 3 because climate influences fire regimes21,22, which act as a 
catalyst expediting terrestrial ecosystem change across climatic gradients23–25 (i.e., temperate, boreal, 
and tropical). Thus fire has implications for biogeochemical cycles and ecosystem function (e.g., 
nutrient cycling), biodiversity and ecosystem health25. Specifically, mapping post-fire recovery 
(Objective 1) informs natural resource management as decision makers balance land use objectives 
such as biodiversity (which can be influenced by fire26), species protection and mitigating fire 
effects27.  Fire influences ecosystem health28 by affecting biogeochemistry (Objective 2), specifically 
carbon and nitrogen29, cycles through nutrient cycling30 and ecosystem productivity31. Furthermore, 
ecosystem condition (Objective 3), an indicator of ecosystem health28, can influence the likelihood of 
fire32. 
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As fire affects atmospheric thermodynamics and local-to-regional weather (Theme 2) and terrestrial 
ecosystems (Theme 3), these objectives are also relevant to Theme 4 as carbon cycling and energy 
exchange link the terrestrial, atmospheric, and hydrologic systems to influence the global climate 
system33. Specifically, fires contribute to increasing atmospheric carbon, which can have countering 
feedbacks on the climate system. Fire emissions (e.g., greenhouse gases and aerosols discussed 
above) have made significant contributions to atmospheric carbon34 in relation to anthropogenic 
emissions35, yet confounding impacts of fire necessitate representation of fire in global studies 
beyond simple carbon emission estimates36. Specifically, although carbon is lost to the atmosphere 
during fire, fire plays an important role in nutrient cycling30 and regrowth37 which affects carbon 
uptake by the biosphere that impose constraints on how the carbon cycle responds to variations in 
climate31. The incomplete combustion of biomass produces varying forcing agents including changed 
surface albedo from remaining charcoal17 and aerosols38, which can absorb and scatter solar 
radiation39, deposit on snow and ice to change surface albedo8, and effects on cloud properties and 
formulation40. Also affecting climate are changes in surface roughness and altered atmospheric 
mixing41. 

Question 1, Part (C) – Advancing Themes by addressing Targets 
The aforementioned objectives can advance Themes 2-4 as follows. 

• Terrestrial ecosystems will be better characterized (vegetation composition and vertical and 
horizontal structure) before and after fire, thus improving understanding of ecosystems (in their 
current state) and how they relate to current bioclimatic conditions, which can improve 
benchmarking for predicting changes. The current earth observations with limited resolutions and 
extent are not sufficient to resolve these relationships beyond the current state of knowledge42. 

• Improved understanding of terrestrial ecosystems, has the potential to resolve the varying 
functional role of fire and how that relates to biodiversity26 and ecosystem health (e.g., water 
quality28). Mapping vegetation composition, structure and amount (e.g., biomass) are essential to 
characterizing habitats for protected species43–45, resolving models of erosion, hydrologic runoff, 
and water quality46,4748, informing predictive models of landslide potential49, quantifying 
emissions that degrade air quality50, and predicting fire behavior51. 

• Current practices for fire emission estimation use models and emission factors to infer transition 
of biogeochemical cycles (e.g., carbon) between the biosphere and atmosphere. However, 
continuing observations of forest structure (e.g., NISAR, GEDI and BIOMASS) and improved 
mapping of ecosystem composition (e.g. image spectroscopy outperforms broadband sensors42), 
can refine estimates of above ground biomass before and after fire52. 

• Increased knowledge of structure and composition (species, age) can improve estimates of 
aboveground biomass, while mapping ecosystem condition can provide estimates of the total 
available carbon for burning32,53, particularly in ecosystems with high belowground carbon 
reserves that are released during burning. Thus, such observations can refine emissions estimates 
and combustion efficiency useful for understanding plume injection height and smoke transport.  

• Mapping post-fire recovery will resolve uncertainty to local (with respect to the fire) changes in 
surface albedo, while improved mapping of carbon before and after can inform emissions 
modeling and thus resolve uncertainty in regional and global effects of black carbon54 and 
changed snow and ice albedo from deposition8 . 
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Question 2 – Utility of Geophysical Variables 

All four objectives require sustained satellite observations of fire activity (e.g., fire	occurrence,	fire 
area, temperature, and fire radiative power (FRP)) as fires have global impacts even when occurring 
in remote areas. Specific to each objective, required observations include: 
Objective 1 – mapping forest recovery: Vegetation composition can be represented by vegetation 
functional types, defined as assemblages of species by structure, physiology, and phenology55 that 
characterize ecosystem response to environmental conditions or disturbance severity56. Current 
practice uses discrete functional types, however new technologies provide continuous 
characterization of optical types that increase functional type classifications57 (Figure 2) and map 
vegetation functional diversity that can link biodiversity to ecosystems functions58. 
Vegetation structure requires observations of mean and variation of canopy height, canopy base 
height, stem density, stem volume, basal area, and fractional canopy cover. 
Objective 2 – mapping carbon and nitrogen: Mapping canopy chemical composition identifies the 
occurrence and the percentage composition of each in the canopy, while mapping canopy fuel load 
using aboveground biomass and leaf area index is essential for refining estimates of fire carbon 
fluxes59, and pre- and post- carbon and nitrogen stocks60. 
Objective 3 – mapping ecosystem condition: There are many characteristics of ecosystem condition 
including: 

• Discrimination between live, senescent/scorched, and charred vegetation can inform the health 
of the ecosystem (i.e., burn fraction – which performs equally as well as, but with advantages 
over, historically used indices of burn severity61).  

• There is a range of proxies to characterize vegetation stress, a critical observation for 
understanding how flammable an ecosystem is25, including observations of precipitation, 
temperature, relative humidity, wind speed and direction, soil moisture, soil temperature, 
vegetation water content or equivalent water thickness. 

• Ecosystem flux affects fuel accumulation (e.g., systems with rapid succession or that are water 
limited32,62) and is relevant to mapping post-fire regeneration. Thus, observations are needed of 
gross primary productivity that can be derived from fraction of photosynthetic active radiation, 
leaf area index, vegetation greenness, or solar induced fluorescence.   

Objective 4 – emissions and transport: knowing the fuel amount, condition, and stand age is 
necessaryto determine the combustion completeness, injection height and the vertical profile of 
emissions in the atmosphere, which affect smoke transport53.  

Question 3 – Measurement and Observation Requirements 
To observe these geophysical variables, measurements are needed contemporaneously (not 
simultaneously) across three payloads: (1) a thermal infrared (TIR) radiometer, (2) a Visible-
Shortwave Infrared (VSWIR) imaging spectrometer, and (3) an active sensor as well as observations 
produced from data assimilation.  

Fire detections and land surface temperature need sustained global TIR radiometric retrievals at 
≤375 m pixel resolution at nadir +/- 60° with sub-daily observations and an NEdT of 0.2K and ≥9 
bands at: ~8.3 µm, ~8.6 µm, ~9.1 µm, ~11 µm, ~12 µm to distinguish land surface temperature (LST) 
from emissivity63, ~4 µm with ≥400 K saturation and sufficient thermal range for fire detections64 
(but may require 2-bands to have sufficient sensitivity at the lower temperatures), ~1.6 µm and ~2.2 
µm for cloud detection65, geolocation and flagging false positives64. 
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Vegetation functional types, gross primary productivity, and fire severity need continued coverage of 
multiple Landsat-like data. To advance Theme 3, a VSWIR imaging spectrometer is needed (Figure 
3) with continuous spectral range 0.4-2.5 µm at ≤10 nm spectral sampling, ≤30 m pixel resolution, 
≤16 day observation repeat, a 185 km swath, high signal-to-noise and global coverage that provides: 

• analogous Landsat observations using spectral-response functions66–68 
• canopy chemical composition69 (Figure 3a) and equivalent water thickness70, and  
• live, senescent or scorched, and charred vegetation71 

Vegetation structure and aboveground biomass can be observed using full waveform or discrete 
return active sensors: Light Detection and Ranging (LIDAR)72 and single-band microwave synthetic 
aperture radar (SAR)73. Generally, full waveform improves dense canopy penetration74 and may 
improve dense vegetation structure characterization75. LIDAR can be used vertically in the 
atmosphere to characterize plumes (e.g., CALIPSO) and horizontally to scan the Earth’s surface (e.g., 
GEDI, GLAS, IscSAT-1/2). However, SAR has the advantages of penetrating cloud cover76, 
observing soil moisture77 and vegetation water content78, and global mapping ability (as opposed to 
sampling). Research and management require a scene area of 75 km with nominal resolution of ~1 ha, 
which requires measurements at ≤20 m resolution to reduce noise, and ≥2 observations per year to 
resolve changes in phenology and snow contamination76. A repeat-pass InSAR configuration with 2 
looks are likely to result in unacceptable levels of interferometric decorrelation76, thus baseline SAR 
observations require fully polarimetric (HH, HV, VH, VV) L-band and tandem (single pass) 
interferometry, while threshold SAR require a dual polarimetric L-band with cross polarization (HH, 
HV) and repeat-pass interferometry with ≥3 looks to reduce SAR speckle76. 

Data Assimilation: Meteorological data derived from the GEOS-5 data assimilation system are 
needed for model smoke transport79, fire behavior forecast models80 with the realistic potential to 
save lives, and fire danger modeling81. Research and development is needed to provide data at higher 
spatial (≤300 m pixel) and temporal (3 hr) resolution that accounts for regions with complex 
mountainous topography.  

Question 4, Part (A) – Feasibility and Affordability 
TIR Radiometer: Consistent TIR measurements are required across missions or through 
continued existence of these missions. It is assumed measurements from MODIS and VIIRS will 
continue through the NPOESS and JPSS programs; however, in order to advance fire information 
products from TIR, new global mapping satellites must consider instrument development that 
increases the saturation temperature while providing sub-daily data with ≤375m pixel resolution. 
Although there is a trade in spatial and temporal resolution, a new TIR platform meeting this spatial 
requirement could augment the frequency of TIR observations from VIIRS and MODIS while 
providing a spatial resolution for LST observations, which are needed to assess vegetation stress. 

NASA-guided engineering studies (2014,2015) demonstrated the feasibility of a 3-year, Class C 
mission with TIR radiometer at 60 m pixel resolution, 1200K saturation, and 2-day temporal repeat at 
the equator.  This radiometer would fit with a size, weight and power (SWaP) compatible with a 
Pegasus class launch (Figure 4) and would use key technologies developed from previous 
investments (e.g., TIMS82, PMIRR83, MASTER84, TES, MCS/DIVINER, HyTES85 and PHyTIR86, 
and ECOSTRESSS) including the focal plane, cryocoolers and scan mirror assembly (Figure 5). Data 
rate and volume have been addressed using readily available onboard solid state recorded (SSR) and 
algorithms for lossless compression87–90  and real-time cloud screening processes 91,  thus enabling 
Ka band downlink of all terrestrial measurements. 
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VSWIR Imaging Spectrometer: Providing the needed measurements from an imaging spectrometer 
requires a different sensor than has been used on Landsat, however it builds on a legacy of previous 
investments in response to the 2007 NRC Decadal Survey92 and the 2013 NRC sustainable land 
imaging report68: AIS93, AVIRIS94, AVIRIS-NG95, NIMS96, VIMS97, Deep Impact98, CRISM99, EO-1 
Hyperion100,101, M3102, MISE, and the IS now being developed for NASA’s Europa mission. 
NASA-guided engineering studies (2014, 2015) showed that the needed imaging spectrometer 
(Section 4a) can be implemented as a 3-yr class C mission (in comparison to the Class B Landsat 
missions) with SWaP compatible and a Pegasus class launch (Figure 6). Key to the design is an 
optically fast spectrometer103, for which a scalable prototype F/1.8104 has been developed, aligned, 
and qualified (Figure 5). Data rate and volume have been addressed using a lossless compression 
algorithm87–89 and a real-time cloud screening process91, thus enabling Ka band downlink of all 
terrestrial measurements (Figure 7). Algorithms for automated calibration94 and atmospheric 
correction105,106 are operational. International partnerships may enhance affordability. 
Active Sensor: Many existing and future satellites (Section 4b) prove feasibility and affordability for 
collecting measurements characterizing the Earth’s surface from active sensors; however, more 
research is needed to translate algorithms to bridge observations across satellite platforms. 
Consistent active sensor measurements and respective observations are required across 
missions or through continued existence of these missions. 

For characterizing emissions and accurately quantifying smoke transport to remote locations, a 
vertical LIDAR is needed. The successes of the CALIOPE instrument on CALIPSO demonstrate 
feasibility and affordability for space-based measurements. Future flight projects may consider 
airborne (e.g., multi-wavelength High Spectral Resolution Lidar (HSRL-2)) campaigns to target 
specific events and address smoke transport questions relevant for management and research teams. 

Question 4, Part (B) – Synergistic Measurements 
Current and planned thermal sensors that provide data information products relevant to fire include 
MODIS, VIIRS, and ECOSTRESS. MODIS and VIIRS provide very similar products (burned area, 
fire detection, and FRP), however they are distinct missions and research is needed to bridge the 
datasets to provide data products available through one record. In 2018, the 1-yr ECOSTRESS 
mission will provide a base map of vegetation water-use efficiency in sub-regions around the world 
that will be invaluable to assessing ecosystem stress in relation to pre- and post-fire ecology. 
Current and future satellites that complement a VSWIR imaging spectrometer with global mapping 
ability include those from the Landsat constellation (Landsat and ESA’s Sentinnel 2/3), which 
provides frequent observations useful for immediate response to fire. Longer-term management and 
investigations of fire in relation to terrestrial ecosystems, however, will require more information 
than can be derived from broadband data107. The future DLR hyperspectral pointing instrument 
EnMAP108, expected to launch in 2018 and operate for 5 years, and JAXA’s ALOS-3 with an 
imaging spectrometer HISUI and broadband sensor109 can facilitate ongoing research to improve 
regional processing of geophysical variables that are both backwards compatible with broadband 
sensors66–68 and utilize the full breadth of information available in hyperspectral data. 

While there are many existing and planned synergistic active sensors (NASA’s IceSAT-2110,111, 
GEDI112,  SMAP113–115, CALIPSO116, NASA-ISRO’s NISAR117, and ESA’s BIOMASS118 and 
Sentinnel 1119), the fire community needs a continuous record across decadal time scales, thus 
consistent production of information products either between missions or through continued 
existence is essential.



 

Figures 

 
Figure 1. A schematic of the role of fire in the earth system. Figure modified from Ward et al. (2012)33. 



 

 

 

Figure 2. The number of independent components 
that can be classified by spectral data depends on 
the number of spetral bands and the spectral 
resolution of the data. Underlying spectral 
features are often broader than a single spectral 
band and many plant constituents have spectral 
features across the spectrum, thus there are many 
fewer independent components than there are 
spectral bands107. This figure is reproduced from 
Scimel et al. (2013)107. 

 
Figure 3. Comparing imaging spectroscopy to broadband where (a) depicts the contiguous spectral coverage 
over several key endmembers for fire science from VSWIR Dyson, which shows much more detail of optical traits 
of each endmember (e.g., lignen and sugar content) compared to (b) broadband sensor Landsat. (c) 
Demonstrates the different signal-to-noise (SNR) ratios by sensor. In order to compare SNR, the contiguous 
spectra from VSWIR Dyson were back-transformed into equivalent bands as the broadband sensors using 
spectral response functions66–68 to convolve the spectra67. Figure 3c is reproduced from Mouroulis et al. 
(2016)103. 

A)	VSWIR	Dyson	 B)	Landsat	7	

C)	Signal-to-Noise	Ra;o	(SNR)	
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Figure 4.  (left) Opto-mechanical configuration for a wide swath, high resolution TIR imaging radiometer system 
providing 73-degree swath and 60 m sampling. TIR Imaging radiometer with spacecraft (265 kg, 187 W) configured 
for launch in a Pegasus shroud for an orbit of 410 km altitude, 97.07 inclination to provide 2-day revisit for three 
years.  (right) Orbital altitude and repeat options.  An altitude of 410 km with a fueled spacecraft supports the three-
year mission with the affordable Pegasus launch.  Higher orbits require a larger launch vehicle.  

 
Figure 5.  (left) Design of ECOSTRESS TIR Push-whisk scanning system covering a wide field of view with an 8 
band SWIR to TIR sensor.  (right) Developed, aligned and qualified PHyTIR push-whisk system with TIR full range 
multi-band detector array. 

 

 
Figure 6.  (left) Opto-mechanical configuration for a high SNR F/1.8 VSWIR imaging spectrometer system 
providing 185 km swath and 30 m sampling. (center) Imaging spectrometer with spacecraft (265 kg, 134 W) 
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configured for launch in a Pegasus shroud for an orbit of 429 km altitude, 97.14 inclination to provide 16 day 
revisit for three years.  (right) Orbital altitude and repeat options.  An altitude of 429 km with a fueled spacecraft 
supports the three-year mission with the affordable Pegasus launch.  Higher orbits require a larger launch vehicle.  

 

 
Figure 7.  Design of F/1.8 VSWIR Dyson covering the spectral range from 380 to 2510.  (right) Developed, aligned 
and qualified Dyson with CHROMA full range VSWIR detector array. 

 
Figure 8.  (left) Global illuminated surface coverage every 16 days.  (right) On-board data storage usage for 
illuminated terrestrial/coastal regions with downlink using Ka Band to KSAT Svalbard and Troll stations.  Oceans 
and ice sheets can be spatially averaged for downlink. 
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