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Several upcoming hyperspectral satellite sensor missions (e.g., the Hyperspectral Infrared Imager and the Envi-
ronmental Mapping and Analysis Program) will greatly expand the opportunities for researchers to use imaging
spectroscopy data for discriminating andmapping plant species and plant functional types (PFTs; defined in this
study as combinations of leaf-type, leaf/plant duration and life form). Accurate knowledge of the spatial distribu-
tion of dominant plant species and PFTs is highly valuable to many scientific and management goals, including
improved parameterization of ecosystem process and climate models, better invasive species distribution mon-
itoring and forecasting, quantification of human and natural disturbance and recovery processes, and evaluations
of terrestrial vegetation response to climate change. Most often, species-level discrimination has been achieved
using fine spatial resolution (≤20 m) airborne imagery, but currently proposed spaceborne imaging spectrome-
terswill have coarser spatial resolution (~30 to 60m). In order to address the impact of coarser spatial resolutions
on our ability to spectrally separate species and PFTs, we classified dominant species and PFTs in five contrasting
ecosystems over a range of spatial resolutions. Study sites included a temperate broadleaf deciduous forest, a
brackish tidal marsh, a mixed conifer/broadleaf montane forest, a temperate rainforest and a Mediterranean cli-
mate region encompassing grasslands, oak savanna, oak woodland and shrublands. Data were acquired by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over each site, and spatially aggregated to 20, 40 and
60 m resolutions. Canonical Discriminant Analysis (CDA) was used to classify species and PFTs at each site and
across scales with overall accuracies ranging from 61 to 96% for species and 83–100% for PFTs. The results of
this study show accuracy increases at coarser resolutions (≥20 m) across ecosystems, supporting the use of im-
aging spectroscopy data at spatial resolutions up to 60 m for the purpose of discriminating among plant species
and PFTs. In four of the five study sites, the best accuracies were achieved at 40m resolution. However, at coarser
resolutions, some fine-scale species variation is lost and classes that occur only in small patches cannot be
mapped. We also demonstrate that spectral libraries developed from fine spatial resolution imagery can be suc-
cessfully applied as training data to accurately classify coarser resolution data over multiple ecosystems.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Ecosystem- and regional-scale maps of vegetation composition,
function and health derived from remote sensing data have played a
key role in measuring and monitoring changes in the natural environ-
ment across space and time (Kerr & Ostrovsky, 2003; Turner et al.,
2003). In particular, these maps are used to characterize the spatial dis-
tribution of vegetation types and to monitor land cover change due to
climate, natural disasters and human activity. They are also important
inputs to ecosystem process and climate models (DeFries, 2008;
Turner, Ollinger, & Kimball, 2004). Making these maps on a global
scale is quite challenging. Most global data products are derived using
coarse spatial resolution (≥500 m), multispectral data. Sensors such as
theAdvanced VeryHigh Resolution Radiometer (AVHRR) andModerate
Resolution Imaging Spectrometer (MODIS) have been used to create
several global land cover maps that include vegetation types based pri-
marily on biomes (e.g., evergreen forest, woodlands, open shrublands,
etc.) (DeFries, Hansen, Townshend, & Sohlberg, 1998; Friedl et al.,
2002; Hansen, DeFries, Townshend, & Sohlberg, 2000; Loveland et al.,
2000; Muchoney, Strahler, Hodges, & LoCastro, 1999). While biome-
levelmaps are useful,many applications requiremore detailed informa-
tion regarding plant functional type (PFT) composition (Bonan, Levis,
Kergoat, & Oleson, 2002), because these classes are more concretely
linked to biospheric processes of interest, such as carbon, water and en-
ergy fluxes (DeFries et al., 1995). Within remote sensing science, these
PFTs are often defined by traits such as leaf type (e.g., broadleaf/
needleleaf), leaf longevity (evergreen/deciduous) and life form

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2015.10.004&domain=pdf
http://dx.doi.org/10.1016/j.rse.2015.10.004
mailto:klroth@ucdavis.edu
http://dx.doi.org/10.1016/j.rse.2015.10.004
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse


46 K.L. Roth et al. / Remote Sensing of Environment 171 (2015) 45–57
(e.g., tree/shrub/herb). Efforts to derive these products have been suc-
cessful for the most part (Sun, Liang, Xu, Fang, & Dickinson, 2008; Sun
& Liang, 2008), though most PFT data sets have been created using
preexisting coarse-grained land cover maps (i.e., biomes). Comparison
of existing global and continental classificationmaps is difficult because
most have been made using data acquired by different sensors, or over
different time periods, and often do not share the same set of classes.
Assessing the accuracy of these coarse-scale maps is also challenging,
given the sparseness of validation data. Finer resolutionmaps of vegeta-
tion composition covering smaller regions can provide improved refer-
ence data for global products. Such maps have been created using
multispectral, finer spatial resolution sensors such as Landsat and
SPOT (Goodenough et al., 2003; Göttlicher et al., 2009; Harvey & Hill,
2001; Price, Guo, & Stiles, 2002; Ustin et al., 1986). However, even
with the global availability of finer spatial resolution data, such as
Landsat (30 m), discrimination of certain PFTs and many species using
broadband sensors can be difficult (Clark, Roberts, & Clark, 2005).

The most promising sensors for improving PFT maps, and even
discriminating dominant plant species within PFTs, are imaging spec-
trometers (DeFries, 2008; Schmidtlein, Feilhauer, & Bruelheide, 2012;
Ustin&Gamon, 2010; Ustin, Roberts, Gamon, Asner, &Green, 2004). Im-
aging spectrometersmeasure reflected radiance inmany narrow bands,
and thus are sensitive to subtle differences in plant biochemistry, phys-
iology and structure (Kokaly, Asner, Ollinger, Martin, &Wessman, 2009;
Schaepman et al., 2009; Ustin et al., 2004). These sensors have been suc-
cessfully used to discriminate dominant plant species and PFTs over
many types of ecosystems (Asner, 2013; Ustin & Gamon, 2010). In tem-
perate forests, studies byMartin, Newman, Aber, and Congalton (1998),
Van Aardt andWynne (2007), and others (e.g., Plourde, Ollinger, Smith,
& Martin, 2007) were able to discriminate among a wide variety of
broadleaf deciduous and evergreen needleleaf tree species. In the west-
ern U.S., Goodenough et al. (2003) mapped similar functional types in a
temperate forest. Kokaly, Despain, Clark, and Livo (2003) classified both
species and PFTs in a mixed montane conifer forest and the surrounding
shrublands, and Schaaf, Dennison, Fryer, Roth, and Roberts (2011)
mapped PFTs in a similar montane ecosystem. Tropical forests, some of
themost diverse ecosystemson the planet, have also been accurately clas-
sified to the species-level in many studies (Clark et al., 2005; Cochrane,
2000; Féret & Asner, 2012; Kalacska, Bohlman, Sanchez-Azofeifa,
Castro-Esau, & Caelli, 2007; Somers & Asner, 2013). The successful appli-
cation of imaging spectroscopy data has not been limited to forests. In
Mediterranean climate shrublands, Dennison and Roberts (2003),
Underwood, Ustin, and Ramirez (2007) and Roth, Dennison, and
Roberts (2012) mapped PFTs and species to accuracies 75% and greater.
Li, Ustin, and Lay (2005) and Pengra, Johnston, and Loveland (2007)
mapped species in wetland ecosystems, and in urban areas, Zhang and
Qiu (2012) and Alonzo, Roth, and Roberts (2013)were able tomap single
trees to the species-level. Despite these successes, these studies have been
done using airborne sensors which collect data at relatively fine spatial
resolutions (e.g., 4–20 m) and over limited spatial extents. This limits
their applicability for monitoring vegetation on regional to global scales.

Currently, several space-borne imagining spectrometers are under
development, which would provide, for the first time, global coverage.
In response to data priorities from the National Research Council's Earth
Science Decadal Survey (NRC, 2007), NASA's proposed Hyperspectral In-
frared Imager (HyspIRI)mission includes a full visible-shortwave infrared
(VSWIR) instrument whichwill collect data at 60mwith a 19 day repeat
acquisition time (HyspIRI Team, 2009; Roberts, Quattrochi, Hulley, Hook,
&Green, 2012). TheGermanhyperspectral satellitemission Environmen-
tal Mapping and Analysis Program (EnMAP) will collect data swaths of
30 km at a ground resolution of 30m (Kaufmann et al., 2006). Additional
missions include Italy's PRecursore IperSpettrale (PRISMA), and both
China and Japan are also currently developing spaceborne imaging spec-
trometers. Thesemissionswill greatly increase the availability of imaging
spectroscopy data, leading to more comprehensive mapping of PFTs and
species. While the spectral and radiometric resolutions of the many of
these proposed sensors are based on existing aerial sensors, the proposed
spatial resolutions will be coarser. Therefore, it is important to evaluate
the impacts of spatial resolution on the discrimination of dominant spe-
cies and PFTs across a wide range of ecosystems.

Determining the optimal scale for mapping vegetation properties
has been an ongoing area of research in remote sensing science
(Atkinson & Curran, 1995; Curran & Atkinson, 1999; Woodcock &
Strahler, 1987). The scale at which observations are made (i.e., the
pixel size) may or may not align well with the scale of biogeophysical
processes, and target size (e.g., individual trees, patches of a given spe-
cies, etc.) will vary across ecosystems andwith ecological questions and
concerns (Feld et al., 2009; Fisher, 1997; Turner, Neill, Gardner, &Milne,
1989). The implications of this mismatch have been widely considered,
and a more in-depth discussion of these can be found in Marceau,
Gratton, Fournier, and Fortin (1994), Woodcock and Strahler (1987),
and Wu and Li (2009). Most importantly, image spatial resolution will
have a significant impact on the ability to accurately characterize sur-
face attributes of interest, such as land cover.

Most scaling studies have been done using data from broadband
sensors (Atkinson & Curran, 1997; Chen, Stow, & Gong, 2004; Cohen,
Spies, & Bradshaw, 1990; Nelson, McRoberts, Holden, & Bauer, 2009),
and few imaging spectroscopy studies have examined the role of spatial
scale in discriminating plant species and functional types. Here two
types of scale can be considered: physical scale (e.g., leaf vs. branch vs.
canopy) and image spatial resolution (i.e., pixel size). Studies by
Roberts et al. (2004) in a Pacific Northwest temperate rainforest (the
same forest considered in this study) and Clark et al. (2005) in tropical
rainforest examined changes in species discrimination across physical
scales. These studies are critical because they demonstrate how spectral
separability is altered by combinations of leaf structure and biochemis-
try, crown architecture and canopy structure. They thus provide us a
better understanding of the controls on species discrimination. Other
studies have examined the impact image resolution has on classification
accuracy. Treitz andHowarth (2000) used CASI data to evaluate the spa-
tial scale of variance among forest species associations in amixed decid-
uous and coniferous forest. Underwood et al. (2007) compared 4m and
spatially degraded (30m) AVIRIS data for mapping different vegetation
communities with varying levels of invasion by three target species in a
mixed chaparral and sage scrub ecosystem. The image was degraded
using nearest neighbor resampling, and they report a decrease in overall
accuracy from 75% to 58% as resolution became coarser. Schaaf et al.
(2011) also spatially degraded 20 m AVIRIS data to 40 m and 60 m for
their study on PFT discrimination in a montane ecosystem, but in this
case, using spatial averaging to simulate coarser resolution data. Accura-
cy decreased as spatial resolution was coarsened, but the use of spectral
libraries derived at the finer spatial resolution (20m) improved accura-
cy over spectral libraries derived at coarser spatial resolutions.

In our study, we sought to expand upon this previous research by
assessing the impact of coarsening spatial resolution on the accuracy
of PFT and dominant plant species classification with imaging spectros-
copy data across a range of North American ecosystems. In particular,
we sought to answer the following questions:

1) What effect does spatial resolution have on our ability to spectrally
discriminate dominant plant species and PFT composition across a
range of ecosystems using imaging spectroscopy, and how do
these impacts vary by ecosystem type?

2) Can reference spectral libraries developed fromfiner resolution (~3–
18 m) imagery be used to adequately map dominant plant species
and PFTs at coarser scales?

To address these questions, we analyzed imagery acquired by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over five eco-
systems aggregated to a range of spatial resolutions up to 60m. At each
resolution and within each ecosystem, we classified dominant plant
species and PFTs using canonical discriminant analysis (CDA). We hy-
pothesized that accuracy metrics, including kappa coefficient, overall
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and class-specific accuracies would vary across spatial resolutionswith-
in each site and across sites at the same resolution. We further hypoth-
esized that as fine resolution data were aggregated from 20 m to 40 m
and 60 m, within-class spectral variability would decrease, potentially
leading to higher classification accuracies. However, these increases
would be countered by potential decreases as boundary pixels at the
edges of reference patches are aggregated into a class's signal, leading
to higher frequencies of misclassification. An improved understanding
of these tradeoffs is necessary to define the requirements for a global
mission, but also needed to link those requirements to the patch
structure of ecosystems.
2. Methods

2.1. Ecosystems and Study Sites

Weanalyzed data over five study regions (Fig. 1, Table 1). Each site is
representative of a unique ecosystem type, with varying PFT and domi-
nant species diversity and composition. PFT and species diversities are
defined as the number of distinct plant classes at each level. Three for-
ested sites were included, the Smithsonian Environmental Research
Center (SERC), Wind River Experimental Forest (WR) and Sierra Na-
tional Forest (SNEV). We also analyzed a tidal marsh site on the Louisi-
anaGulf coast (GULF) and a site covering a broad region of the California
central coast including Santa Barbara, the Santa YnezMountains and the
Santa Ynez valley which contains evergreen and drought-deciduous
shrublands, oak woodland and savanna as well as open grasslands
(SBFR). The SERC site is located in Maryland and is a closed forest dom-
inated by deciduous broadleaf tree species, including species of Acer,
Carya, Fagus and Quercus, but primarily Liquidambar styraciflua and
Liriodendron tulipifera. The WR site is a temperate rainforest located in
southern Washington, dominated mainly by Douglas fir (Pseudotsuga
menziesii) and western hemlock (Tsuga heterophylla), but with signifi-
cant areas dominated by broadleaf deciduous trees (e.g., Acer, Populus)
and open clear-cuts containing herbaceous understory species. At the
SNEV site, a mix of evergreen needleleaf tree species including fir
(Abies spp.), pine (Pinus spp.) and incense cedar (Calocedrus decurrens)
are dominant, as well as evergreen broadleaf trees and shrubs (Quercus
chrysolepsis, Arctostaphylos spp. and Ceanothus spp.) and deciduous
broadleaf oak (Quercus kelloggii). Both species and PFT diversity are
higher at WR and SNEV sites than at SERC. At the GULF site, perennial
herbaceous plants, such as rush (Juncus roemerianus) and cordgrass
(Spartina alterniflora and Spartina patens), are dominant. The SBFR site
is the most diverse, having dominant species from eight different PFTs,
including annual herbaceous species, deciduous and evergreen broad-
leaf trees and drought-deciduous shrubs. See Tables 2–4 for a complete
PFT and species list for each site.
Fig. 1. Five study site locations: Wind River (WR), Sierra Nevada (SNEV), Santa Barbara
(SBFR), Gulf (GULF) and Smithsonian Environmental Research Center (SERC).
2.2. Data acquisition and pre-processing

Over each study region, one ormore flight lineswere collected using
AVIRIS (Green et al., 1998) (Table 1). The acquisition date for each site
was timed to try to capture peak productivity in each ecosystem, and
image spatial resolution varied from ~3–18 m depending on the
platform on which the sensor was flown (i.e., Twin-Otter or ER-2).
AVIRIS data have 224 bands covering 350–2500 nm (10 nm full-
width, half-maximum). All imageswere pre-processed to orthorectified
radiance byNASA's Jet Propulsion Lab (JPL). Theywere then corrected to
reflectance using either MODTRAN-derived look-up tables for path and
reflected radiance (described in Roberts, Green, & Adams, 1997),
ACORN (ImSpec LLC) or ATCOR-4 (Richter & Schläpfer, 2002). We re-
moved wavelength regions with a low signal to noise ratio and/or
high levels of atmospheric contamination. When necessary, further
georectification was performed using high resolution aerial photos col-
lected by the National Agriculture Imagery Program (NAIP). Reference
data for both PFTs and dominant species were collected either in the
field or from pre-existing stem maps and high resolution images.
Patches for each class were identified and required to be composed of
≥70% of the target class. These patches, also referred to as “reference
polygons”, were overlain on the images and used to extract class-
specific spectral libraries for each site. For a more detailed description
of reference data collection, see Roth et al. (2015).

JPL's orthorectification algorithm uses nearest neighbor resampling
to assign pixel centers with irregular, ray-traced (x, y, z) coordinates
to a regular grid. This process can result in the duplication of spectra
across multiple (adjacent) orthorectified image pixels, which can im-
pact aggregation to coarser spatial resolution. Therefore, images were
spatially aggregated to ~20, 40 and 60 m resolutions by averaging
only spectrally unique (i.e., no duplicate) native resolution pixelswithin
a window approximating the target resolution size. Because native res-
olution varied across sites, the interim resolutions also varied (Table 1).
At each spatial resolution, the spectrum from each pixel within each ref-
erence polygon was extracted into spectral libraries for analysis
(Table 5). A pixel was considered to be inside a reference polygon if
its center point was contained within the polygon boundaries (Fig. 2).
Polygons containing zero pixel centers at a given resolution were
dropped from the analysis at that resolution.

2.3. PFT and species classification

For each study site, the native resolution, full spectral libraries were
split into training and validation libraries using a stratified random sam-
pling procedure (Roth et al., 2012) at the species-level. Each species was
assigned to a PFT (Tables 2-4). Here PFTs are defined as commonly-used
combinations of leaf-type (i.e., broadleaf/needleleaf), leaf/plant duration
(e.g., annual, evergreen), and life form (e.g., tree, shrub) (i.e., Bonan et al.,
2002). The training libraries for each site included 2–34% of the total
spectra (Table 5, in parentheses). Less than 10% of reference spectra
were used to train the classifier for four of the five sites. The dimension-
ality of each native resolution training library was reduced using canon-
ical discriminant analysis (CDA), a technique which was found
previously to achieve the best species-level separation across these
sites (Roth et al., 2015). CDA is similar to principal components analysis
(PCA) in that it seeks to reduce the data by finding orthogonal compo-
nents (i.e., functions in CDA). However, while PCA derives these compo-
nents tomaximize the total variance explained by each component, CDA
aims to derive functions which best maximize separation among groups
(e.g., plant species) (Klecka, 1980). The number of functions derived is
equal to the number of groupsminus one.While the number of functions
may be further sub-selected using a several approaches, here we includ-
ed all derived functions at each site. A separate set of canonical coeffi-
cients were derived for species and PFTs. This was done in order to
allow the CDA algorithm to optimize the functions based on the set of
classes to be discriminated. Each set of coefficients was applied to the



Table 1
Study site descriptions and imagery acquisition dates and spatial resolutions.

Site Ecosystem type
Acquisition
date

Native spatial
resolution

20 m
resolution

40 m
resolution

60 m
resolution

Spatial extent
(sq. km)

Smithsonian Environmental
Research Center (SERC)

Temperate, broadleaf, deciduous forest
2006-May-29 3.5 m 17.5 m 38.5 m 59.5 m 24

Louisiana Gulf (GULF) Tidal marsh 2010-May-06 18 m 18 m 36 m 54 m 8996
Wind River Experimental
Forest (WR)

Temperate coniferous, broadleaf rainforest
2003-Jul.-11 4 m 20 m 40 m 60 m 209

Sierra National Forest (SNEV) Mixed coniferous, broadleaf montane forest 2003-Jul.-18 3.3 m 19.8 m 39.6 m 59.4 m 235
Santa Barbara (SBFR) Mediterranean climate shrubland,

woodland, grassland
2009-Jun.-17 12 m 24 m 36 m 60 m 1516
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native resolution validation libraries aswell as to the full 20, 40 and 60m
resolution libraries to calculate the canonical variables.

Linear discriminant analysis (LDA) was used to classify both species
and PFTs for the native resolution validation libraries and the full 20, 40
and 60m resolution libraries using the native resolution training library
as training data in all cases (similar to Schaaf et al., 2011 and Roberts
et al., 2012). LDA derives linear combinations of the canonical variables
which best correlate with class membership (Fisher, 1936) and has
been widely used to classify spectral data to the species-level (Clark
et al., 2005; Féret & Asner, 2012; Pu, 2009). Class separability was eval-
uated using the kappa coefficient (Congalton, 1991), overall accuracy
and class-level producer's and user's accuracies. The kappa coefficients
between pairs of spatial resolutions were significance tested using z-
scores (Schaaf et al., 2011). It is important to note that although some
classes disappeared from the spectral libraries (at resolutions in which
no reference polygons contained pixels), training signatures from all
classes were used at each resolution.
3. Results

3.1. Library size and representation across scales

As Table 5 shows, the number of spectra and polygons for each site
decreased substantially as spatial resolution was coarsened. Because
the native resolution of the GULF site data was 18 m, these values are
Table 2
Summary of plant functional types and dominant species and cover types represented
within the SERC & GULF sites.

Plant functional type Species or cover Common name

SERC
Annual herbaceous Crop n/a
Senesced annual herbaceous Crop residue/senesced grass n/a
Deciduous broadleaf tree Acer spp. Maple

Carya spp. Beech
Fagus spp. Hickory
Liquidambar styraciflua Sweetgum
Liriodendron tulipifera Tulip poplar
Platanus occidentalis Sycamore
Quercus spp. Oak

Evergreen needleleaf tree Pinus spp. Pine
n/a Soil n/a

GULF
Evergreen broadleaf shrub Avicennia germinans Mangrove
Perennial herbaceous Distichlis spicata Saltgrass

Juncus roemerianus Needlegrass rush
Phragmites australis Common reed
Spartina alterniflora Smooth cordgrass

Spartina patens
Saltmeadow
cordgrass

Senesced vegetation Senesced vegetation n/a
n/a Clear water n/a

Dark water n/a
Sun glint n/a
Muddy water n/a
placed under 20 m resolution in Table 5 and in subsequent tables. The
number of spectra in each library at the finest resolution ranged from
3442 (GULF) to 44,325 (SNEV), and from 38 (SERC) to 1940 (SBFR) at
60 m. At SBFR, GULF and SNEV, N85% of reference polygons persisted
at all spatial resolutions. However, at SERC and WR, the number of ref-
erence polygons decreased across resolutions, retaining only 17% and
44% of reference polygons at 60 m resolution, respectively.

Across sites, as resolution was coarsened, class diversity (i.e., PFT or
species diversity plus additional non-vegetation classes) was lost based
on the number and size of reference polygons associated with each
class. At SBFR and SNEV, all species and PFT classes were present at all
spatial resolutions. At SERC, WR and GULF, the number of classes de-
creased, with each site losing up to five species and up to two PFT clas-
ses. At SERC, species classes not present at coarser resolutions included
both uncommon dominants and frequent dominants that occur only in
small patches. For the GULF site, senesced vegetation and the various
classes of water were not present in libraries beyond 20 m. Though
the water classes are present at coarser resolutions, the reference poly-
gon set used in this study contained only small water class polygons,
which were removed from the analysis when they no longer contained
at least one pixel center. Given the aim of this study was to evaluate
species and PFT discrimination accuracy, this loss was deemed accept-
able. All other classes at the GULF site persisted across resolutions. WR
results were similar to SERC, as infrequently dominant species or
Table 3
Summary of plant functional types and dominant species and cover types represented
within the WR & SNEV sites.

Plant functional type Species or cover Common name

WR
Senesced annual herbaceous Senesced grass n/a
Deciduous broadleaf shrub Acer circinatum Vine maple
Deciduous broadleaf tree Acer macrophyllum Bigleaf maple

Alnus rubra Red alder
Populus trichocarpa Black cottonwood

Evergreen needleleaf tree Abies grandis Grand fir
Pseudotsuga menziesii Douglas fir
Thuja plicata Western redcedar
Tsuga heterophylla Western hemlock

Perennial herbaceous Pteridium aquilinum Bracken fern
n/a Rock or soil n/a

SNEV
Deciduous broadleaf tree Quercus kelloggii Black oak

Salix spp. Willow
Evergreen broadleaf shrub Arctostaphyos spp. Manzanita

Ceanothus cordulatus Mountain whitethorn
Evergreen broadleaf tree Quercus chrysolepsis Canyon live oak
Evergreen needleleaf tree Abies concolor White fir

Abies magnifica Red fir
Calocedrus decurrens Incense cedar
Pinus jeffreyi Jeffrey pine
Pinus lambertiana Sugar pine
Pinus ponderosa Ponderosa pine
Sequoiadendron giganteum Giant sequoia

Annual herbaceous Mixed meadow n/a
n/a Rock n/a



Table 4
Summary of plant functional types and dominant species and cover types represented
within the SBFR site.

Plant functional type Species or cover Common name

SBFR
Annual herbaceous Irrigated grasses n/a

Brassica nigra Black mustard
Mediterranean annual
grasses and forbs

n/a

Deciduous broadleaf tree Platanus racemosa Sycamore
Quercus douglasii Blue oak

Drought-deciduous shrub Artemisia californica-Salvia
leucophylla

California
sagebrush-purple sage

Evergreen broadleaf shrub Arctostaphylos spp. Manzanita
Baccharis pilularis coyote bush
Ceanothus cuneatus Buckbrush
Ceanothus megacarpus Bigpod ceanothus
Ceanothus spinosus Greenbark ceanothus

Evergreen broadleaf tree Citrus spp. Lemon or orange
Eucalyptus spp. n/a
Persea americana Avocado
Quercus agrifolia California live oak
Umbellularia californica California bay laurel

Evergreen needleleaf shrub Adenostoma fasciculatum Chamise
Eriogonum fasciculatum California buckwheat

Evergreen needleleaf tree Pinus sabiniana Gray pine
Perennial herbaceous Marsh/wetland n/a
n/a Rock n/a

Bare soil n/a
Urban n/a

Fig. 2. The figure illustrates the inclusion or exclusion of reference patch edge pixels in ac-
curacy assessment. Pixels whose centers fall within the patch boundaries are included.
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those occurring only in small patches disappeared from the classifica-
tion at coarser resolutions.

3.2. PFT classifications

Overall classification accuracies for PFTs were quite high, ranging
from 83 to 99.7% across study sites and spatial resolutions (Table 6).
The lowest accuracies were achieved with native resolution data for
all sites but the GULF, and with the exception of SNEV, PFT accuracies
changed very little in response to changing spatial resolution. For
SERC and SBFR, the highest PFT level accuracies were at 40 m, and for
WR and GULF, at 20 m. SNEV accuracy was highest at 60 m. Significant
(p = 0.001) improvements in kappa were found between native and
20 m resolution for SERC, SNEV and SBFR. From 20 to 40 m resolution,
a significant increase in kappa was found for the SERC site, and a signif-
icant decrease in kappa for the GULF site. No significant changes in
kappa occurred from 40 to 60 m resolution.

Discrimination among PFTs at SERC (Table 7) was very high at all
spatial resolutions (producer's accuracies from82 to 100% and user's ac-
curacies form 92–100%), with the exception of the evergreen needleleaf
tree class at native resolution (3.5 m). The accuracy for this PFT in-
creased from native resolution to 20 m, and then the class disappeared
from the analysis at subsequent resolutions. Accuracies for all PFTs
Table 5
Number of reference polygons and number of spectra at each resolution per site. Values in
parentheses indicate training library sample size. Note: Because GULF native resolution is
18 m, it is placed under “20 m” heading.

Native (3.3–12 m) 20 m 40 m 60 m

SERC
Spectra 9800 (906) 518 104 38
Polygons 111 94 38 19

Gulf
Spectra – 3442 (1165) 1656 1020
Polygons – 141 131 131

WR
Spectra 23,886 (1047) 1230 327 153
Polygons 134 102 77 59

SNEV
Spectra 44,325 (790) 2524 694 315
Polygons 79 78 77 69

SBFR
Spectra 39,946 (3749) 11,135 5118 1940
Polygons 385 385 382 371
increased with coarsening spatial resolution. A decrease in producer's
accuracy was observed for SOIL at 60 m resolution, though user's accu-
racy remained stable. This was likely due to confusion with the green
crop (annual herbaceous) class, where a comparable decrease in user's
accuracy was noted at 60 m.

Discriminationwas similarly high among PFT classes at theGULF site
(Table 8), with producer's and user's accuracies of N97% for all classes at
all resolutions, except for the evergreen broadleaf shrub class.
Producer's accuracies for this class decreased considerably (96% to
79%) as resolution coarsened. A similar, but weaker, pattern was ob-
served for its user's accuracies. User's accuracies for the perennial herba-
ceous class also decreased slightly (~3%) from 20 to 60 m resolution.

At WR, the average producer's accuracy across all PFTs at all resolu-
tionswas 97% and the average user's accuracywas 96% (Table 9). All PFT
classes had producer's accuracies N90% andmost did not change greatly
across spatial resolutions. Producer's accuracy for the deciduous broad-
leaf tree class decreased slightly at 40 and 60m resolutions, and the pe-
rennial herbaceous class had the lowest accuracy at 20 m resolution
(75%). User's accuracies increased substantially for the deciduous
broadleaf shrub, perennial herb and rock/soil classes between native
and 20m resolution, then stabilized or decreased very slightly at coarser
resolutions.

Within the SNEV site, individual PFT class accuracies varied more so
than at the previously described sites (Table 10). Evergreen needleleaf
tree, annual herbaceous and rock classes had producer's and user's ac-
curacies ≥87% at all spatial resolutions. Lower accuracies were achieved
for the deciduous broadleaf tree, evergreen broadleaf shrub and ever-
green broadleaf tree classes (producer's accuracies from 57 to 86% and
user's accuracies from 28 to 73%). Both producer's and user's accuracies
increased from native to 20 m resolution for all PFTs. Beyond this initial
increase, however, values varied only slightly for most PFTs. Of the six
classes at this site, two had their highest producer's accuracy at 20 m
and 40 m. Four classes had their highest user's accuracy at 60 m
resolution.

At SBFR, producer's accuracies across scales were all ≥70% with the
exception of the evergreen needleleaf tree class, which had accuracies
of about 50%, increasing to around 65% at 60 m resolution (Table 11).
The most accurate classes were annual herbaceous, drought-deciduous
shrub, perennial herbaceous and urban cover (all producer's accuracies
N90%). Discrimination of evergreen functional types (broadleaf shrub,
broadleaf tree and needleleaf shrub) was somewhat lower (70–82%).
Producer's accuracies for several classes increased very slightly at courser
resolutions, but for the majority of PFTs, accuracies changed very little.
Table 6
Kappa coefficients and % overall accuracies (OA) for PFT classifications. Bold values indi-
cate the highest kappa for each row. Asterisks denote significant differences fromprevious
resolution (*p = 0.05, **p = 0.01, ***p = 0.001).

Native 20 m 40 m 60 m

PFTs Kappa OA Kappa OA Kappa OA Kappa OA

SERC 0.92 94% 0.97*** 97% 1.00*** 99% 0.96 97%
GULF – – 0.99 100% 0.83*** 97% 0.78 97%
WR 0.98 99% 0.99 100% 0.97 99% 0.97 99%
SNEV 0.73 83% 0.83*** 90% 0.83 90% 0.84 91%
SBFR 0.81 84% 0.83*** 85% 0.83 86% 0.83 85%



Table 7
Producer's (PA) and user's (UA) accuracies for both species and PFTs at SERC across spatial
resolutions (in %). Producer's accuracies represent the proportion of total pixels within a
class that were correctly classified. User's accuracies represent the proportion classified
as the correct class.

Native 20 m 40 m 60 m

Species PA UA PA UA PA UA PA UA

Crop 96 100 98 100 100 100 100 92
Crop residue/senesced grass 100 100 100 100 100 100 100 100
Acer spp. 49 46 62 80 100 100 – –
Carya spp. 43 29 73 53 100 33 100 33
Fagus spp. 63 82 77 83 86 100 67 100
Liquidambar styraciflua 49 30 73 79 100 100 – –
Liriodendron tulipifera 68 87 83 86 81 100 50 100
Platanus occidentalis 24 9 50 100 – – – –
Quercus spp. 58 46 69 69 100 100 100 50
Pinus spp. 32 5 67 29 – – – –
Soil 100 100 100 98 100 100 83 100

PFTs

Annual herbaceous 96 100 99 100 100 100 100 92
Senesced annual herbaceous 100 100 100 100 100 100 100 100
Deciduous broadleaf tree 82 98 94 99 100 100 100 100
Evergreen needleleaf tree 45 3 67 15 – – – –
Soil 100 100 100 100 100 100 83 100

Table 9
Producer's (PA) and user's (UA) accuracies for both species and PFTs at WR across spatial
resolutions (in %).

Native 20 m 40 m 60 m

Species PA UA PA UA PA UA PA UA

Senesced grass 100 100 99 100 100 100 100 100
Acer circinatum 100 91 100 100 100 100 – –
Acer macrophyllum 90 92 100 100 100 100 100 100
Alnus rubra 96 95 95 97 95 95 92 100
Populus trichocarpa 89 91 96 93 82 100 71 83
Abies grandis 36 1 0 – 0 – – –
Pseudotsuga menziesii 73 86 78 93 78 90 79 92
Thuja plicata 78 14 75 50 – – – –
Tsuga heterophylla 81 74 92 76 94 79 93 75
Pteridium aquilinum 93 60 75 100 100 100 – –
Rock and soil 100 85 100 100 – – – –

PFTs

Senesced annual herbaceous 100 100 100 100 98 100 100 100
Deciduous broadleaf shrub 100 86 100 100 100 100 – –
Deciduous broadleaf tree 97 98 99 99 93 100 91 100
Evergreen needleleaf tree 100 100 100 100 100 98 100 98
Perennial herbaceous 93 59 75 100 100 100 – –
Rock & soil 100 85 100 100 – – – –
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PFT user's accuracies also did not vary greatly across resolutions. These
values were often slightly lower or very similar to the producer's accura-
cies for each PFT. One exception to this was the evergreen broadleaf tree
class, for which user's accuracies were 11–16% higher than producer's
accuracies.
Table 10
Producer's (PA) and user's (UA) accuracies for both species and PFTs at SNEVacross spatial
resolutions (in %).
3.3. Species classifications

Overall classification accuracies across sites and spatial resolutions
ranged from 61.5% to 96.2% for dominant species (Table 12). As with
PFT classifications, the overall accuracies achieved using native spatial
resolution datawere the lowest at all sites, except the GULF. The highest
overall accuracies were at 40 m spatial resolution for four of the five
study sites (SERC, WR, SBFR, and GULF). At SNEV, 60 m resolution
data were themost accurately classified. The largest increases in overall
accuracy between resolutions were between native and 20 m resolu-
tions (1–14%), and significant (p = 0.001 or p = 0.01) increases in
kappa were found for all sites. Differences in overall accuracy at coarser
resolutions were small (±b3%) for all sites but SERC, where another
Table 8
Producer's (PA) and user's (UA) accuracies for both species and PFTs at GULF across spatial
resolutions (in %).

Native 20 m 40 m 60 m

Species PA UA PA UA PA UA PA UA

Avicennia germinans – – 96 100 91 99 89 96
Distichlis spicata – – 91 81 93 82 91 80
Juncus roemerianus – – 75 92 44 72 46 94
Phragmites australis – – 91 100 93 100 92 99
Spartina alterniflora – – 94 83 98 92 99 93
Spartina patens – – 98 90 97 97 97 96
Senesced vegetation – – 100 100 – – – –
Clear water – – 100 100 – – – –
Dark water – – 100 100 – – – –
Sun glint – – 100 100 – – – –
Muddy water – – 100 100 – – – –

PFTs

Evergreen broadleaf shrub – – 96 100 85 95 79 94
Perennial herbaceous – – 100 100 100 98 100 97
Senesced vegetation – – 100 100 – – – –
Water – – 100 100 0 0 0 0
significant (p = 0.05) increase in kappa was found between 20 and
40 m resolutions.

At SERC, species-level discrimination generally increasedwith coars-
ening spatial resolution, reaching a peak at 40 m resolution, and then
stabilizing or decreasing at 60 m (Table 7). At 40 m resolution, seven
of the nine remaining classes had producer's accuracies of 100% and
eight of nine had user's accuracies of 100%. The largest increases
(~13–57%) in producer's accuracies from native to 40 m resolution
were found for tree species. Increases in user's accuracies, similar to
those in producer's accuracies, were observed for several species; how-
ever, some species, such as hickory (Carya spp.) and oak (Quercus spp.)
had much lower user's accuracies at 40 and 60 m resolutions.

Within the GULF species classification, producer's accuracies were
~90% or higher for all species except J. roemerianus, for which accuracy
decreased sharply between 20 and 40 m resolutions (Table 8). Despite
this decrease in producer's accuracy, user's accuracy for the species
Native 20 m 40 m 60 m

Species PA UA PA UA PA UA PA UA

Quercus kelloggii 53 51 65 66 66 67 72 69
Salix spp. 85 84 83 100 100 100 100 100
Arctostaphylos spp. 59 54 78 64 85 64 77 68
Ceanothus cordulatus 78 65 96 87 89 100 100 100
Quercus chrysolepsis 59 30 74 45 57 42 40 40
Abies concolor 50 65 63 74 65 73 69 81
Abies magnifica 75 78 99 98 97 100 100 100
Calocedrus decurrens 50 21 57 56 72 81 50 60
Pinus jeffreyi 38 53 47 92 40 83 63 100
Pinus lambertiana 52 17 95 50 89 42 100 80
Pinus ponderosa 53 61 71 66 72 68 85 66
Sempervirens giganteum 42 5 43 50 100 100 0 0
Mixed meadow 98 100 99 100 100 100 98 100
Rock 93 99 96 100 91 100 94 100

PFTs

Deciduous broadleaf tree 57 50 63 67 64 73 69 67
Evergreen broadleaf shrub 65 51 81 63 86 58 85 62
Evergreen broadleaf tree 63 28 78 43 64 45 60 50
Evergreen needleleaf tree 87 97 93 98 92 99 93 98
Annual herbaceous 98 99 99 100 100 100 98 100
Rock 93 99 96 100 91 100 94 100



Table 11
Producer's (PA) and user's (UA) accuracies for both species and PFTs at SBFR across spatial
resolutions (in %).

Native 20 m 40 m 60 m

Species PA UA PA UA PA UA PA UA

Irrigated grasses 94 94 94 95 100 99 100 100
Brassica nigra 97 97 97 95 88 91 92 94
Mediterranean annual grasses
and forbs

90 93 94 96 93 94 95 90

Platanus racemosa 87 85 82 84 95 95 97 100
Quercus douglasii 93 96 99 97 84 88 84 86
Artemisia californica-Salvia leucophylla 96 96 96 96 92 95 96 97
Arctostaphylos spp. 66 69 71 74 54 53 52 52
Baccharis pilularis 83 83 86 74 51 56 58 50
Ceanothus cuneatus 80 88 84 82 71 80 80 84
Ceanothus megacarpus 75 75 76 76 86 88 90 90
Ceanothus spinosus 71 74 69 71 86 87 89 85
Citrus spp. 97 96 96 97 98 99 98 95
Eucalyptus spp. 95 93 96 93 99 100 100 100
Persea americana 96 95 96 98 100 100 100 98
Quercus agrifolia 67 71 71 63 65 66 63 66
Umbellularia californica 79 82 82 79 84 89 93 92
Adenostoma fasciculatum 65 67 68 67 59 59 61 60
Eriogonum fasciculatum 97 98 98 99 93 96 95 95
Pinus sabiniana 42 48 44 51 73 79 76 76
Marsh/wetland 97 97 97 98 99 99 99 98
Rock 92 93 95 86 80 85 87 86
Bare soil 84 84 83 75 97 98 97 100
Urban 94 97 97 99 99 99 100 99

PFTs

Annual herbaceous 98 98 98 98 96 96 96 94
Deciduous broadleaf tree 83 85 87 87 80 83 81 79
Drought-deciduous shrub 95 96 95 96 85 87 91 90
Evergreen broadleaf shrub 70 74 74 73 71 71 71 71
Evergreen broadleaf tree 80 82 82 79 92 93 93 96
Evergreen needleleaf shrub 76 76 78 79 71 72 72 73
Evergreen needleleaf tree 48 50 49 51 44 57 66 64
Perennial herbaceous 97 98 98 98 97 98 98 98
Rock & soil 91 92 92 88 90 92 94 94
Urban 93 96 96 99 99 100 100 99
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remained high at both 20 and 60m resolutions. User's accuracies for the
other classes were also very high, being ≥70% at all spatial resolutions.

Species discrimination at theWR sitewas also quite high (producer's
accuracies N70%) for all classes but the grand fir (Abies grandis)
(Table 9). No strong pattern in producer's accuracies across spatial res-
olutions was evident for most species. For a few classes, one resolution
was clearly the most accurate, such as black cottonwood (Populus
trichocarpa) at 20m resolution, or clearly least accurate, such as bracken
fern (Pteridium aquilinum), also at 20 m resolution. An increase in
producer's accuracies for the two most dominant species at this site,
Douglas fir (P. menziesii) and western hemlock (T. heterophylla), both
increased from native resolution to 20m (by 5% and 11%, respectively).
User's accuracies were similarly high and stable across resolutions for
most species, with a few exceptions, such as P. aquilinum, for which ac-
curacy increased greatly from native to 20 m resolution and P.
trichocarpa, for which user's accuracy decreased almost 20% from 40
to 60 m resolution.
Table 12
Kappa coefficients and % overall accuracies (OA) for species classifications. Bold values in-
dicate the highest kappa for each row. Asterisks denote significant differences from previ-
ous resolution (*p = 0.05, **p = 0.01, ***p = 0.001).

Native 20 m 40 m 60 m

Species Kappa OA Kappa OA Kappa OA Kappa OA

SERC 0.85 88% 0.89** 91% 0.95* 96% 0.86 89%
GULF – – 0.90*** 91% 0.92 94% 0.92 94%
WR 0.75 82% 0.83*** 88% 0.85 88% 0.83 88%
SNEV 0.56 61% 0.71*** 75% 0.72 76% 0.76 79%
SBFR 0.84 85% 0.86*** 86% 0.86 86% 0.85 86%
At the SNEV site, we found higher variation in classification accura-
cies among species across spatial resolutions than at the other sites
(Table 10). Classes with very high producer's and user's accuracies
(N80% at all resolutions) includedwillow (Salix spp.) andmeadow. Sim-
ilar to the other sites, increases in producer's accuracies, ranging from
7% to 43%, were observed from native (here 3.3 m) to 20 m resolution
for ten species. For several species (Pinus ponderosa, Abies concolor and
Q. kelloggii), producer's accuracies continued to increase with coarsen-
ing spatial resolution. Producer's accuracies for other species decreased
markedly from 40 to 60m resolution. Unlikemost species at other sites,
many at SNEV reached a peak producer's accuracy at one spatial resolu-
tion. For example, at 20 m, Q. chrysolepsis achieved a producer's accura-
cy of 74%, 15–34% higher than at other resolutions. The optimum
resolution also varied across species. User's accuracies were similar to
producer's accuracies for some species and much lower for others. An
initial increase in user's accuracies from native to 20 m resolution was
observed for many of the same species, and the majority of species
and cover classes had increasing user's accuracy with coarsened resolu-
tion. Overall, 60m resolution data yielded the best producer's and user's
accuracies, with 6 of 14 classes having accuracies ≥90%.

SBFR, the most diverse site with 23 species-level classes, was also
well-classified (Table 11). Producer's accuracies greater than 90% at all
spatial resolutions were achieved for eleven (ten plant species and
URBAN) of these classes. Eight additional classes had producer's accura-
cies ranging from~70% to 90% at all spatial resolutions. The results show
high differentiation among species within and across PFTs. Only one
class, Pinus sabiniana, a conifer which grows in sparse, often inter-
mixed stands, had producer's accuracies 50% and lower. Overall,
producer's accuracies for most species were very stable (±3%) across
spatial resolutions, with just a few classes decreasing in accuracy at
60 m resolution. User's accuracies were also very stable across resolu-
tions and tended to be either higher than producer's accuracies at all
resolutions or lower at all resolutions across species.

4. Discussion

4.1. Species & PFT discrimination using coarse resolution data

In each of thefive ecosystems included in this study, wewere able to
successfully discriminate both dominant plant species and PFTs at
coarser resolutions (≥20m). The average overall accuracy for classifica-
tions at these resolutions was 87% at the species-level and 94% at the
PFT-level. We also observed changes in classification accuracy across
spatial resolutions, with patterns that varied by site. Given the differ-
ences in site composition and class, species and PFT diversity, our results
demonstrate that coarser resolution imaging spectroscopy data can be
used to reliably classify most dominant species and PFTs within each
ecosystem. Though, there are many ecosystem types that were not in-
cluded in this study, and these may prove more challenging to map
(e.g., a desert ecosystemwith very low vegetation cover). Still, these re-
sults generally corresponded well with imaging spectroscopy studies in
similar ecosystems (e.g., Dennison & Roberts, 2003; Plourde et al., 2007;
Roberts et al., 2004; Swatantran, Dubayah, Roberts, Hofton, & Blair,
2011). The most frequent source of classification error for species at
any site was confusion among species within the same PFT or among
species that spatially co-occur. Confusion among PFTs at each site was
very low. These results support using imaging spectrometer data for
dominant species and PFT classification, as compared to other global
broadband sensors of similar spatial resolution, such as Landsat. For ex-
ample, Goodenough et al. (2003) found classifying dominant species
and PFTs using imaging spectrometer data from Hyperion to be 15%
more accurate than with Landsat-7 ETM+ data. In urban areas, Herold
& Roberts (2006) compared simulated coarse resolution broadband
IKONOS and AVIRIS data for classifying land cover, finding AVIRIS to
be less sensitive than IKONOS to coarsening spatial resolution due to
its greater spectral coverage and finer spectral resolution.
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4.2. Impact of varying spatial resolution

The most prominent change we observed in overall accuracy across
changing spatial resolutions was an increase from native (3.3–12 m) to
20m resolutions. This was observed at all sites and for both species and
PFT classifications, with the exception of theGULF site, forwhichwehad
no data finer than 20 m. In fact, at sites with finer native resolutions
(i.e., SERC, SNEV andWR),we observed the greatest increases in accura-
cy up to 20 m, though this did not hold true for the PFT classification at
WR, in which accuracy remained high and very stable over all resolu-
tions. These increases are consistent with previous multi-scale classifi-
cation studies using multispectral imagery (e.g., Chen et al., 2004;
Marceau, Gratton, et al., 1994; Treitz & Howarth, 2000). The effect of
changing spatial resolution on class-specific producer's and user's accu-
racies varied across sites. The provided maps of SBFR and SNEV sites il-
lustrate the endpoints of this continuum. At SBFR, we observed little to
no change in both distribution and accuracy for both species (Fig. 3) and
PFTs (Fig. 4) across spatial resolutions. In the SNEV speciesmaps (Fig. 5),
we see how inter-mixed (i.e., potentially confused) dominant species
are at native (3.3 m) spatial resolution. With coarser resolutions, domi-
nant patches become more clearly defined, but most of the fine-scale
species variation is lost. While less change occurs for PFTs than for spe-
cies (Fig. 6), we do see that some classes, such as annual herbaceous
meadows that are relatively small and interspersed, are lost at coarser
resolutions. In general, there are three major factors driving these
changes in accuracy across spatial resolutions: patch characteristics,
within-class spectral variability and reference data limitations.

Class patch characteristics played an important role in classification
success. We hypothesized that the highest accuracies would be
achieved when the image spatial resolution most closely approximated
a class' patch size and would decrease as edge pixels are averaged in at
coarser resolutions. Patch size ultimately determines at what resolution
a species or PFT can be resolved as dominant. Classes with small patch
sizes relative to pixel size were not classifiable at coarser resolutions
(e.g., L. styraciflua at SERC or P. aquilinum and Acer circinatum at WR).
Obeysekera and Rutchey (1997) found similar results when mapping
Everglades' vegetation at a range of scales. Losing classes at coarser res-
olution is expected, but represents an important limitation of hard-
classified, coarse resolution maps, beyond classification accuracy.
Though a class may not be dominant at a particular scale (i.e., no pixels
composed of 70% or more of this class), it may still be dominant within
the site (e.g., present in all pixels). This introduced bias toward more
spatially dominant classes is further discussed in Boschetti, Flasse, and
Brivio (2004) and Latifovic and Olthof (2004) and is a critical consider-
ation for map users. Not only is patch size a factor, but also shape
(i.e., better to minimize edges). Large isodiametric or block-shaped
patches of a species will be more spatially resistant to changing resolu-
tions than species whose patches tend to be long and thin (i.e., lots of
Fig. 3. Subset of the dominant species classification
edge to area; Fig. 7) (Chen et al., 2004). For example, at SBFR,marsh ref-
erence patches were large and semi-rectangular (N120 m by 120 m),
and its classification accuracy changed very little across resolutions
(0.5–1%). Contrast this with Plantanus racemosa in the riparian zones
at this site, where accuracy decreased sharply with coarsening spatial
resolution. This relationship between patch characteristics and spatial
scale in classification is well-documented within the object-based anal-
ysis literature (Blaschke, 2010). Some examples include studies by Hall,
Hay, Bouchard, andMarceau (2004) andHay,Marceau, andDub (2001),
who generated patch objects at a range of scales to determine how
patch types changed as a result of resolution. Furthermore, Hay,
Niemann, and Goodenough (1997) demonstrated that the spatial pat-
tern of patches in a landscape directly influence the optimal spatial res-
olution for mapping them accurately. Image native resolution also plays
a key role in determining the effects of scaling on the accuracy of map-
ping. A recent study by Karl and Maurer (2009), using IKONOS &
Landsat data to compare multi-scale estimates of vegetation cover
from image segmentation and pixel aggregation, found the native reso-
lution of the imagery was a factor in identifying patch boundaries
(i.e., Landsat data were not able to represent the edges of irregularly-
shaped or small patches as clearly as the finer resolution IKONOS data
could). This inability to capture these patches at native resolution trans-
lated to greater error at coarser resolutions.

Accurate discrimination among classes relies on our ability to mini-
mize within-class spectral variance while at the same time maximizing
between-class variance. Spatial resolution is one of the primary controls
onwithin-class spectral variance, as it defineswhich components of the
scene are represented at the pixel-scale (Woodcock & Strahler, 1987).
At the finest resolutions, a canopy is a collection of leaves, branches, po-
tentially exposed substrate and shadows. At slightly coarser scales, we
resolve sunlit and shadowed crown as well as canopy gaps, making
crown geometry an important factor in spectral variance (Asner,
1998; Cohen et al., 1990). The detection of separate canopy components
contributes to higher within-class variance, potentially resulting in
lower pixel-based accuracies (Clark et al., 2005). Spatial averaging, as
in this study, results in themean spectrum for each class remaining rel-
atively stable (up to a certain resolution), while the variance decreases
at each successive resolution (Blan & Butler, 1999; Chen et al., 2004;
Marceau, Howarth, & Gratton, 1994). Fig. 8 illustrates this decrease for
A. concolor from the SNEV site.

This decrease in variance may explain the observed increase in clas-
sification accuracies from native to 20 m resolution found in this study.
Increases in accuracy beyond 20 mmay indicate that within-class vari-
ance is still high at 20 m resolution. As mentioned previously, we can
expect the highest accuracies to occur when the spatial resolution
most closely approximates patch size, meaning within-class variance
is at a minimum while local spatial variance is at a maximum
(Marceau, Howarth, et al., 1994). When patch sizes vary across the
maps for all spatial resolutions at the SBFR site.



Fig. 4. Subset of the PFT classification maps for all spatial resolutions at the SBFR site.
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image, it can be challenging to find an optimal pixel scale. Object-
oriented approaches overcome this issue by using a pixel majority filter
at the crown scale, thus producing higher accuracies by ignoring some
pixel-scale errors. Examples include work by Clark et al. (2005) in trop-
ical forests, and Myint, Gober, Brazel, Grossman-Clarke, and Weng
(2011) and Alonzo et al. (2013) in urban areas. For forested ecosystems,
such asWR and SNEV, reduced within-canopy variance is likely a major
contributing factor to improvements in accuracy at coarser resolutions.
At SNEV, many of the dominant species have somewhat open canopies,
growing in standswithmany gaps composed of soil, litter andundersto-
ry species (Swatantran et al., 2011). At 3.3 m resolution, canopy
shadows and gaps are major contributors to the spectral diversity of
these classes. At WR, we observed another example of reduced
within-class variance at coarser resolutions leading to improved accura-
cies. At native resolution (4 m), some bright sunlit canopy pixels that
belonged primarily to Douglas fir (P. menziesii) were classified as P.
aquilinum, an herbaceous perennial species. At 20 m, these brighter
pixels were averaged out, decreasing P. menziesii spectral variance,
and thus leading to better discrimination between these classes. Given
these observations, differentiating species using pixel-based classifica-
tion will likely bemore successful with coarser resolution data (≥20 m).

The reference data collected and used for this study also played a role
in modulating changes in accuracy across resolutions. Dominance was
assigned at the patch (i.e., polygon), not pixel, scale, and each patch
contained from one to thousands of pixels from the native images. In
order for a patch to be considered dominated by a particular class, that
polygon needed to be composed of 70% or more that class. However,
all pixels within a reference patch were assigned to the dominant class.
This means that as many as 30% of the pixels in each polygon might
have been dominated by another class. For species that frequently
Fig. 5. Subset of the dominant species classification m
grow intermixed, these co-dominant pixels may have been accurately
classified, but were calculated as errors due to the identification of the
polygon they fell within. At coarser resolutions, averaging increased
the dominant's spectral signal strength, leading tomore pixels being “ac-
curately” classified. In these cases, the increase we observed in accuracy
from native to 20mmay not actually exist, because the native resolution
accuracy is underreported. At SBFR, for example, chamise (Adenostoma
fasciculatum) and manzanita (Arctostaphylos spp.) commonly grow in
mixtures ranging from 40/60 to 60/40. Confusion among these two spe-
cies in our classificationswas common, but accuracies for both classes in-
creased with coarsening spatial resolution. The same issue arises for
forest gaps, whichmay not bewell-defined in the reference data. For ex-
ample, at WR, gaps are dominated by P. aquilinum or A. circinatum, and
these gaps may be resolved at 4 m resolution. However, gap pixels cor-
rectly classified as P. aquilinum or A. circinatum in these areas will be
counted as classification errors given the reference polygon label (Fig. 9).

The composition of reference patches also contributes to the training
spectral signature of a class.While the small random training sample size
used in this study should ensure a higher likelihood that the “real”
dominant's spectra make up the majority of the signature, for some
cases in which the same species are always intermixed, this increases
the chances that the class training signatures will also be a blend. One
example of this is the high level of confusion between Quercus agrifolia
andUmbellularia californica at SBFR,wheremixedpatches of these two spe-
cies dominate the north-facing slopes (and south facing riparian areas at
high elevation) and as such, Q. agrifolia classification accuracy tends to be
relatively lower (Table 11). Another example of potentially mixed training
signatures are the evergreen needleleaf tree species at SNEV, particularly
incense cedar (C. decurrens), ponderosa pine (P. ponderosa) and sugar
pine (Pinus lambertiana) which often are so intermixed that they are
aps for all spatial resolutions at the SNEV site.



Fig. 6. Subset of the PFT classification maps for all spatial resolutions at the SNEV site.
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most frequently mapped as “Sierran mixed conifer” in other studies
(e.g., Swatantran et al., 2011). Finally, the delineation of reference patches
also influences the impact of edge pixels as resolution is coarsened. If
patches are delineated to be as large as possible (e.g., WR, SERC), then
edge pixels are likely to be dominated by another class. However, if refer-
ence patches are delineated within an even larger patch of the same class
(e.g., SBFR), then the averaging of edge pixels will have a lower impact on
the classification results. The inclusion or exclusion of edge pixels from
the reference polygons at coarser resolutionsmost certainly impacts the re-
portedaccuracies. As previously stated, edgepixels donot necessarilymean
mixed pixels, but the frequency of mixed pixels will be higher in more
fragmented landscapes (Powell et al., 2004). In this study, some edge pixels
were incorporated, but not all, as is evidenced by the loss of reference poly-
gons and even entire classes at some resolutions (Fig. 2). The exclusion of
some edge pixels means that we have not fully represented this error in
Fig. 7. Illustration demonstrating how patch shape impacts the included pixels across res-
olutions. In the top frame, the right polygon would include 46 pixels, and the left would
include 7. In the middle frame, the right polygon would include 12 pixels, and the left
would include 3. In the bottom frame, the right polygon would include 4 pixels and the
left would include 0.
our accuracy assessment and have somewhat biased it towardmore dom-
inant classes. Powell et al. (2004) found a significant decrease in accuracy
when all edge pixels were included in the assessment. However, they
also state that it is difficult to assign this error to either incorrect reference
data or a classification error. This issue is a commonone in the classification
of remote sensing data because land cover classes rarely have hard bound-
aries, and sometimes the mixture of two classes may resemble a third, en-
tirely different class.

4.3. Using fine scale training data

As mentioned previously, collecting high quality reference data for
dominant species and PFTs across a landscape is a challenge for many
mapping efforts (Foody & Mathur, 2006). The results of this study sup-
port the use of fine scale reference spectra to classify dominant plant
species and PFTs on coarser resolution imagery. This is critical given
that the majority of reference data available will come from regional
fine resolution (~3–18 m) imaging spectrometer data sets. These data
can provide a wealth of reference spectra for use with coarser global
hyperspectral coverage, providing spectral information for the many
species and PFTs whose spatial distribution makes extracting this data
at 30 or 60 m unlikely. It is important to note that we did not test train-
ing libraries extracted at coarse resolutions in this study. However,
Schaaf et al. (2011) found that training spectra extracted from fine res-
olution (~3–18 m) AVIRIS performed better for classifying coarse reso-
lution images than did training data extracted at coarse resolution.
Building reference training data from finer resolution sources has also
proven successful in other studies, especially when classes of interest
do not occur as pure pixels within the imagery (e.g., DeFries et al.,
1998; Roberts et al., 2012). One potential challenge to using fine resolu-
tion datamay bematching the seasonality, something that was not con-
sidered in this study. Further studies, such as that by Dudley, Dennison,
Roth, Roberts, & Coates (2015), are needed to assess the portability of
Fig. 8.Mean (solid) and ±1 standard deviation (dashed) spectra for Abies concolor across
all four spatial resolutions.



Fig. 9. Forest gap in Pseudotsugamenziesii stand classified as Acer circinatum atWR. Upper left panel shows the classification image, where white pixels are Acer circinatum and light green
are Pseudotsugamenziesii. The red crosshairs highlight onepixel that has been classified asAcer circinatumwithin the Pseudotsugamenziesiipolygon (outlined in black). Lower left panel is a
false color composite of the AVIRIS image (R=1652nm, G=826nm, B=665nm)with red crosshairs on the same pixel. Upper right panel is a close upof the stand inGoogle Earthwith a
whitemarker on the same area as thepixel of interest. Lower right panel is theAVIRIS spectrum from this pixel. (For interpretation of the references to color in thisfigure legend, the reader
is referred to the web version of this article.)
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spectra in time. Another point to consider is spectralmixing among clas-
ses. While some classes disappear at coarser resolutions, they are still
occurringwith the same frequency within an image. They have become
part of amixture of species or PFTs (the analog to associations in floristic
mapping). These mixtures may still be spectrally unique, but will no
longer have the same training signature developed from fine resolution
library. Depending on the classifier used, results over these mixtures
will likely differ greatly. In this study, no pixels were classified as
these “disappeared” classes. Indeed, these species are no longer domi-
nant at this scale, so the results are accurate from that perspective. How-
ever, it is important to consider what is meant by dominant and how
this relates to a given objective or application when creating these
maps.

5. Conclusions

In this study, we sought to evaluate the impact of spatial resolution
on our ability to accurately map plant species and PFTs using imaging
spectrometer data. By spatially aggregating fine resolution airborne
AVIRIS data (~3–18 m) to subsequently coarser spatial resolutions
(20–60 m), we simulated data such as those to be acquired globally by
sensors currently in development. We performed our analysis over
five ecosystems containing a wide diversity of both plant species and
PFTs. Furthermore, we evaluated the potential for using training data
derived from fine resolution imagery to classify species and PFTs at
coarser resolutions. Our results show that the best classification accura-
cies were found at coarser resolutions, rather than native. These results
coincidewith similar studies of scale in remote sensingwhich found the
optimal mapping resolution occurs when within class spectral variance
is lowest and classes have not yet begun to mix spatially (i.e., the reso-
lution closely approximates class patch size). Because of this, the ideal
spatial resolution will vary based on both the diversity and distribution
of species and PFTs in an ecosystem.However, ourfindings show that, at
all sites considered, 20 through 60m spatial resolution is acceptable for
mapping ecosystem-level dominant species and PFTs. This means the
30 m and 60 m resolutions proposed for upcoming sensors like
EnMAP and HyspIRI should sufficient for mapping dominant species
and PFTs. The impact of changes in spatial resolution varied mainly
among classes within ecosystems rather than across ecosystems. Class
patch size and spatial distributions were critical factors in determining
accuracy at a given resolution. In ecosystems with small, fragmented
patches of dominant species or PFTs, maps at coarser resolution no lon-
ger contained some of the original classes. Thus it is important for users
to understand what is meant by ‘dominant’ in any given classification
map and the implications this may have on particular map uses. The
use of a small sample of fine resolution training data to classify species
and PFTs at all resolutions was successful, meaning that spectral librar-
ies created from regional studies will likely be applicable to coarser res-
olution space-borne hyperspectral data.

Several directions for future research are clear. Firstly, more realistic
simulation and up-scaling of fine spatial resolution data will help im-
prove assessments of the potential applications of coarse resolution
spaceborne imaging spectrometers. The spatial averaging used in this
study does not accurately simulate the sampling point-spread-function
of proposed sensors or preserve the signal to noise ratio across resolu-
tions. Studies manipulating the up-scaling of images have also found
this aggregation technique impacts the spatial structure of the resulting
images (e.g., Chen & Henebry, 2009). The observations made in this
study should be compared to results using other pixel- and object-
based classifiers to gain a broader understanding of the likely impact of
resolution on species and PFT mapping on a global scale. Furthermore,
many studies have shown that moving toward the incorporation of
sub-pixel composition (e.g., species diversity, PFT fraction, etc.) is also a
promising direction (e.g., Rocchini, McGlinn, Ricotta, Neteler, &
Wohlgemuth, 2011; Schmidtlein et al., 2012). Incorporating land surface
phenology (i.e., seasonality) could also improve discrimination among
species and PFTs (Dennison & Roberts, 2003; Dudley et al., 2015), espe-
cially those that have contrasting phenologies. Seasonal data will exist
with spaceborne sensors, and thus its influence on accuracy should be
assessed.

Accurate maps of PFT and species composition are invaluable for a
range of scientific applications.While the scale of use for each of the ap-
plications may vary, currently proposed spaceborne imaging spectrom-
eters promise the best opportunity to create these maps worldwide. At
regional scales, they can be used for biodiversity monitoring, landman-
agement decision-making and ecosystemprocessmodeling, butmay not
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bewell-suited for applications such as detecting invasive species. At con-
tinental to global scales, thesemapswill providemore consistent and re-
liable reference data for building global land cover products, tracking
land cover change and climate modeling. The proposed spatial resolu-
tions for these sensors are fine enough to map dominant plant species
and PFTs across diverse ecosystems. Finally, promising new initiatives
for collecting the necessary reference data for creating these maps
(e.g., NASA's Ecological Spectral Information System) are coming online,
and should be ready and operational upon the launch of a spaceborne
imaging spectrometer.
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