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The Hyperspectral Infrared Imager (HyspIRI) is a proposed satellite mission that combines a 60m spatial resolu-
tion Visible-Shortwave Infrared (VSWIR) imaging spectrometer and a 60mmultispectral thermal infrared (TIR)
scanner. HyspIRI would combine the established capability of a VSWIR sensor to discriminate plant species and
estimate accurate cover fractionswith improved Land Surface Temperatures (LST) retrieved from the TIR sensor.
We evaluate potential synergies between Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) maps of
dominant plant species and mixed species assemblages, fractional cover, and MODIS/ASTER Airborne Simulator
(MASTER) LST utilizing multiple flight lines acquired in July 2011 in the Santa Barbara, California area. Species
composition and green vegetation (GV), non-photosynthetic vegetation (NPV), impervious, and soil cover frac-
tions were mapped using Multiple Endmember Spectral Mixture Analysis with a spectral library derived from
7.5 m imagery. Temperature-Emissivity Separation (TES) was accomplished using the MASTER TES algorithm.
Pixel-based accuracy exceeded 50% for 23 species and land cover classes and approached 75% based on pixel
majority in reference polygons. An inverse relationship was observed between GV fractions and LST. This rela-
tionship varied by dominant plant species/vegetation class, generating unique LST–GV clusters. We hypothesize
clustering is a product of environmental controls on species distributions, such as slope, aspect, and elevation
as well as species-level differences in canopy structure, rooting depth, water use efficiency, and available soil
moisture, suggesting that relationships between LST and plant species will vary seasonally. The potential of
HyspIRI as a means of providing these seasonal relationships is discussed.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The Hyperspectral Infrared Imager (HyspIRI) has the potential to
reduce uncertainties in land–energy–atmosphere interactions and
improve our knowledge of ecological effects of climate change. Much
of the climate-relevant potential ofHyspIRI is derived from independent
analysis of the reflected solar spectrum (Visible-Near-Infrared/Short-
Wave Infrared, or VSWIR) or the emitted spectrum (Thermal Infrared,
or TIR). Examples include improved VSWIR estimates of biophysical
properties such as surface albedo, leaf area index (LAI: Asner, 1998;
Roberts et al., 2004; Schlerf & Atzburger, 2006), Leaf Mass per Area
(LMA: Asner et al., 2011; Serbin, Singh, McNeil, Kingdon, & Townsend,
2014), and fractional cover (Roberts, Smith, & Adams, 1993) and impor-
tant physiological/biochemical properties such as canopymoisture (Sims
& Gamon, 2003; Ustin et al., 1998), light use efficiency (LUE: Gamon,
Penuelas, & Field, 1992), nitrogen (Asner & Vitousek, 2005; Martin,
Plourde, Ollinger, Smith, & McNeil, 2008; Ollinger, Richardson, Martin,
1 805 893 3146.
Hollinger, & Frolking, 2008; Townsend, Foster, Chastain, & Currie,
2003), lignin–cellulose (Kokaly & Clark, 1999; Serbin et al., 2014), chloro-
phyll (Asner,Martin, & Suhaili, 2012;Ustin et al., 2009), or photosynthetic
capacity (Serbin, Dillaway, Kruger, & Townsend, 2012). The TIR is critical
for quantifying canopy temperature, a fundamental control on rates of
photosynthesis, respiration, and transpiration (Gates, 1980) as well as a
means for partitioning surface energy balance into latent and sensible
heat components, critical elements of the hydrological cycle (Anderson
et al., 2011, 2008). Broad measures of canopy greenness combined with
air and leaf temperatures, provide measures of plant water stress
(Moran, Clarke, Inoue, & Vida, 1994). Because photosynthetic capacity is
temperature modulated, VSWIR-derived measures of photosynthetic
capacity combined with TIR leaf temperatures offer a mechanistic
means toward estimating carbon uptake (Serbin et al., 2012).

Ecosystem composition is an important factor for determining eco-
system response to disturbance and climate change (Schimel et al.,
2015). Plant species have a strong impact on biogeochemical cycles
(Asner & Vitousek, 2005; Ollinger & Smith, 2005), photosynthetic
rates (Robakowski, Li, & Reich, 2012), LMA (Asner et al., 2011), and
water use efficiency (McCarthy, Pataki, & Jenerette, 2011; Scherrer,
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Bader, & Korner, 2011). The combination of leaf-level differences in bio-
chemistry, anatomy, and canopy-level differences in plant architecture
and their impacts on scattered, reflected, and emitted radiation have en-
abled plant species to be discriminated spectrally in the VSWIR (Baldeck
et al., 2013; Castro-Esau, Sanchez-Azofeifa, Rivard, Wright, & Quesada,
2006; Clark, Roberts, & Clark, 2005; Dennison & Roberts, 2003a; Feret
& Asner, 2011; Goodenough et al., 2003; Youngentob et al., 2011) and
TIR (da Luz & Crowley, 2007; Ullah, Schlerf, Skidmore, & Hecker,
2012). Furthermore, plant species have been shown to have distinct can-
opy temperatures, in part due to differences in water use, and in part
due to differences in plant architecture (Leuzinger & Korner, 2007;
Leuzinger, Vogt, & Korner, 2010). Topographic factors, such as slope
and aspect, can have a strong impact on plant distributions, but would
also be expected to impact temperature through radiation balance.

Few studies have combined the power of VSWIR imaging spectrom-
etry and TIR remote sensing to explore species-level relationships.
In this paper, we use paired Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) and MODIS-ASTER Airborne Simulator (MASTER)
data to evaluate the relationship between plant species/vegetation
class, fractional cover, and Land Surface Temperature (LST). The study
was conducted in the area surrounding Santa Barbara, California, USA
consisting of a mixture of natural vegetation, agriculture, and urbanized
areas, using data acquired on July 19, 2011. Plant species and vegetation
classes were mapped using Multiple Endmember Spectral Mixture
(MESMA: Roberts et al., 1998), which was also used to generate cover
fractions for non-photosynthetic vegetation (NPV), green vegetation
(GV), soil, impervious surface, and shade. Relationships between the
GV fraction and LST as it varied with plant species were evaluated.

2. Methods

2.1. Study site

The study was conducted in the Santa Barbara area, including three
49-km-long east–west flight lines extending from the coast to the
crest of the Santa Ynez range (Fig. 1, Runs 20 to 22). A fourth, 43-km-
Fig. 1. Study site showing AVIRIS reflectance in three bands (indicat
longnorth–southflight line (Run 19)was also analyzed, and overlapped
with the western edge of the east–west lines. All flightlines were
acquired on July 19, 2011.

The study area has a Mediterranean climate, characterized by cool
winters, warm summers, winter precipitation, and summer drought.
Elevation ranges from sea level to a height of 1310 m along the crest
of the Santa Ynez Mountains, dropping to 220 m in the interior Santa
Ynez Valley. The east–west orientation of the mountains, cold currents
along the coast and general pattern of winter storms create a highly
contrasting environment with moderate temperatures along the coast,
higher temperature extremes in the interior, and high spatial variation
in precipitation including significant orographic enhancement on the
south facing side of the Santa Ynez Range and a modest rain shadow in
the interior. For example, based on a pair of weather stations deployed
byUCSB (Roberts, Bradley, Roth, Eckmann, & Still, 2010), the interior sta-
tion recorded an average annual precipitation of 337 mm from 2007 to
2013,while the coastal station recorded445.5mm. 2011was thewettest
year in this time period, with the coastal station receiving 651 mm.

These strong environmental gradients result in significant diversity
in vegetation over a relatively short distance. Progressing along Run
19 from north to south (Fig. 1), the interior is dominated by a mixture
of open grasslands, oak savannas, open pine forest, and shrublands.
Common species include evergreen needle leaf shrubs such as chamise
(Adenostoma fasciculatum), evergreen and deciduous shrubs such
as purple sage (Salvia leucophylla), California sage brush (Artemisia
californica), coyote brush (Bacharis pilularis) and California buckwheat
(Eriogonum fasciculatum), and broadleaf and needle leaf trees including
coast live oak (Quercus agrifolia), blue oak (Q. douglasii), valley oak
(Q. lobata) and gray pine (Pinus sabiniana). Introduced European grass-
lands are dominated by a mixture of introduced grass and herbaceous
species, some natives and large stands of invasive black mustard
(Brassica nigra). Moving south, the valley floor is dominated by agricul-
ture, including annual and perennial crops (vineyards), bare soil, and a
few small urban centers. Highest elevations along the Santa Ynez range
are dominated by a mixture of evergreen needle leaf (chamise) and
broadleaf shrubs, including several species of Ceanothus (Ceanothus
ed wavelengths are in nm) and MASTER LST for Runs 19 to 22.
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megacarpus, C. spinosus and C. cuneatus), andmanzanitas (Arctostaphylos
glauca and glandulosa), and several tree species including large stands of
coast live oak, California bay laurel (Umbellularia californica), and syca-
more (Platanus racemosa) in riparian zones. Abundance formany species
depends on local edaphic factors. Chamise and manzanita are more
common at higher elevations in more rocky terrain, while C. spinosus
andUmbellularia aremore common inmesic sites. Coastal sites are dom-
inated by a mixture of introduced European grasslands and invasive
mustards, pockets of small shrubs such as coyote brush and purple
sage, and local concentrations of coast live oak and riparian species in
small canyons. The coasts are also heavily disturbed, including small
localized stands of Eucalyptus, extensive orchards of avocado (Persea
americana), and various citrus species. The east–west flights are similar
in nature to the southern half of run 19 (Fig. 1), but also include an exten-
sive urban element.
2.2. Data

2.2.1. AVIRIS
Remotely sensed data used in this study were acquired by AVIRIS

and MASTER deployed simultaneously on an ER-2 high altitude plat-
form. AVIRIS is a 224 channel imaging spectrometer that samples radi-
ance between 350 and 2500 nm at an approximately 10 nm interval
with a full width half maximum of approximately 10 nm and an instan-
taneous field of view (IFOV) of 1 milli-radian (Green et al., 1998). The
data were flown at an average height of 9 km, resulting in a variable
ground instantaneous field of view (GIFOV) between 6.8 (Runs 19
and 22) and 7.7 m (Run 20) depending on peak surface elevation
below the sensor. Data were acquired between 21 UTC (Run 19) and
21.83 UTC (Run 22), at a solar zenith that increased from 18.6° for the
first flight to 26.9° and a solar azimuth that shifted westward from
224° to 246°.

AVIRIS data were calibrated to radiance and then orthorectified by
the Jet Propulsion Laboratory (JPL). Surface reflectance was retrieved
using ATCOR-4 (Richter & Schlaepfer, 2002) using a rural atmosphere,
an initial input visibility of 25 km, and variable water vapor fit on the
940 nm water vapor band as inputs. ATCOR-4 corrects for directional
effects using a digital elevation model (DEM) and uses spectral
polishing to reduce high frequency spectral artifacts. A DEM is used to
calculate sun-sensor geometry and correct all surfaces to reflectance,
ρL, using local solar zenith and azimuth and an assumed lambertian
surface. Cross scene illumination effects are normalized using a multi-
plicative factor. Defaults use a correction based on the ratio of the cosine
of local solar zenith, Βi to a scene dependent zenith, ΒT, with the ratio
raised to a power b (ρcor = ρL ∗ G, where G = [cos(Βi)/cos(ΒT)]b,
where ρcor is illumination corrected reflectance). ATCOR-4 empirically
adjusts parameters tominimize cross scene effects Radiometric spectral
polishing identifies all bare soil pixels in an image, then uses a five band
moving window to smooth all bare soil spectra. The average departure
between measured and smoothed soil spectra is calculated across the
entire image, then applied to all pixels to remove high frequency arti-
facts, primarily due to incomplete atmospheric correction. Default
values for BRDF correction and spectral polishing were used in this
study (see ATCOR-4 User Guide, 2012).

After reflectance retrieval, all AVIRIS images were resampled to
a common 7.5 m resolution using ground control points derived
from a 2010 National Agriculture Imagery Program (NAIP) digital
orthophoto (ca083) to improve georegistration. Runs 19, 21 and
22 were warped using Delauney triangulation and nearest neighbor
resampling, while Run 20, which was mostly ocean, was warped
using a second order polynomial and nearest neighbor resampling.
Once classified and processed using spectral mixture analysis, Runs
20 to 22 were mosaicked, giving precedence to the southern lines
in all cases to take advantage of a superior backscattering view
geometry.
2.2.2. MASTER
MASTER is a 50 channel broad band sensor designed to simulate

MODIS and ASTER. In this study we focused exclusively on five thermal
bands including MASTER bands centered at 8.6139, 9.0531, 10.616,
11.302, and 12.096 μm. MASTER has a 2.2 milli-radian IFOV and a
85.92 FOV (Hook, Myers, Thome, Fitzgerald, & Kahle, 2001) resulting
in an IFOV slightly larger than twice that of AVIRIS and an FOV more
than twice as wide. Temperature-Emissivity Separation (TES) was per-
formed using the PyMASTER retrieval algorithm developed by JPL.
PyMASTER is based on Python scripts and has been updated to simulate
the HyspIRI TIR retrieval and atmospheric correction methods outlined
in the AlgorithmTheoretical Basis Document (ATBD) available at http://
hyspiri.jpl.nasa.gov/documents.

Derivation of surface temperature and emissivity from observed
TIR radiance is an undetermined problem, and the constraint used
for solving the problem is an empirical relationship that predicts the
minimum emissivity (ϵmin) from the observed spectral contrast, or
minimum–maximum emissivity difference (MMD) for the set of bands
being used (Kealy & Hook, 1993; Matsunaga, 1994). The calibration
curve defining this relationship is derived from a subset of spectra of
different surface materials (rocks, soils, vegetation, snow, and water)
from the ASTER spectral library (Baldridge, Hook, Grove, & Rivera,
2009). The calibration curve appropriate for MASTER window bands
used in this study (43, 44, 47–49) is:

ϵmin ¼ 0:9921−0:75433 �MMD0:7852 ð1Þ

where ϵmin is the minimum emissivity for the five window bands, and
MMD is the difference between the minimum andmaximum emissivity
for those bands. TES requires land leaving radiance as input,which isfirst
estimated in an atmospheric correction module using MODTRAN (Berk
et al., 2005) and atmospheric profiles from the National Center for Envi-
ronmental Prediction (NCEP) (Kalnay, Kanamitsu, & Baker, 1990) in
which the atmospheric emission, scattering, and absorption by the
Earth's atmospheric constituents are removed from the observation.
After atmospheric correction and iterative removal of the reflected
downwelling radiance in TES, ϵmin is calculated and the full emissivity
spectrum can be recovered from the emissivity band ratios (Gillespie
et al., 1998).

The TES algorithm is susceptible to errors in retrieved temperature
and emissivity due to residual effects from incomplete atmospheric
correction, especially over graybody surfaces (e.g. water, vegetation)
(Gustafson, Gillespie, & Yamada, 2006). Tominimize these atmospheric
correction errors, a Water Vapor Scaling method was developed to
improve the accuracy of the output parameters from MODTRAN
using an Enhanced Multichannel Water Vapor Dependent (EMC/WVD)
split-window algorithm (Hulley, Hughes, & Hook, 2012; Tonooka,
2005). Essentially the surface temperature is first estimated over
graybody pixels on the scene using the split-window algorithm and
these values are used to scale the atmospheric parameters from
MODTRAN (transmittance, path radiance, sky radiance), which are
then used to estimate the surface radiance input to the TES algorithm.
In this study, atmospheric correction was performed using a user-
optimized method in which the maximum surface temperature differ-
ence was minimized by iteratively scaling the total ozone and water
vapor amount in MODTRAN for pixels over a water body. An optimal
solution was found by using an ozone scaling factor of 0.5, 370 ppm
CO2, and 0.8 cm for water vapor. These scaling factors were then used
in MODTRAN to calculate the atmospheric parameters, which were
used to estimate the surface radiance input to the TES algorithm.

Retrieved temperature, referred to as LST, was resampled to a 15 m
spatial grid after orthorectification and rotation using parameters sup-
plied by JPL. A second-stage georectification was performed using the
same 2010 NAIP dataset. Delauney triangulation was used with nearest
neighbor resampling, but only applied to Runs 19, 21, and 22—given the
larger FOV of MASTER compared to AVIRIS, Run 20 was not needed.

http://hyspiri.jpl.nasa.gov/documents
http://hyspiri.jpl.nasa.gov/documents


155D.A. Roberts et al. / Remote Sensing of Environment 167 (2015) 152–167
Finally, to match spatial resolutions with resampled AVIRIS reflectance
data, LSTwas resampled to 7.5m spatial resolution using nearest neigh-
bor resampling, meaning each 7.5 m pixel was replicated four times.

2.3. Spectral library development

Polygons used to create training and test spectral libraries were
based on field assessment, 1morthoimagery, andGoogle Earth Imagery.
Each polygon was required to be at least 75% dominated by a single
vegetation class, dominant plant species, or land cover class. Here we
use dominant plant species to describe vegetation composed of uniform
patches of a single plant species or more open stands composed of
a dominant canopy species with an exposed understory or substrate.
Examples of single-species vegetation classes include Q. agrifolia,
C. megacarpus, C. spinosus, and B. nigra. Examples of open canopy species
that may include mixtures of understory species or substrate include
Quercus douglasii, A. fasciculatum, P. americana and B. pilularis at the
species level, and Eucalyptus sp., and Citrus sp. at the generic level.
Vegetation class is used to describe mixed vegetation assemblages,
composed of two or more species such as A. californica–S. leucophylla
(ARCASALE), irrigated grasslands (IRGR), and Mediterranean Annual
Grassland and Forbs (MAGF).

Composition of vegetation canopy cover was estimated using a
method adapted from Meentemeyer and Moody (2000) using a high-
power spotting scope and/or up-close inspection. Once an area at least
75% dominated by a dominant plant species, vegetation class, or land
cover classwas determined, a polygon containing the areawas outlined
on a corresponding 1 m orthoimage. Field polygons were assembled
over multiple years from 2003 to 2012, with 35 collected in 2003, 65
in 2009, and over 300 in 2012. Polygons generated in 2012 focused on
adding additional species and additional urban, agricultural soil, and ag-
ricultural residue polygons. Polygons were also edited to remove areas
significantly impacted by the Jesusita Fire, which burned 3530 ha of
the Santa Barbara front range in May, 2009. Some vegetation and land
cover classes (urban, soil, rock, irrigated grass, Mediterranean annual
grass/forb, and agricultural residues) were assessed directly from the
orthoimagery. Polygons added in 2012 were identified using Google
Earth imagery in combination with the 2009 and 2011 AVIRIS imagery
(see Roth, 2014). For this paper, all polygons assembled between 2003
and 2012 were individually assessed to verify that vegetation class,
plant species, or land cover class were correct.

A total of 306 polygons were used in this study, sampling 24 domi-
nant plant species/vegetation classes/land cover classes (Table 1).
Where the same polygon existed in both flight lines in regions of over-
lap, the polygon was sampled twice to provide spectra from the same
surface at both a forward and backscattering view geometry, providing
a total of 361 sampled polygons. Test and training spectral librarieswere
developed using the approach proposed by Roth, Dennison, and Roberts
(2012) in which spectra are selected randomly from each polygon. For
large polygons, a maximum of 10 spectra were selected for training,
with the remainder set aside for testing. For small polygons, no more
than 50% of the polygon was sampled for training. Although balanced
representation of each species/vegetation class was sought, the number
of training pixels varied considerably depending on the spatial extent
of the class and its abundance in the Santa Barbara area. For example,
California bay laurel (UMCA) was only represented by four polygons,
resulting in 40 training spectra and 480 test spectra (Table 1). By con-
trast, chamise (ADFA) was represented by 28 polygons, providing 276
training spectra and 4988 test spectra. The mean number of sampled
polygons for each class was 15, the mean number of training spectra
was 149 and the mean number of test spectra was 3396 (Table 1).

2.4. Spectral mixture analysis

Dominant plant species/vegetation class and fractional cover were
mapped using MESMA (Roberts et al., 1998). MESMA is an extension
of simple spectra mixture analysis in which the number and types of
endmembers (EMs) are allowed to vary on a per-pixel basis. Typical
EMs include NPV (e.g. litter, stems and branches, senesced grass), GV,
soil, and shade (Roberts et al., 1993), but can be extended to include
other surfaces such as ash or impervious surfaces (Roberts, Quattrochi,
Hulley, Hook, & Green, 2012). MESMA compares multiple models con-
structed from combinations of two, three, or four EMs, and selection
criteria for the best-fit model typically include Root Mean Square Error
(RMSE) and constraints that require fractions to be physically reason-
able (e.g. between 0 and 100%). In this study, fraction constraints were
set at −5 to 105% to allow for some error in minimum and maximum
fraction, and themaximumRMSE allowed for amodel to fit a pixel spec-
trum was set to 2.5% reflectance.

In this study, we implemented MESMA in two ways. First, MESMA
was used as a classifier, in which a two-EM model (with one species
or class EM and a shade EM) was used to assign a class to a pixel. This
is one of the most common applications of MESMA and has been used
to map species in chaparral (Dennison & Roberts, 2003a; Roth et al.,
2012), Eucalyptus subgenera (Youngentob et al., 2011), wetlands (Li,
Ustin, & Lay, 2005), and forest plant functional types (Antonarkis,
Munger, & Moorcroft, 2014). MESMA can also be used to estimate frac-
tional cover, in which two, three, and four-EM models are combined to
produce a single fraction map. RMSE is calculated for each model, and a
threshold is used to select between best-fit two, three, and four-EM
models (Powell, Roberts, Dennison, & Hess, 2007). “Complexity” indi-
cates the number of EMs used in the selected model for each pixel and
fractional cover is reported as the GV, NPV, soil, impervious, and shade
fractions modeled for each pixel. A threshold of 0.7 change in RMSE
(reflectance units) was selected empirically to determine whether a
two, three, or four-EM model should be assigned to each pixel. Thus,
if the best-fit three-EM model improved RMSE more than 0.7 over
the best-fit two-EM model, the three-EM model was selected over
the two-EM model. An example of the three main MESMA products,
complexity, 2-EM class, and fractional cover is shown in Fig. 2.

In order to improve MESMA run times, we used Iterative
Endmember Selection (IES, Roth et al., 2012; Schaaf, Dennison, Fryer,
Roth, & Roberts, 2011) to reduce the size of EM libraries. IES models a
spectral library using the spectra from the library as EMs, and progres-
sively adds or subtracts EMs to decrease classification error asmeasured
by an increase in the kappa coefficient (Congalton, 1991). In this study,
the training spectral library consisted of 3578 spectra and IES selected
284 EMs, including at least one representative for each class.

EMs selected by IES from a library may not all perform well when
applied to an image. To evaluate EMs selected by IES, two-EM models
were applied to all four AVIRIS reflectance images and used to map
the 24 species/land cover classes. Each of the 284 models was assessed
individually based on several criteria including rarity (models that were
rare and mapped less than 500 pixels were discarded), purity (highly
mixed spectrawere discarded) and the extent towhich the EMmodeled
its class correctly. For example, several Eucalyptus (EUSP) and irrigated
grass (IRGR) EMs were discarded because they tended to map the
wrong class and rarely mapped the correct class. This procedure is typ-
ically iterative—removing one poorly-behaved model may result in a
different model that was well-behaved becoming a poor performer. In
this study, four iterations were used, resulting in a library consisting of
224 EMs. Through this process, half of the IRGR EMs and more than
half of the EUSP EMs selected by IESwere discarded. The 224-EM library
was used to run two-EM models on the reflectance images, generating
the final vegetation type classifications.

For fraction modeling, the 224-EM library was further subset to re-
duce run time and improve fraction accuracy. EMs that are clearly
mixed might be suitable for classification (such as a pixel dominated
by chamise with some exposed soil), but would not be appropriate as
a GV EM. EMs that are nearly identical are redundant, and can also be
removed. The general procedure for spectral library development, IES
EM selection, spectral library refinement, image classification, further



Table 1
Library sampling. NP reports the number of polygons for each species/vegetation class/land cover class along each flight line or in the training and test libraries. NS reports the number of
spectra sampled from the polygons, equal to 10 for large polygons or less than 50% for small polygons. Code reports the acronym used for each class throughout the paper.

r19 r20 r21 r22 Train Test

Type Code NP NS NP NS NP NS NP NS NP NS NS

Adenostoma fasciculatum adfa 2 20 1 10 25 246 28 276 4988

Agricultural residues agres 16 160 16 160 1592

Artemisia cal/Salvia leucophylla arcasale 13 130 1 10 14 140 4256

Arctostaphylos glauca/glandulosa argl 1 10 7 70 8 80 1923

Bacharis pilularis bapi 1 10 8 76 10 97 19 183 962

Brassica nigra brni 0 0 5 50 9 90 1 10 15 150 5871

Ceanothus cuneatus cecu 5 50 1 10 6 60 526

Ceanothus megacarpus ceme 14 140 14 140 2569

Ceanothus spinosus cesp 6 60 1 10 3 30 10 100 2402

Citrus species cisp 2 20 11 106 2 20 15 146 1420

Eriogonum fasciculatum erfa 8 80 8 80 3180

Eucalyptus species eusp 7 70 12 120 4 40 23 230 6894

Irrigated grass irgr 1 10 16 160 17 170 2644

Mediterranean Annual Grass/Forb magf 3 30 3 30 7 70 7 70 20 200 3188

Marsh Marsh 8 80 10 100 18 180 8923

Persea americana peam 18 180 8 80 26 260 7115

Pinus sabiniana pisa 7 70 7 70 2134

Platanus racemosa plra 1 10 2 20 5 50 8 80 1640

Quercus agrifolia quag 1 10 9 90 7 70 17 170 3958

Quercus douglasii qudo 17 170 17 170 5276

Rock rock 2 20 3 30 3 30 8 80 607

Soil soil 11 102 1 5 9 86 21 193 2464

Umbellularia californica umca 1 10 3 30 4 40 480

Urban urban 6 60 16 160 22 220 6500

Totals 97 962 39 381 135 1339 90 896 361 3578 81512

Min 4 40 480

Max 28 276 8923

Mean 15 149.1 3396.3

Stdev 6.6 64.5 2351.2
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spectral library refinement and fraction mapping is shown schemati-
cally in Fig. 3.

Through removal of redundant and mixed EMs, a 59-EM spectral
library (Fig. 4) was used to calculate fractions of NPV, GV, soil, and
impervious surfaces. These 59 EMs were combined in two, three, and
four-EMmodels with a shade EM tomodel the reflectance images. Thir-
teen EMs were used for NPV, 22 for GV, 8 for soil, and 16 for impervious
(Fig. 4). Based on this approach, one 2-EMmodel with 59 EMs was run,
followed by six 3-EM models and four 4-EM models, representing all
possible combinations of NPV, GV, soil, and impervious. For this library,
this translates to between 104 (NPV-soil) and 352 (GV-impervious)
3-EM combinations and 1664 (NPV-impervious-soil) to 4576 (NPV-
GV-impervious) 4-EM combinations.
2.5. Accuracy assessment and statistical analysis

Two-EM model classification accuracy was assessed at pixel and
polygon levels by calculating an error matrix from test spectra selected
from polygons. At the pixel level, Producer's accuracy, User accuracy,
overall accuracy, and kappa were calculated based on the number test
spectra pixels assigned to each class. Polygon-level accuracy was
assessed based on dominance—a polygon was considered properly
classified if the most abundant class for test spectra in the polygon
was correct. Polygon-based accuracy did not include unclassified pixels
in this assessment—thus a polygon would be considered correctly clas-
sified if the most abundant class was correct, even if a majority of the
pixels in the polygon were not classified.



Fig. 2. Complexity (left), Class Assigned from the 2-EMmodel (center), Fractions of NPV, GV, and soil calculated by fusing mixture models from three levels of complexity.
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To evaluate the relationship between fractional cover and LST as it
varies across dominant plant species or vegetation class, the average
fractional cover and LST for each polygon in the reference set was calcu-
lated. GV fraction (y) was plotted against LST (x) and the pattern in GV–
LST space was evaluated to determine whether observations were
clustered by dominant plant species/vegetation class in the GV–LST
space. We used one-way Multivariate Analysis of Variance (MANOVA)
to determine if significant differences in GV–LST data existed across
classes. MANOVA was run using a Type I sum of squares to account
for differences in the number of observations per class. To determine
significance between each pair of classes, we also ran pairwise signifi-
cance tests with the Holm adjustment for multiple comparisons. We
also calculated the Bhattacharyya distance (B-dist) between pairs of
classes. The Bhattacharyya distance incorporates both themean and co-
variance, and it is closely related to classification accuracy viamaximum
Fig. 3. Schematic showing the general procedure for spectral library development, IES EM sele
and fractionmapping. The left side shows the process of spectral library development frompolyg
of generating a classified map using a reduced spectral library, followed by removing all mixe
spectra and generate the sparse library. Mixed spectra were assessed visually.
likelihood (Langrebe, 2000). From the B-dist, the upper bounds on mis-
classification probability can be calculated as exp(−b); a higher value
means two classes are less separable in terms of GV–LST. This analysis
was implemented using the ‘fpc’ package in the R statistical software
environment (Hennig, 2014; R Core Team, 2014).

3. Results

3.1. Spectral library

The 59-EM spectral library (Fig. 4) revealed that GV EMs had the
highest diversity, requiring 22 spectra to capture the diversity present
in the four AVIRIS scenes (Fig. 4b). Anthropogenic vegetated surfaces
had the highest reflectance, with the brightest EM being irrigated turf
grass (IRGR) from a golf course. The next brightest surfaces were all
ction, spectral library refinement, image classification, further spectral library refinement,
ons, random sampling, and EM subselection using IES. The right side illustrates theprocess
d spectra to generate a no-mix library, and further EM subselection to remove redundant



Fig. 4. Spectra of NPV, GV, soil, and impervious EMs from the 59 EM library used for fraction modeling.
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orchard spectra of P. americana (PEAM). Intermediate reflectance
was observed in many of the non-orchard tree species, including
Q. agrifolia (QUAG), Eucalyptus (EUSP), U. californica (UMCA), and
P. racemosa (PLRA). P. sabiniana (PISA) was not mapped because of
exceptionally low map accuracies (not shown). The lowest reflectance
GV spectra were all evergreen shrubs, including five A. fasculatum
(ADFA), one Arctostaphlos (ARGL), one Ceanothus cuneatus (CECU),
and two C. megacarpus (CEME) spectra. Species that were mapped,
but proved to not generate a unique endmember spectrum included
Q. douglasii (QUDO), Ceanothus spinosus (CESP), and B. pilularis (BAPI).

The secondmost diverse EMclasswas urban, consisting of 16 imper-
vious surfaces (Fig. 4d). Using Google Earth Imagery, these materials
were specifically identified and included four asphalt road surfaces
(IMP01–04), a concrete parking garage (IMP05), four red-tile roofs
(IMP06–09), four commercial roofs (IMP10–13), and three roofs coated
with oil-based paints (IMP-14–16). These surfaces represented both the
highest reflectance (painted roofs) and lowest reflectance (asphalt
road) surfaces in the images.

The third most diverse group of EMs was NPV (Fig. 4a). Most of
these EMs could be characterized as seasonal NPV, in that most
would be live green plants earlier in the spring and treated as GV
at that time. One NPV-EM spectrum came from a mixed stand of
A. californica–S. leucophylla (ARCASALE), four from B. nigra (BRNI), one
from E. fasciculatum (ERFA), two from Mediterranean Annual Grass/
Forb (MAGF), and five from agricultural residues (AGRES). All spectra
can be characterized as having pronounced lignin–cellulose bands,
and little to no evidence of chlorophyll or water absorption features
(Fig. 4a). Agricultural residues had the highest reflectance, most likely
due to a lack of vertical structure, intermediate reflectance was ob-
served in MAGF and BRNI spectra, and lowest reflectance in the two
small shrubs. Eight rock/soil spectra were selected, including three
spectra from rock outcrops and five from soils (Fig. 4c). Minor differ-
ences in visible reflectance due to iron absorption are apparent, but
otherwise soil and rock spectra did not have strong differences in min-
eral absorption features.

3.2. Classification accuracy

Pixel-based accuracy for the two-EM classified reflectance images
was modest, with an overall accuracy of 53.5% and a kappa of 0.510
(Table 2, S1). Producer's and User accuracies varied substantially
between classes. The highest accuracies occurred for non-vegetated
surfaces including AGRES and SOIL, small shrubs (ERFA, ARCASALE),
senesced grasslands (MAGF), URBAN, MARSH, and PEAM, with
Producer's accuracies between 60 and 97.8% and User accuracies
between 64.2 and 92.1%. High User accuracies ranging from 63.9 to
86.5% were also found for EUSP, BRNI, and QUDO, suggesting that
these classes were mapped well where mapped, but were under-
mapped overall. Classes that reported relatively high Producer's accura-
cies included ADFA (72.5%) and QUAG (62.5%), both of which were
over-mapped at the expense of other evergreen shrubs or trees. Inter-
mediate User or Producer's accuracies less than 60% were found for
BAPI, CEME, and CECU; while PLRA, IRGR, ROCK, and UMCA had very
low accuracies. PISA proved so poor it was removed from all modeling
efforts. Citrus species (CISP) had a moderately high Producer's accuracy
of 52.3%, but low User accuracy due to extensive over-mapping.



Table 2
Producer's/user accuracies at pixel and polygon levels. 6860 pixels of 81,512 test pixels
were not classified, equal to 8.4% of the test data set.

Pixel-based Polygon-based

Class N-pixels Producer's User N-polys Producer's User

ADFA 4988 0.725 0.415 27 0.926 0.625
ARCA-SALE 4256 0.860 0.834 14 0.929 0.929
ARGL 1923 0.319 0.444 8 0.375 0.750
BAPI 962 0.589 0.115 12 0.833 0.455
BRNI 5871 0.558 0.757 11 0.636 0.500
CECU 526 0.447 0.390 6 0.667 1.000
CEME 2569 0.556 0.354 14 1.000 0.778
CESP 2402 0.054 0.127 10 0.000 0.000
CISP 1420 0.523 0.194 13 0.923 0.800
ERFA 3180 0.827 0.776 8 0.875 0.778
EUSP 6894 0.285 0.865 15 0.333 1.000
IRGR 2644 0.124 0.232 16 0.750 1.000
MAGF 3188 0.832 0.642 15 0.933 0.700
MARSH 8923 0.604 0.921 11 1.000 1.000
PEAM 7115 0.600 0.890 20 0.900 0.947
PLRA 1640 0.005 0.027 6 0.000 0.000
QUAG 3958 0.625 0.392 14 1.000 0.400
QUDO 5276 0.306 0.639 17 0.294 1.000
ROCK 607 0.112 0.083 6 0.500 1.000
SOIL 2464 0.716 0.728 20 1.000 0.909
UMCA 480 0.121 0.276 4 0.000 0.000
AGRES 1592 0.978 0.875 16 1.000 0.941
URBAN 6500 0.693 0.867 16 1.000 0.941
Overall 0.535 0.748
Kappa 0.5098 0.734
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A significant contributor to lower pixel-based accuracieswas unclas-
sified pixels, totaling 6860 pixels or 8.4% of the test library (Table S1).
Unclassified pixels were particularly common in orchards, where trees
are found in rows separated by soil or litter, and for BRNI, IRGR, and
PLRA. Large numbers of unclassified IRGR pixels, representing 78% of
the test data set, were a product of removing half of the IRGR spectra
selected by IES. However, we found this was necessary to reduce signif-
icant overmapping by some IRGR spectra, which tended tomodel sunlit
parts of tree canopies. Low PLRA accuracies may be a product of insuffi-
cient sampling due to a low number of polygons available to IES. PISA,
which was excluded as an EM, consisted of 2134 test pixels, and thus
also contributed to a general decrease in pixel level accuracy. Removing
PISA as a class would have raised overall accuracy 2.6%.

Polygon-level accuracy was substantially higher for most classes
(Table 2, Table S2). Polygon-level accuracy was 74.8%, with a kappa of
0.734. Eleven classes had polygon-level Producer's and User accuracies
exceeding 70% including ARCA-SALE, CEME, CISP, ERFA, IRGR, MAGF,
MARSH, PEAM, SOIL, AGRES, and URBAN. Increases were most pro-
nounced in those classes that had large numbers of unclassified pixels,
including CISP, PEAM, and IRGR. Polygon-based accuracies also im-
proved for most evergreen shrubs, including ADFA, ARGL, and CECU.
Several classes were never mapped correctly at a polygon level, includ-
ing CESP, PLRA, and UMCA. Others, including ADFA and QUAG, had very
high Producer's accuracies butmodest User accuracies. ROCK had a high
User accuracy, but modest Producer's accuracy because several refer-
ence polygons were misclassified.

Two-EM models were used to generate species/cover maps for all
four AVIRIS flight lines (Figs. 5 and 6). The vegetation type map for
Run 19 is highly accurate for most of the dominant species and classes
(Fig. 5). High accuracies are particularly evident for the small shrubs
(ARCASALE, ERFA), senesced grasslands (MAGF, BRNI), agricultural
soils and plant residues, QUAG, and ADFA. For example, the northern
valley in Run19 is dominated by amixture of drought deciduous shrubs,
senesced grasslands (MAGF and BRNI), agricultural activities, and oak
savannas and forest. Of these, only the oak savannas appear to be poorly
mapped. The more mountainous southern part of the flight line is
dominated by coast live oak and chamise, and these are the two most
prominent species mapped in these locations. The southern segment
includes introduced senesced grasslands (MAGF and BRNI), orchards,
and B. pilularis (BAPI), and these are all mapped as most abundant in
this portion of the flight. Poorly mapped species (Table 2, Table S1)
are relatively rare so the map errors are not obvious.

An east–westmosaic (Fig. 6), also correctlymaps thedominant plant
species/vegetation classes in the study area, correctly showing the two
most abundant evergreen shrub species (ADFA, CEME), coast live oak
(QUAG) dominated slopes and riparian zones, BRNI and MAGF along
the coast, MARSH near the airport, orchards (PEAM and CISP) along
the foothills, and highly urbanized areas along the coast in the center
of the mosaic. Map errors in relatively rare species are not obvious,
especially in riparian areas (PLRA and UMCA), mainly because these
are not abundant in the study area. Several classes, however, do stand
out as having been significantly over-mapped. These include BAPI,
which is prominently mapped in recent fire scars, CISP, which is also
over-mapped and present in fire scars, and ERFA, which is mapped as
abundant in areas known to be rock outcrops. Another significant
error is glint off of water surfaces, which is mapped as URBAN due to
glint having a relatively flat spectrum similar to some roof materials.

3.3. Cover fractions and temperature

Insets are shown for Run 19 (Fig. 7) and Runs 20–22 (Figs. 8 & 9)
showing spectral fractions for NPV, GV, soil, and/or impervious
compared to LST derived from MASTER. Along Run 19 two areas are
contrasted: a relatively warm, sparsely vegetated region dominated
by senesced grasslands and small shrubs (Fig. 7a & c) and an area of
densely vegetated shrublands and forests dominated by a high GV
fraction and lower LST (Fig. 7b & d). In the more open shrublands, the
lowest temperatures occur in areas with the highest GV fractions, dom-
inated primarily by QUDO and QUAG (Fig. 5). The highest temperatures
occur inmore open areaswith a high soil fraction or areas dominated by
agricultural residues. Small shrubs have intermediate temperatures
around 305 K in areas modeled as mostly consisting of GV.

An example of an urban area is shown in Fig. 8. This is an area dom-
inated by impervious surfaces, MAGF, BRNI, MARSH, orchards (PEAM
and CISP), and localized stands of EUSP. High temperatures of up to
330 K occur in areas with a high impervious fraction (Fig. 8a) or high
NPV fraction. Intermediate temperatures are observed in orchards,
and lowest temperatures in MARSH and Eucalyptus stands. A high
GV fraction and intermediate temperature is also observed for IRGR,
which is left unclassified in Fig. 8c.

Relatively low temperatureswere observed in shrub-dominated and
riparian dominated areas along the south-facing slope of the Santa Ynez
range (Fig. 9). Temperatures in this area were generally low, below
305 K, with highest temperatures localized in riparian areas dominated
by QUAG. Contrary to the urban area and central valley, areas with a
high soil fraction also tended to have low LST. A lack of correlation
between plant species and cover fractions is evident, in which high GV
fraction is modeled relatively uniformly throughout most of the eastern
half of the image, in an area that shows large, distinct stands of ADFA,
CEME, and QUAG. Lower temperatures in the western half correspond
to areas that were recently burned in the 2009 Jesusita fire.

3.4. Species, cover fractions and LST

To evaluate the relationships between the GV fraction, LST, and
vegetation type, we plotted the mean GV fraction against mean LST
for the 306 reference polygons, color coding each polygon to correspond
to its vegetation type (color) and plant functional type (symbol). A pro-
nounced inverse relationship was observed between the GV fraction
and LST (Fig. 10). Areaswith the highest GV fraction also had the lowest
temperatures, and areaswith lowGV fraction, high temperatures. How-
ever, significant clustering in the GV–LST space was also observed, with
high GV, low LST commonly found for trees, high GV, higher LST found
for evergreen shrubs, intermediate GV and higher LST for small shrubs,



Fig. 5. Classified map of Run 19. Acronyms in the legend are defined in Table 1.

Fig. 6. Classified map of Runs 20 to 22. Acronyms in the legend are defined in Table 1.
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Fig. 7. Fractions of NPV, GV, and soil (a & b), and associated LST (c & d).
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and lowest GV, highest LST inMAGF andBRNI. Clear, distinct clusters are
present for many plant species/vegetation types. For example, QUDO is
clearly offset fromQUAG, with similar GV fractions but LST on the order
of 5 K higher. Similarly, ERFA is offset from ARCASALE, in which similar
LST is observed in both, but lower GV in ARCASALE. MAGF and BRNI
form two unique clusters, with BRNI having a slightly higher GV frac-
tion, but significantly lower LST. Of the two orchards, PEAMcan be char-
acterized as having a higher GV fraction but slightly lower LST than CISP.
Of the various classes, evergreen shrubs appear the least distinct.

MANOVA indicated that significant differences in mean GV and LST
existed across classes (p b0.001). Pairwise comparisons using the
B-distance revealed that half of the plant species/vegetation classes
were unique in GV–LST space (Table 3). Unique clustering, as defined
by an upper-bound in misclassification rates of 15% or less in the GV–
LST space was found for AGRES, ARCASALE, BRNI, CISP, ERFA, MAGF,
PEAM, QUDO, ROCK, SOIL, and URBAN, which met this criteria for 11
or more class pairings. Species that were not separable from other
classes in this space included BAPI, CECU, CESP, and MARSH, which
had misclassification rates of 15% or less for 5 to 7 class pairings. Ever-
green shrubs tended to not be uniquely clustered in the GV–LST space.
For example, the lowest misclassification error for ADFA and another
evergreen shrub was with CECU, at 38.4%. The lowest misclassification
error rate between the three Ceanothus species was between CECU
and CEME, at 32.1%. Senesced vegetation was highly separable from
non-senesced vegetation, but not unique from URBAN, ROCK, and
SOIL, which possessed similar low GV fraction and high LST. Visually
separable clusters (Fig. 10) prove also to be statistically separable.
For example, the upper bound of misclassification between MAGF
and BRNI was less than 6%, less than 9% between QUDO and QUAG,
and 2.5% between CISP and PEAM. Riparian and mesic species (QUAG,
PLRA, UMCA, CESP) tended to cluster in a similar GV–LST space with
the lowest upper bound in misclassification rate found between CESP
and UMCA at 51%. EUSP also tended to overlap with many tree species
in the GV–LST space with a high upper bound in misclassification rate
of 88.2% with QUAG. It should be noted that some of the vegetation
and cover classes that were mapped at highest accuracy using MESMA
(such as MAGF vs soil) did not form unique clusters in the GV–LST
space, and others, which were mapped poorly (such as QUDO and
CISP) formed unique GV–LST clusters.

4. Discussion

4.1. Classification

While the dominant plant species and vegetation classes in the area
weremapped at accuracies exceeding 70%, several less common species
were mapped poorly. In general, lowest accuracies were observed for
specieswith the lowest number of training samples and smallest spatial
extent. This was particularly true for species that were relatively rare,
commonly found in riparian or mesic sites, including UMCA, PLRA, and



Fig. 8. NPV, GV, impervious (a), LST (b), and two-EM classification (c) for a highly urbanized area centered over Goleta, California. Acronyms in the legend are defined in Table 1.
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CESP. The ROCK class was poorly represented in the EM library selected
by IES and poorly mapped, suggesting that IES had difficulty identifying
unique spectra when training samples were low. One approach to
potentially overcome this limitation, proposed by Roth et al. (2012), is
the use of multiple random draws, selecting the library that produces
the highest kappa out of multiple libraries, in combination with forced
EM selection for rare classes. Only a single draw was used in this
study, so it is likely that higher accuracies could have been achieved
with multiple draws. IES is also not suitable as the only means for iden-
tifying a smaller set of spectra required for mapping three or more EMs
at higher levels of complexity (i.e., 284 reduced to 59). The approach
used here works, but is cumbersome and is one reason why only one
random draw was used for IES. One possible strategy would be to use
multiple draws and IES to identify the best possible initial library, then
to select a smaller subset from that library.

Several other classes proved to be challenging, including BAPI and
CISP, which tended to map recent fire scars. We did not include any
early successional species in the spectral library and it appears that
MESMA drew upon the most similar spectra it could find, which in
this case were BAPI and CISP. Additional training data capturing species
present in fire scars, and accounting for mixtures of EMs found in fire
scars (Kokaly, Rockwell, Haire, & King, 2007), may have improved
accuracy.

Another significant source of error was unclassified pixels. Two-EM
MESMA classifies a pixel based on the best fit EM in combination with
shade. In the event that a pixel is actually amixture ofmultiplematerials,
such as a GVmixed with soil, two-EMMESMAwill only model this pixel
if the EM library includes an EM that is also mixture of these two mate-
rials. In the case of species such as chamise andmanzanita, these species
are often intermixed with rock and therefore the training library also
includes mixed spectra for these classes. As a result, these two classes,
in principle, can be mapped accurately. By contrast, a class which is
mixed and heterogeneous, where a pixel can be dominated by a single
crown, or dominated by substrate between crowns, would likely be
poorly mapped using two-EM MESMA because many pixels would
require a third EM to be modeled accurately. This was likely the case
for orchards, in which large numbers of test pixels for PEAM and CISP
went un-modeled. This was also true in urban areas where impervious
surfaces are mixed with tree crowns or lawns. Accuracy assessment at
the polygon level showed a dramatic increase in accuracy, we suspect,
largely due to a reduced impact of unclassified pixels. One alternative,
proposed by Franke, Roberts, Halligan, and Menz (2009) is to classify
three-EM models (two bright classes and shade) based on the EM that
comprises the largest fraction in the pixel. Thus, a pixel composed of
CISP, soil, and shade, would be classified as CISP if the GV fraction was
highest, or soil if the soil fraction was highest. However, including a
larger number of EMs in the library used for mapping fractions to ac-
count for all possible species would have greatly increased the number
of model combinations for three and four-EM models.

Several other factors should be taken into consideration regarding
vegetation type classification. First, accuracy reported here may be
over reported due to autocorrelation within polygons used for training



Fig. 9.NPV, GV, and soil (a), LST (b), and two-EMclassification (c) for a shrubdominated landscapeon the south facing slope of the Santa YnezRange. Acronyms in the legend are defined in
Table 1.

Fig. 10. GV (y) plotted against LST (x). Colors and symbols correspond to different vegeta-
tion types. Different symbols are used for each plant functional type, defined in the upper
right corner of the figure.
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and validation. However, while the training and test data sets were not
completely independent, the training spectra subset and the spectra
selected by IES were a very small percentage of all polygon spectra.
For example, out of 85,090 spectra extracted from polygons, only 3578
spectra (4%) were used for the training subset. Of these 3578 spectra,
only 224 were selected by IES, representing a further reduction to 0.2%
of the original spectral library. Furthermore, of the original 361 polygons
in the image, only 137 unique polygons were represented in the IES
library, equal to 37.9% of the training polygons. While autocorrelation
within a polygon is present, 62% of the polygons were not sampled by
IES.

The research presented here is also based on a single date of imag-
ery, acquired in a relatively wet year in early summer. Dennison and
Roberts (2003b) found that seasonality had a significant impact on EM
selection and classification accuracy, with highest accuracies found for
late spring. Given the high levels of precipitation and cool temperatures
in 2011, July 19th may have been more similar to a late spring acquisi-
tion than early summer, and thus high levels of accuracy would be
expected. Had this analysis used a data set acquired during a drier
year or in fall, very different resultsmay have been obtained. The poten-
tial of incorporating seasonal imaging spectrometry to map plant
species has been largely unexplored. Recent examples, inwhich season-
al Hyperion was used to improve detection of an invasive tree species
on Hawaii, were presented by Somers and Asner (2012, 2013). Roth



Table 3
Upper bound of themisclassification rate based on paired B-distances. Colors indicate misclassification rates below 15% (Green), 15 and 30% (orange), and 30 to 50% (yellow). The table is
divided into two halves (a and b) for clarity.

a)

adfa agres arcasale argl bapi Brni cecu ceme cesp cisp erfa eusp

agres 0.000 – – – – – – – – – – –

arcasale 0.023 0.449 – – – – – – – – – –

argl 0.657 0.000 0.001 – – – – – – – – –

bapi 0.795 0.005 0.082 0.683 – – – – – – – –

brni 0.144 0.061 0.348 0.061 0.284 – – – – – – –

cecu 0.384 0.087 0.338 0.235 0.659 0.337 – – – – – –

ceme 0.558 0.000 0.002 0.871 0.682 0.086 0.321 – – – – –

cesp 0.424 0.000 0.012 0.621 0.786 0.163 0.542 0.737 – – – –

cisp 0.518 0.000 0.020 0.038 0.531 0.152 0.479 0.065 0.229 – – –

erfa 0.277 0.156 0.346 0.059 0.325 0.080 0.567 0.062 0.070 0.411 – –

eusp 0.319 0.000 0.013 0.490 0.681 0.133 0.417 0.550 0.843 0.176 0.059 –

irgr 0.884 0.001 0.019 0.614 0.692 0.062 0.216 0.454 0.228 0.459 0.342 0.172

magf 0.000 0.753 0.428 0.000 0.006 0.053 0.093 0.000 0.000 0.000 0.190 0.000

marsh 0.751 0.042 0.177 0.557 0.860 0.199 0.645 0.515 0.467 0.585 0.570 0.336

peam 0.547 0.000 0.000 0.826 0.582 0.042 0.138 0.695 0.428 0.025 0.069 0.294

pisa 0.668 0.000 0.004 0.288 0.644 0.110 0.380 0.445 0.488 0.521 0.214 0.338

plra 0.281 0.001 0.044 0.336 0.630 0.221 0.589 0.457 0.811 0.274 0.092 0.858

quag 0.316 0.000 0.009 0.523 0.652 0.133 0.377 0.641 0.836 0.136 0.034 0.882

qudo 0.594 0.000 0.009 0.126 0.512 0.069 0.279 0.156 0.172 0.834 0.441 0.129

rock 0.000 0.792 0.434 0.000 0.003 0.065 0.068 0.000 0.000 0.000 0.130 0.000

soil 0.000 0.710 0.327 0.000 0.003 0.082 0.047 0.000 0.000 0.000 0.093 0.000

umca 0.109 0.000 0.008 0.200 0.309 0.077 0.270 0.257 0.510 0.076 0.006 0.510

urban 0.009 0.469 0.560 0.000 0.041 0.245 0.197 0.000 0.002 0.006 0.340 0.004

b)

irgr magf marsh peam pisa plra quag qudo rock soil umca urban

magf 0.002 – – – – – – – – – – –

marsh 0.788 0.045 – – – – – – – – – –

peam 0.591 0.000 0.580 – – – – – – – – –

pisa 0.536 0.000 0.601 0.204 – – – – – – – –

plra 0.075 0.001 0.279 0.087 0.330 – – – – – – –

quag 0.156 0.000 0.298 0.294 0.342 0.790 – – – – – –

qudo 0.612 0.000 0.644 0.146 0.709 0.092 0.088 – – – – –

rock 0.001 0.691 0.034 0.000 0.000 0.000 0.000 0.000 – – – –

soil 0.001 0.785 0.024 0.000 0.000 0.000 0.000 0.000 0.797 – – –

umca 0.011 0.000 0.077 0.031 0.142 0.635 0.438 0.005 0.000 0.000 – –

urban 0.018 0.751 0.110 0.000 0.001 0.013 0.003 0.005 0.430 0.509 0.001 –
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(2014) evaluated the potential of usingmonthly spectra to discriminate
two evergreen shrub species, an annual and perennial grass species,
and two small shrubs in the Santa Barbara area, finding that each
species pair was statistical significantly different during certain times
of the year; yet the timing of best separation varied by species and
geographically between inland and coastal sites. The potential of im-
proved species mapping using seasonal information may be explored
using recent HyspIRI-like data sets acquired as part of the NASA-
funded HyspIRI Preparatory Campaign, in which at least three dates of
AVIRIS and MASTER were acquired in 2013 and 2014. The importance
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of seasonal information for mapping species argues strongly for the
value of a mission like HyspIRI, which could provide monthly observa-
tions at a fine enough spatial resolution to account for geographic
variation.

Other classification techniques could prove superior to MESMA for
mapping dominant plant species. For example, Clark et al. (2005)
found that Linear Discriminant Analysis (LDA) far outperformed
MESMA for discriminating plant species in the tropics while Baldeck
et al. (2013) achieved high accuracies using a Support Vector Machine
in African savannas. Roth (2014) found that different combinations of
training data selection, dimension reduction techniques and classifica-
tion methods impacted species mapping accuracy in several forested
ecosystems, a wetland, and the Mediterranean ecosystem used in this
analysis. LDA, Canonical Discriminant Analysis (CDA), and MESMA per-
formed similarly across sites, but frequently LDA and CDAoutperformed
MESMA. Beyond this, the authors found a significant decrease in accura-
cy when using IES-selected training data vs. the entire training spectral
library. Multiple approaches also exist for identifying EMs, including
Vertex Component Analysis (Nascimento & Bioucas-Dias, 2005) as one
example. MESMA can be combined with other classifiers to better ac-
count for EM variability between classes in the unmixing process.

4.2. Vegetation–LST relationships

Clustering by species was observed between GV fraction and LST,
and statistical analysis found significant differences between many
pairs of species. Several factors may contribute to plant species occupy-
ing a specific niche in GV–LST space. Controls on plant canopy temper-
atures include topographic factors, such as slope and aspect which
controls radiation balance (Dubayah & Rich, 1995), plant architecture
and gap fraction (Leuzinger et al., 2010; Scherrer et al., 2011), plant–
water relations modifying rates of evapotranspiration (e.g. McCarthy
et al., 2011), and canopy optical properties, such as the ratio of lower
emissivity stems and litter to higher emissivity leaves. Tree species,
such as EUSP, QUAG, and PEAM, tended to plot at high GV, low LST
with lowest temperatures observed in the more open EUSP canopies,
followed by QUAG, which is distributed more on north and easting
facing slopes or riparian zones. QUDO and CISP have shorter statured
canopies than EUSP, consisting either of a grass understory (QUDO) or
litter/soil background. These had the highest LST and lowest GV of the
tree classes, likely due to their shorter stature. Of the evergreen shrub
species, CESP, which is distributed inmoremesic sites, also had the low-
est temperature. Higher LST was observed in most other evergreen
shrub species, with highest LST and highly variable GV observed in
ADFA, a species that tends to formmore open, rocky stands. Comparison
of two small-shrub classes, ARCASALE and ERFA, showed some of
the most pronounced differences in the GV–LST relationship. In this
case, differences reflect the water status of the two plants. ARCASALE
tends to have very shallow root systems, very high photosynthetic
rates in early spring and senesces by summer during which leaves are
either shed, or curled (Eliason & Allen, 1997). By comparison, ERFA
has deeper roots and thicker, more drought resistant needle shaped
leaves (Kummerow et al., 1977) and thus is able to retain green leaves
throughout the summer. Similar, high LST for these two species suggests
that neither was actively transpiring. Differences in vertical stature
likely impacted GV–LST relations for the forbs and grasses, with
vertically-oriented stands of senesced BRNI plotting as much as 10°C
cooler than shorter stature MAGF. Overall, higher LST in senesced vege-
tation illustrates the importance of root zone moisture for maintaining
high rates of evapotranspiration and lower canopies temperatures. For
example, irrigated grasslands occupy a region of higher GV and lower
LST than natural grasslands, in large part because of senescence induced
by water stress in annual plants.

An alternate framework can be used to interpret the GV–LST rela-
tionships. Moran et al. (1994) proposed a means for assessing crop
water stress, in which air–canopy temperature differences are plotted
against a measure of greenness from vegetation indices. In this frame-
work, well watered vegetation occupies a region with a high vegetation
index while water stressed vegetation has a similarly high index value,
but elevated surface–air temperature differences. Based on this frame-
work, EUSP, UMCA, and QUAGwould be viewed as least water stressed,
evergreen shrubs and orchards more water stressed, and ERFA the
highest water stress of the green plants.

This study represents a single snapshot of GV and LST over a rela-
tively limited geographic extent, but GV–LST relationships likely have
both temporal and spatial variation. Seasonal and annual variability in
precipitation and temperature would be expected to produce greater
variation in both GV and LST for shallow-rooted species. For example,
MAGF and BRNI were both senesced in the data used for this study.
These species occupy a region of low GV and high LST, but would be
expected tomove significantly in the direction toward higher GV earlier
in the season. Shallower rooted species would also be expected to
express greater variability in response to longer-term fluctuations in
temperature and precipitation. Deeper rooted species such as EUSP or
QUAG, which have more reliable access to water (Canadell et al.,
1996), may show reduced seasonal variability but still respond to
longer-term drought. Species sensitivity to soil water could be moni-
tored by examining changes in GV–LST relationships over time, and
predictable changes in these relationships may provide an alternate
approach to species mapping (e.g. Nemani & Running, 1997). GV–LST
relationships may also be useful for mapping variability in species re-
sponse to environmental factors across local-to-regional geographic
scales. Phenotypic variation and ecotypic differentiation can produce
intraspecific differences in response to water stress across gradients in
latitude, elevation, and moisture (e.g. Abrams, 1994; Sparks & Black,
1999). HyspIRI-like data could be used to explore intraspecific varia-
tions in GV–LST relationships that may occur with slope and aspect or
across precipitation and temperature gradients.

4.3. Relationships to HyspIRI

Twomajor differences exist between the data used in this study and
the data that the HyspIRI mission would deliver as currently proposed.
The potential of temporal sampling has already been discussed; the
19-day repeat of HyspIRI would be anticipated to provide improved
species discrimination through phenology and the ability to monitor
seasonal shifts in GV–LST relationships. The other difference is the im-
pact of the proposed 60 m spatial resolution of HyspIRI. Based on prior
work, we hypothesize fractions of GV, NPV, soil, and impervious
would scale relatively well between the 7.5 m resolution used in this
study and the 60 m resolution of HyspIRI. For example, Roberts et al.
(2012) evaluated combined VSWIR-TIR synergies at multiple spatial
resolutions, including 7.5, 15, and 60 m. At 60 m resolution, classifica-
tion of the urban environment was not feasible but fractions were por-
table across all spatial scales, especially for GV and NPV. In past work,
comparing MODIS 500 m resolution data to 20 m AVIRIS data, fractions
were also portable across scales (Roberts, Dennison, Peterson, Sweeney,
& Rechel, 2006).

Classification accuracy for vegetation type may be scale dependent,
remaining high for classes that tends to form large patches, but declin-
ing for rare or spatially limited classes. For example, Roth (2014) evalu-
ated a range of factors that may impact HyspIRI performance, including
the impact of spatial resolution on classification accuracy. Similar to
Schaaf et al. (2011), Roth (2014) found that highest classification accu-
racies were found at coarser spatial resolutions, 40 m for Schaaf et al.,
and typically 60 m for Roth.

To evaluate the impact of a 60 m spatial resolution on this study,
we redid the analysis at 60m for oneflight line (run 19).We aggregated
the original 7.5 m AVIRIS to 60m, and then processed these data to cre-
ate a vegetation type classification and generate fractions usingMESMA.
The final resultsmatched our predictionswell, with an overall classifica-
tion agreement of 37% for species/vegetation class/land cover class.



Table 4
Relationship between NPV, GV, soil, and impervious at 7.5 m (x) and 60 m (7).

NPV GV soil impervious

Slope 1.044 1.067 1.212 0.85
Intercept −0.02 0.046 −0.009 −0.007
r2 0.672 0.691 0.549 0.293
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Common classes that occur in large patches showed highest agreement
(same class at both scales) between 7.5 and 60m, ranging from a low of
45% (ERFA) to a high of 51.4% (ADFA). Very poor agreement (10% or
less) was observed for rare classes that often occur in small patches.
Cover fractions, as expected, scaled well from 7.5 to 60 m (Table 4).
Highest correlations were observed for NPV and GV, with slopes near
1 for both, intercepts near zero and r2 values of 0.67 and 0.69, respec-
tively. Relatively modest correlation coefficients are a product of scatter
that results from MESMA, in which a 60 m pixel would be modeled by,
at most, four endmembers. This same pixel consists of 64 7.5 m pixels,
each of which may have a different set of endmembers depending on
the homogeneity of the area. A patch significantly larger than 60 m
would be expected to produce the same fractions at both scales, yet
patches significantly smaller than 60 m could be modeled by as many
as 64 unique models compared to one set at 60 m. Lower correlations
were observed for soil fraction, which was overestimated at 60 m, and
impervious surface fraction, which was underestimated. This is consis-
tent with the high spectral ambiguity between soils and impervious
spectra and the fine spatial scale of roads. From this analysis, we con-
clude that 60 m HyspIRI data would be able to estimate cover fractions
accurately, and classify dominant plant species, vegetation classes, and
land-cover classes accurately for themore abundant, spatially extensive
classes.

5. Conclusions

The HyspIRI mission would provide a unique pairing of a VSWIR im-
aging spectrometer and TIR broadband sensor, providing global mea-
surement for monitoring of vegetation. In this paper, we used paired
AVIRIS and MASTER data to evaluate potential synergies between
VSWIR and TIR data. Specifically, we evaluated the relationships be-
tween plant species/vegetation classes, cover fractions mapped with
AVIRIS, and LST estimated using MASTER at 7.5 m spatial resolution.

A 224-EM library was used with 2-EMMESMA tomap plant species
and vegetation classes. The resulting map of vegetation type proved
to be reasonably accurate, with 53% pixel-level accuracy and 74%
polygon-based accuracy. Maps generated using this approach likely
had higher accuracies because the largest errors occurred in relatively
rare classes, which were proportionally over-represented in the test
dataset. Spectral fractions mapped using a 59-EM subset demonstrated
a strong inverse relationship between GV fraction and LST, and signifi-
cant species-level clustering in the GV–LST space. The combination of
VSWIR imaging spectrometer and TIR data represents a significant
opportunity for understanding dynamic, species-dependent surface
reflectance and LST. The potential use of seasonal information, either
as ameans to improve classification accuracy or as an opportunity to ob-
serve how species clusters in the GV–LST space shift seasonally or vary
spatially, represents a very important new area for further research.
New datasets being acquired by the HyspIRI Preparatory Campaign
will allow assessment of seasonal change in GV–LST relationships, but
these relationships can only really be fully explored by a mission such
as HyspIRI.
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