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Imaging spectroscopy has been used successfully to map species across diverse ecosystems, and with several
spaceborne imaging spectrometer missions underway (e.g., Hyperspectral Infrared Imager (HyspIRI), Environ-
mental Mapping and Analysis Program (EnMAP)), these data may soon be available globally. Still, most studies
have focused only on single ecosystems, and many different classification strategies have been used, making it
difficult to assess the potential for mapping dominant species on a broader scale. Here we compare a number
of classification approaches across five contrasting ecosystems containing an expansive diversity of species and
plant functional types in an effort tofind a robust strategy for discriminating among dominant plant specieswith-
in and across ecosystems. We evaluated the performance of combinations of methods of training data selection
(stratified random selection and iterative endmember selection (IES)), spectral dimension reduction methods
(canonical discriminant analysis (CDA) and partial least squares regression (PLSR)) and classification algorithms
(linear discriminant analysis (LDA) and Multiple Endmember Spectral Mixture Analysis (MESMA)). Accuracy
was assessed using an independent validation data set. Mean kappa coefficients for all strategies ranged from
0.48 to 0.85 for each ecosystem. Maximum kappa values and overall accuracies within each ecosystem ranged
from0.56 to 0.90 and 61–92%, respectively. Our findings show that both LDA andMESMA are able to discriminate
among species to a high degree of accuracy inmost ecosystems, with LDA performing slightly better. Spectral di-
mension reduction generally improved these results, particularly in conjunction with MESMA.Within each eco-
system, both the number and identities of functional types present, aswell as the spatial distribution of dominant
species, played a strong role in classification accuracy. In a pooled ecosystem classification, using CDA and LDA,
we discriminated among 65 classes with an overall accuracy of 70% for the validation library, using only a 6%
training sample. Our results suggest that a spaceborne imaging spectrometer such as HyspIRI will be able to
map dominant plant species on a broader scale.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Accurate information regarding the composition and distribution of
dominant plant species and, therefore, plant functional types, within
and across ecosystems is pertinent to many research agendas within
ecosystem science and plant ecology. Species maps allow scientists to
detect the presence or absence of target species (e.g., invasive species,
He, Rocchini, Neteler, & Nagendra, 2011; Somers & Asner, 2012) and
monitor landscape-scale biological changes such as distribution shifts
(Asner, Jones, Martin, Knapp, & Hughes, 2008), type conversion, and dis-
turbance impact and recovery (Hatala, Crabtree, Halligan, & Moorcroft,
ferentiating plant species wit
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2010; Riano et al., 2002). This information is also critical for further refin-
ing estimates of ecosystem function (e.g., biomass, habitat suitability),
and thus providing improved spatially explicit inputs for evolving ecosys-
tem process and climatemodels (Goodenough et al., 2006; Kokaly, Asner,
Ollinger, Martin, & Wessman, 2009; Ustin, Roberts, Gamon, Asner, &
Green, 2004).

Improvements in sensor technology and the development ofmore so-
phisticated classification algorithms have enabled remote sensing scien-
tists to discriminate among various vegetation communities (e.g., forest,
crop, grassland) and life forms (e.g., herbaceous, shrubs, trees) (DeFries,
Hansen, & Townshend, 1995; Friedl et al., 2010), between different leaf
types (i.e., broadleaf vs. coniferous) (Van Aardt & Wynne, 2001) and
among plant functional types (PFTs) (e.g., deciduous broadleaf tree, ever-
green needleleaf shrub) (reviewed in Ustin & Gamon, 2010). However,
discriminating individual plant species requires data with fine spectral
resolution, which can be acquired using imaging spectrometers (Clark,
hin and across diverse ecosystems with imaging spectroscopy, Remote
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Roberts, & Clark, 2005). Imaging spectrometers are sensitive to subtle
shifts in spectral properties that are controlled by leaf biochemistry, anat-
omy and physiology and are further modified by canopy architecture
(Asner, 1998; Roberts et al., 2004). As such, these instruments have
been used successfully to discriminate among plant species and function-
al types using leaf-level observations (Castro-Esau, Sanchez-Azofeifa, &
Caelli, 2004; Clark et al., 2005), field-collected canopy spectra (Gong, Pu,
& Yu, 1997; Pu, 2009), and image data (Martin, Newman, Aber, &
Congalton, 1998; Van Aardt &Wynne, 2007). Indeed, a major aim of sev-
eral upcoming global hyperspectral missions is to map plant species and
functional types in support of ecosystem research, including NASA's
Hyperspectral Infrared Imager (HyspIRI; HyspIRI Team, 2009). HyspIRI
would collect full Visible/Near-Infrared/Short-wave infrared (VNIR-
SWIR) spectra (400–2500 nm) at 60 m spatial resolution on a global,
19 day repeat cycle.

The ability to discriminate accurately among dominant plant species
and PFTs on regional to global scales represents a major advance in re-
mote sensing science (Asner, 2013). However, success depends, in
large part, on a solid understanding of the spectral, spatial and temporal
resolution constraints on mapping species within and across a diverse
set of ecosystems. Indeed, most imaging spectroscopy studies have
sought to measure the spectral separability of, or to classify, species in
single ecosystems or species in single plant functional types (e.g., Féret
& Asner, 2012a; Kalacska, Bohlman, Sanchez-Azofeifa, Castro-Esau, &
Caelli, 2007; Pu, 2009; Vaiphasa, Ongsomwang, Vaiphasa, & Skidmore,
2005; Van Aardt & Wynne, 2007) and thus have investigated a limited
diversity of species and functional types, making comparisons across
ecosystems challenging. Furthermore, most studies that explicitly eval-
uate the effects of dimension reduction (Dópido et al., 2012; Kalacska
et al., 2007; Pu & Gong, 2000) or classification method (Clark et al.,
2005; Féret & Asner, 2012b) on classification accuracy, have performed
such analyses on only a single test data set or within a single ecosystem,
or do not focus on discriminating among plant species. None, to our
knowledge, evaluate the impact of different combinations of methods
across a diversity of ecosystems.

To fully leverage the data provided by a global imaging spectrome-
ter, such asHyspIRI, wemust improve our understanding of the spectral
properties of a diverse range of species and PFTs in the landscapes we
seek to map, the methods we use to create these maps and how the
two interrelate. Thus, the goals of this research were to evaluate our
ability to spectrally discriminate dominant plant species in contrasting
ecosystems and to compare the performance of several hyperspectral
classification strategies in accurately mapping species across multiple,
diverse ecosystems. Our main research questions are as follows:

1) Within individual ecosystems, how spectrally separable are the
dominant species and what ecosystem characteristics drive ob-
served separability?

2) When applied to a diverse set of ecosystems, how do classification
strategies differ in performance, i.e. is there a clearly superior
strategy?

3) What is the potential for differentiating among species from all eco-
systems using the best approach as determined by question 2?

Comparingdifferent classification approaches across ecosystems,we
can evaluate if (and how) the methods perform differently for different
ecosystems. This will indicate if there is a best overall approach, or if dif-
ferent approaches are needed depending on the ecosystem. By applying
the same classification methods at each site, we highlight our ability to
spectrally separate species in each ecosystem type. In other words, we
can characterize what makes one ecosystem easier to map vs. another,
and explore the possibility of a general limit to how accurately domi-
nant species within a particular ecosystem type can be classified with
imaging spectroscopy data alone. By combining the ecosystems, we
are testing our ability to map species across multiple ecosystems simul-
taneously, which will be the goal for the larger footprint spaceborne
hyperspectral data collected by a sensor like HyspIRI. Does such a
Please cite this article as: Roth, K.L., et al., Differentiating plant species wit
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classification yield acceptable results? How are class-level accuracies af-
fected (e.g., are some species classified more accurately with higher di-
versity in the classification? are specieswithin the sameplant functional
type but from different ecosystems spectrally confused?)? Do we see
similar patterns in misclassification when all sites are grouped together
as we do when we map sites individually? The answers to these ques-
tions can provide great insight for future large scale species mapping
efforts.

2. Methods

2.1. Study sites & data collection

We analyzed image data from five different North American ecosys-
tems (Fig. 1, Table 1). The Smithsonian Environmental Research Center
(SERC) site is a temperate, broadleaf deciduous forest in eastern Mary-
land ranging in elevation from 2 to 20 m. It is dominated by intermedi-
ate to mature stands of tulip poplar (Liriodendron tulipifera) and
sweetgum(Liquidambar styraciflua)mixedwithmaple (Acer spp.), hick-
ory (Carya spp.) and beech (Fagus spp.). The forested area of the site is
surrounded primarily by agriculture and open fields. The Gulf study
site is located in coastal Louisiana, including Barataria Bay and the
Mississippi delta, with elevations just above sea level. It is a marsh eco-
system strongly influenced by a subtropical climate and the confluence
of fresh and salt water. Cordgrass (Spartina spp.), Salt grass (Distichlis
spicata), and black rush (Juncus roemerianus) dominate the salt and
brackish marsh zones, and common reed (Phragmites australis) be-
comes prevalent in intermediate to fresh water zones. The Wind River
Experimental Forest (WR) site is a mixed broadleaf and coniferous
temperate rainforest located in southern Washington in the Cascade
Mountains, covering an elevation gradient of approximately 250
to 800 m. It is dominated primarily by western hemlock (Tsuga
heterophylla) and Douglas fir (Pseudotsuga menziesii), with an herba-
ceous understory and smaller stands of maple (Acer spp.), cottonwood
(Populus trichocarpa) and alder (Alnus rubra). The Sierra Nevada site
(SNEV) is a mixed montane coniferous forest in the southern Sierra
Nevada Mountains of California. The site includes major portions of
the Sierra National Forest, extending from Shaver Lake southeast to
Kings Canyon National Park and covering a range in elevation from
approximately 1200 to 2000 m. It is composed of large mixed stands
of fir (both white and red, Abies concolor and magnifica, respectively)
and pine (Ponderosa, Jeffrey and sugar; Pinus ponderosa, jeffreyi, and
lambertiana, respectively), aswell as broad swaths of deciduous and ev-
ergreen oak (Quercus kelloggii and Quercus chrysolepsis, respectively)
with shrub-dominated rocky outcrops, open meadows and riparian
zones. The Santa Barbara (SBFR) site runs east to west along the front
range of the coastal Santa Ynez Mountains in southern California, and
extends north from Santa Barbara into the San Raphael Mountains. It
covers a large swath of shrublands, grasslands, woodlands and urban
areas distributed over 1 to 1366 m elevation, and has a Mediterranean
climate, with cool, moist winters and dry, warm summers. Wooded re-
gions are dominated by oak (Quercus spp.) and California bay laurel
(Umbellularia californica), with some patches of sycamore (Platanus
racemosa) and gray pine (Pinus sabiniana). Major chaparral shrub spe-
cies include Ceanothus spp., chamise (Adenostoma fasciculatum), and
manzanita (Arctostaphylos spp.).

Image data were acquired by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) over the five study regions (Table 1). AVIRIS
collects data in 224 bands from 350 to 2500 nm with a full-width,
half-maximum of about 10 nm (Green et al., 1998). Data were pre-
processed to radiance and georectified using a ray tracing algorithm
with a digital elevation model (Boardman, 1999). Reflectance was re-
trieved for all images using either MODTRAN-derived look-up tables
for path and reflected radiance (described in Roberts, Green, & Adams,
1997), ACORN (ImSpec LLC) or ATCOR-4 (Richter & Schläpfer, 2002).
Bands with low signal to noise ratio and/or high levels of atmospheric
hin and across diverse ecosystems with imaging spectroscopy, Remote
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Fig. 1. Locations of the five study sites. The Wind River (WR) site is in southern Washington. The Sierra Nevada (SNEV) site is in the southern portion of the Sierra National Forest in
California. The Santa Barbara site (SBFR) is on the southern central coast of California. The Gulf site (Gulf) is on the coast of Louisiana. The Smithsonian Environmental Research Center
(SERC) site is in eastern Maryland.
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contamination were removed. Images were further georectified using
high resolution Digital Orthophoto Quarter Quads (DOQQs). Spatial res-
olution varied from 3.3 m to 18 m across sites, and acquisition dates
were timed to capture peak productivity (Table 1). Between 1 and 8
flight lineswere analyzed for each site, bringing the total analysis cover-
age to ~11,000 km2. It should be noted that a substantial portion of this
area was from the Gulf site and included large areas of open water.

For each site, reference datawere collected in thefield or using avail-
able geospatial data to identify themost common dominant species and
cover types. Reference patches (polygons) composed of 70% or more of
the dominant species or cover typewere collected for each site. At SERC,
polygonswere delineated on the AVIRIS imagery using a detailed inven-
tory covering our area of interest provided by the Smithsonian Environ-
mental Research Center for tree species and using high resolution aerial
photos for crop and soil cover classes. For tree species, we delineated
any patch greater than 2 pixels (4 × 8 m) in size. At WR, SBFR, and
SNEV, patches were identified in the field using a long distance visual
estimation technique (Meentemeyer, Moody, & Franklin, 2001) or by
walking areas on foot to estimate composition. Target patch size for
SNEV and SBFR was 120 × 120 m. At the Gulf site, reference patches
were created based on visual estimates made via a helicopter survey,
as well as previously existing species occurrence maps (Sasser, Visser,
Mouton, Linscombe, & Hartley, 2008). In all cases, we sought to collect
at least 10 patches with high purity per class, though this was not pos-
sible for all species and cover types. The total number of reference poly-
gons collected for each site ranged from 79 (SNEV) to 385 (SBFR).
Table 1
Image acquisition data and classification results by site, class type and resolution.

Site Lat, lon Ecosystem

SERC 38.9°N, 76.6°W Temperate, broadleaf, deciduous forest
GULF 29.4°N, 90.0°W Tidal marsh
WR 45.8°N, 122.0°W Temperate coniferous, broadleaf rainforest
SNEV 37.0°N, 119.3°W Mixed coniferous, broadleaf montane forest
SBFR 34.6°N, 120.1°W Mediterranean climate shrubland, woodland, grassland
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Aggregating the sites, the reference polygon set encompasses 10 dis-
tinct PFTs (including 42 species, 9 genera and 6 plant communities)
and 3 additional common cover types (e.g., rock) (Table 2). Site-
specific spectral libraries were extracted from the image data for all
pixels falling within these reference patches. Full spectral libraries
contained as few as 3442 to as many as 44,325 spectra (Table 2).

2.2. Classification strategies

2.2.1. Training data selection
For supervised classification, both a training data set composed of a

representative sample of each class in the analysis and an independent
validation data set are needed. Frequently, there are not enough reference
data available to properly validate species classifications, and in some
cases, a bootstrapping or cross-validation approach is used (Isaksson
et al., 2008). When enough reference data are available, training data
selection generally includes random sampling of reference patches
(i.e., setting aside some patches for training and some for validation).
However, this can result in very unbalanced and/or biased training
datasets, depending on the number, size and spatial distribution of
patches present for each species, which will likely influence classification
accuracy (Congalton, 1991). Roth, Dennison, and Roberts (2012) pro-
posed a stratified random sampling for approach for selecting training
data in which spectra for each class are randomly selected from the
pool until every reference patch has been sampled to user-defined limits.
Thus, each reference patch contributes some pixels to training and the
Image acquisition date Spatial resolution Approximate coverage (km2)

2006-May-29 3.5 m 24
2010-May-06 18 m 8996
2003-Jul-11 4 m 209
2003-Jul-18 3.3 m 235
2009-Jun-17 12 m 1516

hin and across diverse ecosystems with imaging spectroscopy, Remote
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Table 2
Summary table of plant functional types and dominant species and cover types for each site. Includes reference polygon and spectral library sample sizes.

Plant functional type Dominant species or cover type Abbreviation Polygons Spectra Training spectra

SERC 111 9800 906
Annual herbaceous Crop CROP 4 2190 40
Senesced annual herbaceous Crop residue/senesced grass DGCRP 5 3236 50
Deciduous broadleaf tree Acer spp. ACSP 13 214 93

Carya spp. CASP 19 333 142
Fagus spp. FASP 15 396 133
Liquidambar styraciflua LIST 10 241 84
Liriodendron tulipifera LITU 16 1702 150
Platanus occidentalis PLOC 5 38 17
Quercus spp. QUSP 13 251 111

Evergreen needleleaf tree Pinus spp. PISP 6 74 36
n/a Bare soil SOIL 5 1125 50

GULF 141 3442 1165
Evergreen broadleaf shrub Avicennia germinans AVGE 10 251 87
Perennial herbaceous Distichlis spicata DISP 16 325 135

Juncus roemerianus JURO 3 377 30
Phragmites australis PHAU 26 787 237
Spartina alterniflora SPAL 60 925 430
Spartina patens SPPA 17 490 168

Senesced vegetation Senesced vegetation OILED 1 7 3
n/a Clear water CWTR 1 44 10

Dark water DWATER 2 90 20
Sun glint GLINT 3 78 25
Muddy water MWTR 2 68 20

WR 134 23,886 1047
Senesced annual herbaceous Senesced grass DGRASS 15 3639 147
Deciduous broadleaf shrub Acer circinatum ACCI 6 55 23
Deciduous broadleaf tree Acer macrophyllum ACMA 10 374 80

Alnus rubra ALRU 27 1299 225
Populus trichocarpa POTR 12 1005 96

Evergreen needleleaf tree Abies grandis ABGR 2 20 9
Pseudotsuga menziesii PSME 30 9406 286
Thuja plicata THPL 11 85 35
Tsuga heterophylla TSHE 8 7856 80

Perennial herbaceous Pteridium aqualinum PTAQ 10 78 36
n/a Rock or soil ROCK-SOIL 3 69 30

SNEV 79 44,325 790
Deciduous broadleaf tree Quercus kelloggii QUKE 5 3771 50

Salix spp. SASP 1 228 10
Evergreen broadleaf shrub Arctostaphlyos spp. ARSP 11 3451 110

Ceanothus cordulatus CECO 2 848 20
Evergreen broadleaf tree Quercus chrysolepsis QUCH 3 993 30
Evergreen needleleaf tree Abies concolor ABCO 16 10,956 160

Abies magnifica ABMA 6 2386 60
Calocedrus decurrens CADE 4 1033 40
Pinus jeffreyi PIJE 2 1894 20
Pinus lambertiana PILA 6 745 60
Pinus ponderosa PIPO 11 10,071 110
Sequoiadendron giganteum SEGI 2 91 20

Annual herbaceous Mixed meadow MEADOW 6 5069 60
n/a Rock ROCK 4 2789 40

SBFR 385 39,946 3749
Annual herbaceous Irrigated grasses IRGR 16 1063 160
Senesced annual herbaceous Brassica nigra BRNI 15 2573 150

Mediterranean annual grasses and forbs MAGF 20 4305 199
Deciduous broadleaf tree Platanus racemosa PLRA 15 2032 150

Quercus douglasii QUDO 17 2232 170
Drought-deciduous shrub Artemisia californica–Salvia leucophylla ARCA-SALE 15 2027 150

Evergreen broadleaf shrub Arctostaphlyos spp. ARSP 20 2191 199
Baccharis pilularis BAPI 15 560 127
Ceanothus cuneatus CECU 13 777 129
Ceanothus megacarpus CEME 27 2254 264
Ceanothus spinosus CESP 14 1219 140

Evergreen broadleaf tree Citrus spp. CISP 15 766 119
Eucalyptus spp. EUSP 15 1845 150
Persea americana PEAM 17 1134 170
Quercus agrifolia QUAG 15 1189 150
Umbellularia californica UMCA 15 1147 147

Evergreen needleleaf shrub Adenostoma fasciculatum ADFA 32 2670 320
Eriogonum fasciculatum ERFA 15 2074 150

Evergreen needleleaf tree Pinus sabiniana PISA 15 1455 145
Perennial herbaceous Marsh/wetland MARSH 16 2798 160
n/a Rock ROCK 13 598 123

Bare soil SOIL 15 1064 127
Urban land use URBAN 15 1973 150
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remainder to validation, resulting in a more balanced training dataset
across classes and a validation dataset that is representative of the real-
world class frequency.

Another option for selecting training data includes the further sub-
selection of endmember libraries from the training sample. This is com-
mon practice when using multiple endmember spectral mixture analy-
sis (MESMA) for either classification or fractional cover modeling
(Dennison & Roberts, 2003b; Roberts et al., 2012). Using a smaller
subset of reference data for training can have several advantages. It
leaves a greater portion of the reference data available for validation.
Sub-selecting the most representative endmembers for each class may
also improve accuracy and reduce classification time which is an
important advantage when using an iterative classifier like MESMA.
Many methods exist to select endmembers from a reference spectral li-
brary (Dennison et al., 2004), but one developed specifically for classifi-
cation is Iterative Endmember Selection (IES) (Schaaf, Dennison, Fryer,
Roth, & Roberts, 2011). In IES, spectra are added and subtracted from
the endmember library in a stepwise procedure until the highest
within-library kappa is reached across classes (Roth et al., 2012;
Schaaf et al., 2011). The kappa coefficient is a measure of how well a
classification separates classes, which takes into account accuracy due
to random chance (Congalton, 1991) While the libraries produced by
IES can be quite large, they represent a quantitative selection method
for subsetting an even larger library to select training data.

In our study, the spectral libraries for each site were randomly sam-
pled into training and validation libraries using the method defined in
Roth et al. (2012). Here, we limited the number of spectra fromeach ref-
erence polygon to either 50% of the pixels in the polygon or 10 spectra
total, whichever was less. Overall, this sampling approach leads to a rel-
atively small proportion of the spectra being used as training data. IES
was then applied to this training library to select a second training
data set for each site, referred to hereafter as the ‘IES library’.

2.2.2. Dimension reduction
Dimension reduction techniques (sometimes called feature extrac-

tion) seek to address band collinearity while maximizing the variance
of the entire data set, or, when applied for classification, the between-
group variance (Yeh & Spiegelman, 1994). Dimension reduction tech-
niques such as principal components analysis (PCA; Pu and Gong
(2000)) minimum noise fraction (MNF; Plourde, Ollinger, Smith, and
Martin (2007)), canonical discriminant analysis (CDA; Alonzo, Roth,
and Roberts (2013)) and partial least squares regression (PLSR; Wold,
Sjostrom, & Eriksson, 2001) can simultaneously improve accuracies
and computational efficiency when classifying large datasets. In this
study, we focus on two particularly promising dimension reduction
methods which, to date, have not been widely used in remote sensing
science for classification: CDA and partial least squares regression
(PLSR) (Pu & Gong, 2011). CDA, also known as multiple linear discrim-
inant analysis, is one of themost commonly used dimensionality reduc-
tion techniques for a broad range of classification problems (e.g., pattern
recognition and chemometrics). Similar to PCA, CDA is used to derive
canonical variates, which are linear combinations of the original vari-
ables. In contrast to PCA, these functions are created to maximize the
between-group variance rather than tomaximize variance in the entire
dataset (Klecka, 1980; Zhao &Maclean, 2000). The number of functions
(set of eigenvectors) derived from CDA is limited to the number of clas-
ses minus one or the number of observed variables, whichever is fewer.
Each discriminant function comprises a set of standardized coefficients
(one per band). When these functions are multiplied through the orig-
inal spectral data, they yield a reduced set of spectra with the same
number of bands as functions. One clear advantage of CDA dimension
reduction is that it allows for interpretation of the derived coefficients
after standardization (Alonzo et al., 2013; Klecka, 1980). In other
words, researchers are able to analyze the relationships between
bands and the discriminant functions, something that cannot be done
with simple LDA coefficients. CDA, does, however, require a minimum
Please cite this article as: Roth, K.L., et al., Differentiating plant species wit
Sensing of Environment (2015), http://dx.doi.org/10.1016/j.rse.2015.05.007
number of training samples per class, such that the estimatedWmatrix
is positive definite.

The second dimension reduction technique used in this study is
PLSR. PLSR was not originally developed for discrimination of classes,
but as an econometric modeling technique for over-determined regres-
sionmodels, and it soon becamewidely used in chemometric and spec-
trometric modeling (Boulesteix & Strimmer, 2006). This is, in part,
because PLSR is well-suited for data with small training sample sizes
relative to a large numbers of predictor variables. PLSR simultaneously
models both the structure of the predictor variables (here spectral
bands) and the response variables (here class membership). The
resulting coefficient matrix represents the covariance structure be-
tween the two. The application of these coefficients to the spectral
data is the same as in CDA, yielding a reduced set of variables with the
same number of bands as PLS components. These reduced data can
then be used in a classifier. In remote sensing, PLSR has not been used
for species discrimination, but it has been widely applied for predicting
plant biochemistry (e.g., chlorophyll, carotenoids, nitrogen, etc.) (Asner
& Martin, 2008; Asner, Martin, Anderson, & Knapp, 2015; Martin,
Plourde, Ollinger, Smith, & McNeil, 2008; Zhai et al., 2013) and even
photosynthetic metabolism (Serbin, Dillaway, Kruger, & Townsend,
2012). The main advantage of PLSR over CDA as a dimension reduction
technique is that PLSR does not require aminimum training sample size.
This can be critical when working with fewer reference spectra than
spectral bands.

To reduce the dimensionality of our spectra, CDA coefficients for
each site were calculated using the full training library. We did not de-
rive CDA coefficients using the IES library due to its requirement for a
greater number of class observations than variables. PLSR coefficients
were calculated for both training and IES libraries because PLSR can
estimate coefficients in cases with more variables than observations.
For both CDA and PLSR dimension reduction, the number of functions
or components derived was set equal to the number of classes minus
one. This is the maximum number of functions that can be derived
using CDA. The CDA coefficients and both sets of PLSR coefficients
weremultiplied through the appropriate libraries to transform the spec-
tra into CDA or PLSR variables. Coefficient estimation and applicationwas
performed using code developed and implemented in MATLAB (The
Mathworks Inc., 2012).

2.2.3. Classifiers
We implemented two supervised classification techniques: Fisher's

linear discriminant analysis (LDA) and the two endmember case of
MESMA. In LDA, data are transformed linearly to maximize the
between-class variance relative to within class variance (Fisher, 1936).
When used for classification of multiple classes, a single discriminant
function is calculated for separating each class from all others (i.e., one
against the rest). Class discriminant scores are calculated for each spec-
trum to be classified, and the spectrum is assigned to the class for which
it has the highest score. One advantage of LDA is that it uses a pooled
within-class covariance matrix (in contrast to quadratic discriminant
analysis, which estimates covariance separately for each class). Because
of this, LDA is “less sensitive to ill- and poorly posed problems” (Féret &
Asner, 2012b). However, a sufficient number of training samples are
needed to ensure a positive definite class covariance matrix. This is
often not possible using hyperspectral data where the number of ob-
served variables is high and class sample sizes are often small (Du,
2007; Féret & Asner, 2012b). Studies using LDA have achieved very
high classification accuracies at the species level in various ecosystems
(Féret & Asner, 2012b; Franklin, 1994; Pu, 2009; Van Aardt & Wynne,
2007).

MESMA is another technique widely applied to mapping species
with imaging spectroscopy data. MESMA is an extension of spectral
mixture analysis (Roberts, Smith, & Adams, 1993). In SMA, a pixel's
spectrum ismodeled as a linear combination of pure ‘endmember’ spec-
tra plus an error term. MESMA is a variation of SMA in which both the
hin and across diverse ecosystems with imaging spectroscopy, Remote
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number and type of endmember spectra are allowed to vary per pixel
(Roberts et al., 1998). Though primarily used to model fractional
cover, the two-endmember case of MESMA can be used to model un-
known spectra as linear combinations of shade and a pure ‘endmember’
spectrum, representative of a class of interest. Using an iterative fitting
process, each unknown spectrum is assigned the class of the endmember
with the lowest root mean squared error (RMSE) (Dennison & Roberts,
2003a, 2003b). A key advantage to using MESMA for classification is its
ability to use the entire spectrum regardless of sample size per class; no
dimension reduction techniques are necessary. This approach has been
used in montane ecosystems (Schaaf et al., 2011; Swatantran, Dubayah,
Roberts, Hofton, & Blair, 2011), forests (Plourde et al., 2007; Roberts,
Gamon, Keightley, & Prentiss, 1999; Youngentob et al., 2011), shrublands
(Dennison & Roberts, 2003a, 2003b; Roth et al., 2012), and wetlands (Li,
Ustin, & Lay, 2005; Rosso, Ustin, & Hastings, 2005; Underwood et al.,
2006).

Classifications using both techniques were run using full spectrum,
CDA and PLSR libraries, yielding nine unique classification configura-
tions (Fig. 2). These analyses were repeated for each site.

2.2.4. Accuracy assessment & comparative analysis
For each classification configuration, the overall accuracy, kappa,

error matrix and class-specific user's and producer's accuracies were
calculated. All accuracies reported are for the validation libraries. We
compared accuracymetricswithin and across sites to both assess the ef-
fects of training data selection, dimension reduction, and classifier per-
formance and to evaluate the spectral separability among specieswithin
each ecosystem type. Overall accuracies and kappa values were rank
transformed, and repeated measures ANOVA was used to determine if
significant differences existed among classification configurations by
site. Tukey's post-hoc multiple comparisons test with the Holm adjust-
mentwas run for all pairs of configurations to determine significant dif-
ferences. Using IES-selected training spectra resulted in significantly
Fig. 2.Work flow diagram illustrating the classification processing steps for each study site from
and classification.
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lower accuracies across all sites and in all method combinations, and
is not discussed further to simplify our results.

As with most classifications, the success depends on the user re-
quirements. In this study, our aim was to assess the potential to map
dominant plant species and functional types at regional to continental
scales. Thus, we are seeking a classification strategy having good overall
accuracy, acceptably high producer's and user's accuracies for many
classes, and improved performance over other approaches, across diverse
sites. To assess how well each configuration met these requirements, we
generated four performance metrics: 1) the mean percentage of classes
from each site having both a producer's and user's accuracy ≥60%;
2) themean percentage of classes from each site for which the configura-
tion was a top performer in producer's accuracy; 3) themean percentage
of classes from each site for which the configuration was a top performer
in user's accuracy; and 4) the mean kappa value of the configuration
across sites. Metric 1 represents the proportion of classes at each site
that a particular configuration discriminated well. Metrics 2 and 3 indi-
cate howwell each configuration performed relative to the others at dis-
criminating individual classes. To identify ‘top performers’ for each class,
we rounded the producer's and user's accuracies to the nearest 5% and
identified those configurations with the highest rounded accuracy for a
class. Metric 4 indicates overall classification performance of a configura-
tion at each site. For metrics 1–3, we used means so that each ecosystem
was given equal weight regardless of the number of classes found there.
We then ranked the metrics across classification configurations.

2.3. Combined-ecosystem classification

Wemerged the spectral libraries from each site to create combined-
sites (CS) training, endmember and validation libraries. This allowed us
to evaluate the potential for using reference libraries containing spectra
acquired on different dates, from several ecosystems, and at varying
spatial resolutions to classify dominant plant species and cover types
sampling the libraries into training and validation libraries, through dimension reduction

hin and across diverse ecosystems with imaging spectroscopy, Remote
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for all sites simultaneously. The CS training library included 7657 spec-
tra used to classify 121,399 validation spectra (a training sample pro-
portion of about 6%). We classified the CS validation library using CDA
dimension reduction with LDA, based on the single-site results.
3. Results

3.1. Spectral separability within individual ecosystems

Acceptable kappa values (N0.7) were achieved by at least one classi-
fication strategy for all sites but SNEV (Table 3). The highestmean kappa
values across classification strategies were found for SERC, SFBR and
Gulf sites (N0.8). Mean overall accuracy across strategies was greater
than 75% for all sites except SNEV.

SERC had the second highest mean overall accuracy (86%) and the
lowest standard deviation in kappa across strategies (0.03). Of 11 clas-
ses, the most well-discriminated were crop, soil and crop residue
(mean producer's and user's accuracies N 96%) (Fig. 3). Discrimination
among the remaining dominant species varied, as can be seen in the
wider range of accuracies for each species across the classification con-
figurations (Fig. 3). The highest producer's and user's accuracies for the
remaining eight species were achieved for L. tulipifera and Fagus spp.
User's accuracies for all other tree species were low (b50%). The most
poorly discriminated classes included Platanus occidentalis and Pinus
spp. Confusion among classes at SERCwas the highest within the decid-
uous broadleaf tree PFT.

The Gulf site was the most accurately classified ecosystem, with a
mean overall accuracy of 88% and a standard deviation in kappa across
strategies of 0.06. Water classes were very accurately classified, having
mean producer's and user's accuracies N90% (Fig. 4). However, species
discriminationwas also high. Of the 6 dominant plant species, 5 had av-
erage producer's accuracies ≥85%, and 4 had average user's accuracies
≥80%. The greatest confusion occurred between J. roemerianus and Spar-
tina alterniflora.

WR had a mean overall accuracy of 78%, but kappa values N0.7 were
only achieved by two classification strategies. The standard deviation in
kappa was 0.05 for this site. Individual class accuracies at WR were
generally very good, with 9 of 11 classes having average producer's
accuracies ≥65% and 8 classes with average user's accuracies ≥65%
(Fig. 5). Classes with both high producer's and user's accuracies includ-
ed rock/soil and senesced grass, aswell as A. rubra, Acer macrophylla and
P. menziesii. Some classes had a high mean producer's accuracy, but low
user's accuracy (e.g., Pteridium aquilinum, Acer circinatum). Abies grandis
was the most poorly discriminated class, having an average producer's
accuracy of 35% and an average user's accuracy of just 1%. At this site
class confusion was the highest between the two dominant species:
P. menziesii and T. heterophylla, though the mean class accuracies for
both species were ≥69%
Table 3
Kappa values and overall accuracy summarized by site and classification configuration. Abbrev
(linear discriminant analysis), and MESMA (multiple endmember spectral mixture analysis).

SERC GULF WR SNEV

FS-LDA 0.85 0.90 0.75 0.56
CDA-LDA 0.85 0.87 0.75 0.56
PLSR-LDA 0.86 0.76 0.62 0.46
FS-MESMA 0.80 0.88 0.64 0.34
CDA-MESMA 0.79 0.80 0.69 0.50
PLSR-MESMA 0.80 0.90 0.69 0.49
Mean LDA kappa 0.85 0.85 0.7 0.52
Mean MESMA kappa 0.80 0.86 0.67 0.44
Mean FS kappa 0.82 0.89 0.69 0.44
Mean CDA kappa 0.82 0.84 0.72 0.53
Mean PLSR kappa 0.83 0.83 0.65 0.48
Site mean kappa 0.82 0.85 0.69 0.48
Site mean % accuracy 86 88 78 55
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The SNEV site had the lowest overall accuracies (mean = 55%), and
the highest standard deviation of kappa among the sites (0.08). At SNEV,
rock was themost easily discriminated class, followed bymeadow (aver-
age producer's anduser's accuracies ≥90%); eachwaswell-classifiedby all
configurations (Fig. 6). Producer's and user's accuracies varied greatly
across classification configurations for the other species. Several methods
produced reasonable producer's accuracies (N60%) for some species in-
cluding Abies magnifica, Arctostaphylos spp., Ceanothus cordulatus, Salix
spp. and Q. chrysolepsis. However, the mean producer's accuracies across
methods were less than 60% for most species. Classes that were poorly
discriminated by all or most methods included Calocedrus decurrens,
Pinus jeffreyi, Pinus lambertiana and Sequoiadendron giganteum. Confusion
among classes was the highest among these needleleaf evergreen tree
species.

SBFR was also well-classified by most methods, with a mean overall
accuracy of 84% and a standard deviation of kappa of 0.04. The SBFR site
was the most diverse of the five study regions, with 23 classes. Classifi-
cations at this site produced very good discrimination across species,
with 18 classes having an average producer's accuracy and/or an aver-
age user's accuracy N70% across all configurations (Fig. 7). The classes
with the highest average producer's accuracies included Brassica nigra
(95%), marshes (96%), and Eriogonum fasciculatum (97%). Those with
the highest average user's accuracies included Eucalyptus spp. and irri-
gated grasses (97%), as well as marsh wetlands and urban cover
(98%). P. sabiniana was the only class with mean producer's accuracy
below 60%, and Baccharis pilularis had the lowest mean user's accuracy
(53%). Among classes, confusion was greatest between A. fasciculatum
and Arctostaphylos spp., as well as between P. sabiniana and Quercus
douglasii.

3.2. Classification strategy performance

Across sites and classification strategies, acceptable kappa values
(N0.7) were achieved by all classification strategies for 3 of 5 sites
(Table 3). The highest mean kappa values across sites were achieved
by FS-LDA, CDA-LDA, and PLSR-MESMA. Overall accuracies averaged
across sites were ≥74% for all classification strategies. Repeated mea-
sures ANOVA of rank transformed overall accuracy and kappa values in-
dicated that differences among the performance of configurations by
site were significant at p = 0.001. However, the post-hoc multiple
comparisons tests showed no significant differences among these six
configurations.

Within each site, no single classification strategy far outperformed
the others, and in most sites, the highest kappa was the same for two
or more strategies. Likewise, overall performance differences among
the strategies were similar for most sites. At SERC, all three LDA config-
urations produced the highest producer's and user's accuracies for most
dominant plant species (Fig. 3). At the Gulf site, full spectrum LDA and
PLSR-reducedMESMA yielded the highest kappa values, and differences
iations are as follows: FS (full spectrum), CDA (CDA-reduced), PLSR (PLSR-reduced), LDA

SBFR Config. mean kappa Config. mean % overall accuracy

0.84 0.78 82
0.84 0.77 81
0.77 0.69 74
0.78 0.69 74
0.87 0.73 78
0.87 0.75 80
0.82 0.75 79
0.84 0.72 77
0.81 0.73 78
0.86 0.75 79
0.82 0.72 77
0.83

84
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Fig. 3. Class-level producer's (left) and user's (right) accuracies for SERC. Classification configurations are listed along the X axis, and species and cover types are listed along the Y axis. The
colors show % accuracy, from low (blue) to high (red). Abbreviations for classes can be found in Table 2, and abbreviations for configurations can be found in Table 3. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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in performance among classification configurations varied by class
(Fig. 4). For some classes, such as Spartina patens, all configurations
produced similar producer's accuracies, while for others, such as
J. roemerianus, producer's accuracies rangedmore widely. A similar pat-
tern was observed with user's accuracies. Within the WR site, full-
spectrum and CDA-reduced training libraries runwith the LDA classifier
were the best performing configurations (kappa=0.75). Class-level ac-
curacies varied across configurations, particularly for user's accuracies
Fig. 4. Class-level producer's (left) and user's (right) accuracies for GULF. Classification configura
colors show % accuracy, from low (blue) to high (red). Abbreviations for classes can be found in
the references to color in this figure legend, the reader is referred to the web version of this ar
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(Fig. 5). At SNEV, both full-spectrum and CDA-reduced full training li-
brary classificationswith LDA again yielded thehighest producer's accu-
racies across classes, and user's accuracies showed a similar pattern
(Fig. 6). In contrast to the other sites, at SBFR, the two configurations
with the highest average producer's and user's accuracies across species
were CDA- and PLSR-reduced full training library MESMA (~87%)
(Fig. 7). Classification configurations tended to produce similar results
within a given class.
tions are listed along the X axis, and species and cover types are listed along the Y axis. The
Table 2, and abbreviations for configurations can be found in Table 3. (For interpretation of
ticle.)
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Fig. 5. Class-level producer's (left) and user's (right) accuracies for WR. Classification configurations are listed along the X axis, and species and cover types are listed along the Y axis. The
colors show % accuracy, from low (blue) to high (red). Abbreviations for classes can be found in Table 2, and abbreviations for configurations can be found in Table 3. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2.1. Dimension reduction
Using full-spectrum or dimension-reduced data affected classifica-

tion accuracy, as did choice of reduction method (Table 3). Considering
both classifiers, kappa values for configurations using CDA dimension
reduction were higher than those using full-spectrum data for SNEV,
SBFR and WR, similar for SERC, and lower for the Gulf site. However,
when LDAwas the classifier, full-spectrum and CDA-reduced accuracies
were nearly identical for all sites except the Gulf. Dimension reduction
Fig. 6.Class-level producer's (left) and user's (right) accuracies for SNEV. Classification configura
colors show % accuracy, from low (blue) to high (red). Abbreviations for classes can be found in
the references to color in this figure legend, the reader is referred to the web version of this ar
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with PLSR resulted in higher accuracies than full-spectrum data at all
sites when MESMA was used as the classifier and lower accuracies at
all sites but SERCwhen LDAwas the classifier. In general, configurations
using MESMA yielded higher accuracies when used with dimension re-
duction, and CDA- and PLSR-reduced libraries performed similarly for
all sites but the Gulf. These results are further supported by patterns ob-
served in the individual class accuracies (Figs. 3–7). With the exception
of SERC, configurations using either full-spectrum or CDA-reduced data
tions are listed along theX axis, and species and cover types are listed along the Y axis. The
Table 2, and abbreviations for configurations can be found in Table 3. (For interpretation of
ticle.)
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Fig. 7. Class-level producer's (left) and user's (right) accuracies for SBFR. Classification configurations are listed along the X axis, and species and cover types are listed along the Y axis. The
colors show % accuracy, from low (blue) to high (red). Abbreviations for classes can be found in Table 2, and abbreviations for configurations can be found in Table 3. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Performance metrics and ranking for comparing classification configurations. PA is
producer's accuracy and UA is user's accuracy.

Mean % classes
with PA &
UA N= 60%

Mean %
classes PA top
performer

Mean %
classes UA top
performer

Mean
kappa

Final
rank

FS-TR-LDA 69 54 73 0.78 1
CDA-TR-LDA 69 50 72 0.77 2
CDA-TR-MESMA 59 54 40 0.73 3
PLSR-TR-MESMA 58 37 37 0.75 4
PLSR-TR-LDA 51 27 27 0.69 5
FS-TR-MESMA 49 22 28 0.69 6
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had the highest mean kappa values within individual sites (Table 3).
When averaged across both configurations and sites, dimension reduc-
tion with CDA yielded the highest mean kappa (Table 3) as compared
with full-spectrum and PLSR-reduced configurations.

3.2.2. Classifier
Generally, configurations using LDA as the classifier yielded similar or

highermean site kappa values than did those usingMEMSA (Table 3). For
configurations that used the full-spectrum training libraries, LDA
achieved an average overall accuracy 7.8 percentage points (pp) higher
than MESMA. When the training libraries were CDA-reduced, LDA
outperformed MESMA by just 3.6%. However, when these same libraries
were PLSR-reduced, MESMA yielded higher accuracies all sites except
SERC, achieving an average overall accuracy 5.4 pp higher than LDA.

Classifier performance within individual sites varied by configura-
tion. At SERC, bothMESMA and LDAwere able to discriminate spectrally
unique classes such as rock, crop, and crop residue from the remaining
species with high levels of accuracy, but LDA was more accurate than
MESMA when discriminating among the major deciduous tree species,
though these accuracies were not very high in general (Fig. 3). In the
Gulf site, LDA and MESMA classifications produced comparable accura-
cies overall, butMESMA yielded higher producer's and user's accuracies
for 7 and 6 classes, respectively (Fig. 4). At WR, LDA achieved much
higher producer's accuracies for some classes, notably A. grandis,
P. trichocarpa and T. heterophylla and higher user's accuracies for the
majority of classes (Fig. 5). AtWR, both techniques fairly accurately clas-
sified meadow, Salix spp. and rock, but LDA was better able to distin-
guish among the pine and fir species in the classification (Fig. 6).
Across all classes, LDA classifications outperformed MESMA in both
producer's and user's accuracies by 11 pp and 8 pp on average. The
SBFR site was the only site at which MESMA more frequently
outperformed LDA. The greatest increases in class-level producer's and
user's accuracies were observed when spectra were dimension reduced
with either CDA or PLSR (Fig. 7).
Please cite this article as: Roth, K.L., et al., Differentiating plant species wit
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3.3. Combined-ecosystem classification

We calculated the mean rank across all four performance metrics to
determine the final rank for each configuration (Table 4). The resulting
performance ranking indicated that LDA with a full-spectrum training
library was the best strategy among those tested for classifying domi-
nant species and cover types. This approach was nearly tied by LDA
used with a CDA-reduced training library. We elected to use the latter
strategy for the combined sites analysis because dimension reduction
improves computational efficiency and increases interpretability, both
ofwhichwill be importantwhenmapping species at regional scales. Be-
fore applying this approach to the full CS library, we created dominant
species maps at each of the sites to evaluate its performance on entire
scenes. Figs. 8 and 9 show portions of these maps created for the SBFR
andWR sites. In each site map, we observed the expected spatial distri-
butions of dominant species. At SBFR, we are able to see the dominance
of herbaceous species and sage scrub at lower elevations interspersed
with citrus and avocado orchards. At higher elevations, the chaparral
species become dominant. Riparian zones are dominated by Quercus
hin and across diverse ecosystems with imaging spectroscopy, Remote

http://dx.doi.org/10.1016/j.rse.2015.05.007


Fig. 8. Excerpt from the dominant species and land covermap at the Santa Barbara (SBFR) site generated using CDA-reduced spectra classifiedwith Linear Discriminant Analysis (CDA-LDA) at
12 m spatial resolution and overall accuracy = 85%.
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agrifolia, U. californica and P. racemosa. Within the WRmap, we see the
greatest coverage by the two most dominant species, P. menziesii and
T. heterophylla. Forest gaps contain senesced grass, bracken fern
(P. aquilinum) and vine maple (A. circinatum). Broadleaf deciduous
Fig. 9. Excerpt from the dominant species and land covermap at theWind River (WR) site gener
4 m spatial resolution and overall accuracy = 82%.
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species, such as P. trichocarpa, A. rubra and A. macrophylla are found in
moister areas near the river.

Using CDA dimension reduction and LDA as the classifier with just a
6% training sample,we achieved anoverall classification accuracy of 70%
ated using CDA-reduced spectra classifiedwith Linear Discriminant Analysis (CDA-LDA) at
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Table 5
Combined-site classification results with producer's (PA) and user's (UA) % accuracies. For each class, the “Classified As” column contains the name of the class it was most frequently
erroneouslymapped as, and the “Classified” column contains the name of the class itmost frequently erroneouslymapped, based on the errormatrix. Notations: p same PFT or cover type;
g same genus; c co-occurring/intermixed; i infrequent (b0.05% of library); f frequent (N5% of library).

PFT Site Species or cover PA Classified As UA Classified

Annual herbaceous SBFR IRGR 93 MAGFp,g 100 n/a
SERC CROP 98 PISP 100 n/a
SNEV MEADOW 96 CECO 100 ABMA

Deciduous broadleaf shrub WR ACCI i 100 n/a 73 ACMAc, PSMEc

Deciduous broadleaf tree SBFR PLRA 84 QUAGc 95 URBANc

QUDO 92 ERFAc 80 PISAc

SERC ACSP 45 LISTp,c 42 LITUp,c

CASP 38 LITUp,c 44 LITUp,c

FASP 62 QUSPp,c 77 ACSPp,c

LITU 76 PISPc 90 CASPp,c

LIST 49 LITUp,c 30 LITUp,c

PLOC 14 LISTp,c, ACSPp,c 5 LITUp,c, LISTp,c

QUSP 51 LITUp,c 45 FASPp,c

SNEV QUKE 55 QUCHg,c 39 ABCO
SASP 90 CECO 36 QUKEp,c

WR ACMA 86 POTRp,c 89 POTRp,c

ALRU 93 POTRp 97 POTRp

POTR 87 THPL 84 ALRUp

Drought-deciduous shrub SBFR ARCA-SALE 96 BAPIc 88 ERFAp

Evergreen broadleaf shrub GULF AVGE 84 SPAL 99 DISP, PHAU
SBFR BAPI 71 ARCA-SALEc 42 MAGFc

CECO 84 ABCOc 40 PIPOc

CECU 79 ERFAc 63 PISAc

CEME 79 ADFAc 82 CESPg,p,c

CESP 67 CEMEg,p,c 80 PLRA
SBFR, SNEV ARSP 13 ADFAc, QUCHc 53 ROCK_SOILc

Evergreen broadleaf tree SBFR CISP 97 URBANp,c 96 PEAMp

EUSP 95 MAGFc 99 BAPI, MARSH, PLRA, URBANc

PEAM 94 QUAGp 100 n/a
QUAG 64 BAPI 63 PLRAc

UMCA 79 QUAGp,c 84 QUAGp,c

SNEV QUCH 60 QUKEg,c 18 ARSPc, QUKEg,c

Evergreen needleleaf shrub SBFR ADFA 89 ARSPc 46 ARSPc

ERFA 96 ARCA-SALEp 89 CECUc

Evergreen needleleaf tree SBFR PISA 24 QUDOc 66 QUAGc

SERC PISP 26 LISPc, LQSPc 4 LISPc, CROP
SNEV ABCOf 52 PIPOp,c 59 PIPOp,c

ABMA 81 SEGIp,c 75 ABCOg,p,c

CADE 36 ABCOp,c 21 ABCOp,c, PIPOp,c

PIJE 29 PIPOg,p 40 PIPOg,p

PILA 17 CADEp,c 7 ABCOp,c, PIPOg,p,c

PIPOf 39 ABCOp,c 56 ABCOp,c

SEGI 52 ABMAp,c 3 ABCOp,c, ABMAp,c

WR ABGRi 55 THPLp 0 PSMEp, TSHEp

PSMEf 60 TSHEp,c 92 TSHEp,c

THPL 72 ABGRp 5 PSMEp, TSHEp

TSHEf 80 ABGRp 68 PSMEp,c

Perennial herbaceous GULF DISP 72 SPPAp 51 PHAUp

JURO 54 SPALp 74 SPALp

PHAU 70 DISPp 93 SPPAp

SPAL 88 JUROp 69 JUROp

SPPA 83 DISPp 74 PHAUp

SBFR MARSH 97 BAPI 98 URBAN
WR PTAQ 90 POTR 49 PSME

Senesced annual herbaceous SBFR MAGF 86 BRNIp,c 94 ROCK_SOILc

BRNI 97 BAPIc 85 MAGFp,c

SERC DGRCRP 100 n/a 100 n/a
WR DGRASS 99 ABGR 100 n/a

Senesced vegetation GULF OILEDi 75 BRNIp 33 ROCK_SOILc

n/a All ROCK_SOIL 90 ARSPc 97 MAGF
GULF CWTRi 100 n/a 100 n/a

DWATER 100 n/a 100 n/a
GLINT 60 MWTR 97 URBANp

MWTR 100 n/a 68 GLINT
SBFR URBAN 92 BAPI 99 ROCK_SOILp
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for the combined-site validation library. Of the 65 classes included in the
analysis, well over half had producer's or user's accuracies ≥70% (41 and
35, respectively) (Table 5). Furthermore, 22 classes had a producer's ac-
curacy ≥90%, as did 20 classes for user's accuracy. The most accurately
Please cite this article as: Roth, K.L., et al., Differentiating plant species wit
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discriminated classes covered nearly the entire range of PFTs and
cover types, including annual herbaceous species (e.g., crop, meadow),
deciduous broadleaf and drought-deciduous shrubs, several broadleaf de-
ciduous and evergreen trees, most evergreen broadleaf and needleleaf
hin and across diverse ecosystems with imaging spectroscopy, Remote

http://dx.doi.org/10.1016/j.rse.2015.05.007


13K.L. Roth et al. / Remote Sensing of Environment xxx (2015) xxx–xxx
shrubs, a few perennial herbaceous species, senesced vegetation and
other cover types (e.g., water, rock, urban). The lowest accuracies were
among several of the broadleaf deciduous tree species (mainly from
SERC) and among needleleaf evergreen tree species (at most sites).

Mean site-level producer's and user's accuracies decreased slightly
(by 2–14 pp and 0–16 pp, respectively), from single site to combined-
site classification,with the largest decrease for the Gulf site classes. Indi-
vidual class-level accuracies remained similar (+/−3 pp) to those of
the single-site classifications for approximately half the classes, and
those with changes N3 pp were roughly evenly distributed among all
sites. Accuracies decreased by 10 pp or more for 17 (producer's) and
13 (user's) classes, and increased by 10 pp or more for just 3 classes.
Confusion among classes followed similar patterns to single site classifi-
cations (Table 5). Although the most frequently confused classes were
often within the same ecosystem, there were also cases of confusion
among classes from different ecosystems. These nearly always occurred
within PFTs. For example, confusion occurred between two evergreen
needleleaf trees, C. decurrens (SNEV) and A. grandis (WR). Similarly,
senesced vegetation from the Gulf site was erroneously classified as
B. nigra (SBFR), likely because, in addition to being senesced, both clas-
ses have greater vertical structure than grasses and forbs

4. Discussion

4.1. Spectral separability of dominant species

Our ability to spectral separate dominant species and cover types
within each ecosystem using imaging spectroscopy data was driven by
three factors: 1) the diversity and distinctiveness of PFTs present,
2) the spectral similarity of species within the same PFT, and 3) the
abundance and spatial distribution of species within the landscape. At
all sites, spectrally unique cover types, such as rock or soil, were
accurately mapped. Among vegetation classes, the most common
sources of error were confusion among species within the same genus
or PFT and confusion among species which grow in mixed stands or
patches.

Conventional PFTs capture several of themajor biological differences
among species in an ecosystem that influence their spectral signatures
(e.g., deciduous vs. conifer) (Plourde et al., 2007; Van Aardt & Wynne,
2001). Differences in some characteristics, like life form, result in greater
spectral differences than others, making a PFT more distinct. Likewise,
shared characteristics between PFTs may result in greater spectral sim-
ilarity. Our results from the SNEV, WR and SERC ecosystems illustrate
this point. These three sites have the same number of PFTs, but overall
accuracies were high at SERC, moderate at WR and low at SNEV. The
high overall accuracies observed at SERC were driven by the set of
very distinct PFTs found in this ecosystem. At WR, accuracy was
bolstered by the contrast between evergreen needleleaf and deciduous
broadleaf trees, as well as by the presence of both live and senesced
herbaceous PFTs. The PFTs at SNEV are more similar than those at
found at WR and SERC, particularly species distributed among 3 tree
PFTs.

Within a PFT, species may have additional characteristics that make
them spectrally distinct, but likely spectral signatures are more similar.
At SERC, SNEV and WR, half or more of the species fall into a single PFT
for which class-level accuracies are lower and confusion among species
is high. Even so, the Gulf was one of the most accurately classified sites
despite having the lowest PFT diversity and themajority of plant species
in a single PFT. The high spectral separability among species in this site
is most likely due to the structural differences in both leaf shape and
plant form (Zomer, Trabucco, & Ustin, 2009) or phenological differences
(Ouyang et al., 2013). At the other end of the continuum, the SBFR site
had the highest PFT diversity (9), with each PFT having between 1 and
5 species, and was also very accurately classified. These results are par-
ticularly encouraging given the sheer number of vegetation classes (20).
Confusion within PFTs was also observed here, but was quite low
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compared to the other sites. Similarly high accuracies have been previ-
ously reported for this site, and the number and diversity of vegetation
classes included in our study is even greater (Dennison & Roberts,
2003a; Roth et al., 2012).

Thought we can spectrally differentiate more specific classes than
just conventional PFTs, there may be limitations to how well species
within these PFTs (e.g., evergreen needleleaf trees) can be separated.
The unique plant types that can be detected using optical remote
sensing data are called ‘optical PFTs’, which characterize vegetation by
differences in structure, biochemistry, physiology and phenology
(Ustin & Gamon, 2010). While single date imaging spectroscopy data
capture some of these differences, more explicit incorporation of struc-
ture (e.g., from lidar) and/or phenology could improve our ability to dif-
ferentiate among plant species. Indeed studies have found the use of
structural information (Alonzo, Bookhagen, & Roberts, 2014; Colgan,
Baldeck, Féret, & Asner, 2012; Dalponte, Bruzzone, & Gianelle, 2012)
and phenological information (Hunt & Williams, 2006; Somers &
Asner, 2012) with imaging spectroscopy data does improves species
discrimination. HyspIRI would provide monthly images, making multi-
temporal analyses possible, and while coincident lidar and imaging
spectroscopy data sets have been few in the past, the establishment of
the National Ecological Observation Network and its Airborne Observa-
tion Platform (AOP) (Kampe et al., 2010) mean these types of datasets
will be acquired over a diversity of ecosystems in the coming years.
Higher spectral resolution or the incorporation of spatial information
from fine resolution imagery, collected by aerial sensors like AVIRIS
Next Generation,may also be able to better highlight key spectral differ-
ences needed to tell species apart (Van Aardt & Wynne, 2007).

The thirdmajor control on the spectral separability of species in each
ecosystem was their abundance and spatial distribution within the
landscape. Species that occur less frequently in the landscape, or occur
only within small patches, were difficult to classify accurately (similar
to findings by Waser & Asner, 2011). For example, C. cordulatus, a
shrub at the SNEV site with very low accuracies, occurs mainly in
small, isolated patches within the greater matrix of fir and pine trees,
and at WR the lowest class-level accuracies occurred due to confusion
between two infrequent classes (A. grandis and Thuja plicata). Similar
results were reported for A. grandis by Jones, Coops, and Sharma
(2010). Classes such as these were difficult to separate accurately for
two primary reasons. First, a small training data set limits our ability
to establish what makes this species spectrally distinct from others,
and second, there is a greater likelihood of training data where a pixel
contains N1 dominant species. This second point is perhaps the most
important for understanding themajority of class confusionwithin eco-
systems and the impact on overall accuracies.

In many ecosystems, two or more species may be co-dominant, or
grow intermixed in the landscape. In these cases, reference patches,
such as those collected for this study, are likely to contain some pixels
dominated by another species or, if the species are mixed homogenously
within the patch, most pixels will contain both species. This can lead to
two types of error in mapping that result in lower accuracy and higher
confusion between the species. In the first case, the classificationmay ac-
curately classify a pixel, but because this pixel belongs to a reference patch
of another species, it will incorrectly be called an error. In the second case,
the training spectral signatures will also be mixed, causing the two spe-
cies look similar even if their pure signatures are separable. There are sev-
eral examples from our study that illustrate these points. At SBFR,
A. fasciculatum and Arctostaphylos spp. occur most frequently in co-
dominated patches ranging from 60/40 to 40/60. Here it is likely that
many correctly classified pixels are calculated as errors. At the SNEV,
C. decurrens, P. ponderosa and P. lambertiana all grow very highly
intermixed, making establishing unique training signatures for each spe-
cies quite challenging and resulting in high levels of confusion among
these classes. Similar patterns were observed at the SERC, SBFR and Gulf
sites. Building reliable and spatially extensive reference data sets is a
major challenge for species' mapping, and there are tradeoffs in collecting
hin and across diverse ecosystems with imaging spectroscopy, Remote
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these data that must be taken into account, particularly when using the
resulting maps.

Given the role class abundance and distribution play in spectral sep-
arability, the spatial resolution of the images used becomes a key factor.
The image data for the sites with the lowest accuracies (SNEV andWR)
were acquired at the finest spatial resolution (3.3 & 3.5m, respectively).
On one hand, this may have resulted in fewer pixels containing N1 spe-
cies, and on the other, the highly mixed distribution of conifer species
across the landscape means that reference polygons (N70% coverage
by the dominant) almost certainly contained pixels thatwere purely an-
other species. Furthermore, the open canopy architecture of these two
conifer-dominated ecosystems means that finer spatial resolution data
likely result inmuch higher within-class spectral variance. For example,
despite having a similar spatial resolution (4m), the classification accu-
racies for broadleaf-dominated SERC weremuch higher, perhaps due in
part to a closed canopy with fewer shadows. Lastly, the drivers of spe-
cies' spectrally separabilitymay changewith changing image resolution.
For example, slightly coarser spatial resolutions could potentially re-
ducewithin canopy spectral variance, improving the training signatures
for species with more open or non-uniform canopies. While these dif-
ferences were not examined in depth in this study, they will be consid-
ered in subsequent work.

4.2. Selecting a classification strategy

Our results in comparing different strategies demonstrate there is
not a one-size-fits-all answer for classifying dominant species across di-
verse ecosystems. Although dimension reduction is often used when
workingwith hyperspectral data, our findings did not show statistically
significant improvements to overall classification accuracy with either
CDA or PLSR. That said, given a sharp increase in computational efficien-
cy when using fewer bands, and neutral effect on accuracy, dimension
reduction makes sense. CDA-reduced LDA classifications produced
nearly equivalent kappa values across sites, which is not surprising,
given that CDA is a variant of LDA (Zhao & Maclean, 2000). Although
few studies have applied a dimension reduction transform when using
MESMA for classification (see Li et al., 2005), dimension reduction
should lead to fewer classification errors simply because the bands
that contribute more to discrimination are more heavily weighted by
the coefficients. Findings by Somers and Asner (2013) demonstrate
this concept, using multi-temporal data to improve MESMA classifica-
tion of native and invasive Hawaiian species. In the current study, di-
mension reduction with CDA led to mixed changes in accuracy by
ecosystem. By contrast, using PLSR improved MESMA classification re-
sults at all five sites. It is interesting to note that MESMA achieves the
best results with PLSR dimension reduction while LDA achieves the
best results using CDA dimension reduction. The formulation of each
technique may explain this observation. Evaluating the mathematical
relationship between dimension reduction techniques and classifiers
may aid scientists in identifying pairs that work best together.

Both classifiers used in this study were able to accurately differenti-
ate dominant species. These findings support those of other studies
which have used LDA or MESMA for species classification (Féret &
Asner, 2012b; Roth et al., 2012; Somers & Asner, 2013; Suzuki,
Okamoto, Takahashi, Kataoka, & Shibata, 2012). Our results show that,
when using the full spectrum, LDA yields higher accuracies than does
MESMA in the majority of ecosystems assessed here. In particular,
while both techniques are able to accurately differentiate spectrally
unique classes, such as rock or soil, LDA is better able to separate spec-
trally similar classes, such as the broadleaf deciduous tree species at
SERC or the pine andfir species at SNEV. This indicates that if only subtle
spectral differences exist for a class, LDA can give these differences
higher weight in the classification. MESMA, on the other hand, is
based on overall fit and has no a priori class knowledge. Therefore it is
not able to highlight key differences for very spectrally similar classes. In-
deed, MESMA performed better when used with a dimension reduction
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technique that does incorporate this a priori class knowledge. Thisfinding
could bolster the utility of MESMA as a classification technique. Further-
more, most reference datasets will not include an exhaustive list of the
dominant species found over these large regions. The presence of an
‘unclassified’ option for assigning a pixel to a class is important in this
context. LDA does not have this option, nor is there a relatively straight-
forward way to implement it by, for example, thresholding a pixel's
discriminant score.WithMESMA, a user is able to specify anRMSE thresh-
old, and, if no training spectrum fits a pixel well, this pixel will be labeled
‘unclassified.’

Though we did not explicitly consider uncertainty estimates in this
study, this is an important consideration in classification (Rocchini
et al., 2013). Maps of spatial uncertainty provide critical information
to map users and can provide insights to the limitations of a method
(Kyriakidis & Dungan, 2001). It is important to note that different
types of uncertainty exist in a classification analysis, and caution must
be used when comparing different metrics for different classification
algorithms. One approach for MESMA is to calculate andmap the pixels
in an image classified by very accurate endmembers. For example,
Youngentob et al. (2011) created maps showing pixels modeled by
MESMA endmembers with ≥75% accuracy for classifications of two eu-
calypt species. Likewise, extensions to LDA have been proposed and
tested, such as Robust Fisher's Discriminant Analysis, which directly in-
corporate measures of class uncertainty (Kim et al., 2005).
4.3. Relevance to HyspIRI

Our combined ecosystems analysis evaluated the potential for map-
ping dominant plant species and cover types using with imaging spec-
troscopy data simultaneously across multiple ecosystems, as would be
possible using HyspIRI. We were able to discriminate among dominant
species with fairly high overall accuracy (70%), and with good class-
level producer's and user's accuracies for most classes. With much
higher diversity in the classification, many class-level accuracies de-
creased relative to the single-site classifications, user's accuracies in par-
ticular. This may be a concern if multiple-ecosystem classification maps
are generated. We also observed a greater impact on accuracy with de-
creasing class size. Infrequent classes (b0.05% of the full library or about
50 spectra) that were spectrally unique had reasonably high accuracies.
However, small classes with inter-mixing and functionally similar co-
dominants had the lowest accuracies. Only aminor amount of confusion
within PFTs was observed between species from different ecosystems,
and species that occurred in multiple ecosystems were accurately clas-
sified.We also found that the correct species were mapped to each eco-
system, raising the question of how spectrally unique ecosystems are
from one another, given their PFT and species composition.

Collecting quality species' reference spectra to be used with HyspIRI
imagery and ensuring these training spectra are representative of their
class is no small task. Our results demonstrate high accuracies can be
achieved using only a small proportion of the reference data for training.
However, as large spectral library databases are created in support of
spaceborne hyperspectral missions, reliable protocols for selecting suit-
able reference spectra and evaluating the usefulness of these spectra
will be necessary. Although the IES algorithm did not perform well in
this study, its performance may improve if applied to the entire refer-
ence spectral library, rather than the training library. Subsequent im-
provements to the IES algorithm code have enabled this option for
future research (Dudley, Dennison, Roth, Roberts, & Coates, in press).
In caseswhere little training data are available strategieswithout amin-
imum sample requirement (e.g., PLSR dimension reduction or MESMA)
may be needed. Though it should be noted that, in our study, kappa
values for PLSR-reduced MESMA were much lower when using the
IES-selected training library. This demonstrates that, while a minimum
sample size may not be necessary to use some methods, there may be
a minimum sample size necessary to accurately map dominant species
hin and across diverse ecosystems with imaging spectroscopy, Remote
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When mapping dominant species in a single ecosystem, computa-
tional efficiency may not be a major factor. However, as we move to
mapping species over larger regions, it becomes a critical consideration
for choosing a classification approach. Using dimension reduction im-
proves computational efficiency, as does selecting a smaller training
data set (with a technique such as IES). This is particularly important
for iterative classifiers, like MESMA, where classification could become
a lengthy process if thousands of full-spectrum spectra are being fitted
to each pixel over large regions of Earth's surface.

Understanding the effects of spatial, spectral and temporal resolu-
tion on our ability to discriminate species within and across ecosystems
is an active area of research, and one that will benefit immensely from a
global spaceborne mission. In this line, we are not simply trying to cre-
ate the most accurate map, but also to better understand why we are
able to spectrally separate classes, exploring which parts of the spec-
trum contribute most to the discrimination and using this to improve
our understanding of species' differences across space and time. This
comprehension invariably leads to improved strategies for classifica-
tion. Of the strategies evaluated in this study, only full-spectrum LDA
does not allow for interpretation (Klecka, 1980). With MESMA each
classified pixel can be tied to one spectrum in the reference library
(the best fit). Additionally, the coefficients generated by both CDA and
PLSR are interpretable, though eachmethod's coefficients represent dif-
ferent information. In fact, these two techniquesmay produce even bet-
ter discrimination results if combined. Canonical Partial Least Squares
(CPLS), proposed by Indahl, Liland, and Naes (2009) incorporates the
strengths of both PLS and canonical correlation analysis (CCA; closely
related to CDA) and aims to incorporate more discriminatory informa-
tion in fewer components to achieve higher accuracies.

5. Conclusions

Mapping dominant plant species over a wide range of ecosystems
will provide critical information for addressing ecological questions
about species' distributions, disturbance, climate change and ecosystem
function. Imaging spectroscopy data is extremely well-suited for this
purpose, and the launch of a spaceborne imaging spectrometer, like
HyspIRI, will make these data available on a scale much larger than
ever before. Our study demonstrates that we can successfully discrimi-
nate dominant plant species and cover types from five diverse ecosys-
tems containing 58 unique vegetation classes distributed over a wide
geographic area. Species from one region were not confused with an-
other, suggesting that a global mission can map plant species over
large geographic regions, a promising result for a sensor like HyspIRI.
Furthermore, this was accomplished using image data collected over a
wide range of illumination and viewing geometries and atmospheric
conditions.

Dominant species' separabilitywithin a given ecosystemwasmainly
related to the diversity and distinctiveness of the PFTs present, the spec-
tral similarity among species within each PFT, and the distribution of
species across the landscape. Species' spectral differences are likely
expressions of functional differences (Ustin & Gamon, 2010), and the
magnitude and seasonal timing of these differences have important
ramifications for our ability to discriminate among species within simi-
lar functional classes. The impact of dominant species' occurrence and
spatial distributions within ecosystems on mapping accuracy is also an
important consideration, especially when scaling these results to the
proposed resolution of spaceborne imaging spectrometer missions
(30–60 m).

Of the classification strategies evaluated, nonewas clearly the best in
every ecosystem.However, three showed considerable promise— using
the full spectrum training spectra and LDA, CDA for dimension reduc-
tion with LDA, and PLSR dimension with MESMA. The use of dimension
reduction resulted in the same or higher accuracy as compared to the
full spectrum data and has three major advantages for broad scale spe-
cies mapping: increased computation efficiency, a reduced number of
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training samples required and greater interpretability of the classifica-
tion process. While our results were achieved using finer spatial resolu-
tion than will be acquired with HyspIRI, subsequent research will
address this question. Furthermore, a spaceborne mission will have ad-
vantages resulting from repeat sampling (including the possible incor-
poration of phenological information) and more favorable lighting
geometry.
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