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Forest ecosystems in the Sierra Nevada Mountains of California are greatly influenced by wildfire as a natural
disturbance, and increased fire severity and drought occurrence may alter the course of post-fire recovery in
these ecosystems. We examined effects of fire severity, post-fire climate, and topographic factors on short-
term (b5 years) vegetation recovery in mixed-conifer and red fir forests in the Sierra Nevada. We hypothesized
that short-term vegetation recovery patterns would be different among patches with varying fire severity, espe-
cially between low-moderate and high severity patches, and that post-fire climate would have differing impacts
on short-termvegetation recovery in different ecological zones (lowermontane forest vs. uppermontane forest).
30-meter Landsat time series stacks were used to monitor short-term vegetation recovery following wildfire in
mixed-conifer and red fir forest types. Changes in normalized difference vegetation index (NDVI) following
thirty-five fires (N405 ha) between 1999 and 2006 were examined. According to the modeling results provided
by ordinary least squares (OLS) regressions including spatial variation coefficients, fire severity, post-fire
wet eason precipitation, post-fire January minimum temperature, and topographic factors explain varia-
tions in short-term post-fire NDVI values (adjusted R-squared = [0.680, 0.688] for red fir forests; adjusted
R-squared = [0.671, 0.678] for mixed-conifer forests). The modeling results indicated that burned mixed-
conifer forest was sensitive to post-fire drought, while burned red fir forest, with higher summer soil mois-
ture availability, was sensitive to post-fire temperature. We also found that differences in recovery related
to fire severity disappeared more quickly in burned mixed-conifer forest than in burned red fir forest. Future
efforts should focus on long-term recovery, including competition between forest and shrub species in previous-
ly burned areas.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Wildfire has a key role in shaping patterns and processes in terres-
trial ecosystems of the western US (Sugihara, Wagtendonk, Fites-
Kaufman, & Andrea, 2006). Fire-prone environments have promoted
the adaptation of vegetation species in many western US forests, en-
abling these fire-adapted species to recover following fire (Sugihara
et al., 2006). Nevertheless, post-fire vegetation recovery is still deter-
mined by many onsite factors, such as fire severity, different plant
regeneration strategies, topography, and local climate (Chappell &
ces Department, Brookhaven
Agee, 1996; Collins & Roller, 2013; Crotteau, Morgan Varner III, &
Ritchie, 2013; Goforth & Minnich, 2008; Russell, McBride, & Rowntree,
1998; Scholl & Taylor, 2006; Shatford, Hibbs, & Puettmann, 2007;
Taylor & Halpern, 1991; Taylor & Skinner, 1998).

Previous work has shown strong effects of fire severity on post-fire
vegetation recovery (Chappell & Agee, 1996; Crotteau et al., 2013;
Donato et al., 2009) and addressed the important role of landscape po-
sition and topography in explaining variations in forest establishment
following fire over space and time Collins & Roller, 2013; Shatford
et al., 2007. In the southern Cascades mountain range (which shares
similarities in climate and vegetation with the Sierra Nevada range),
Crotteau et al. (2013) found the highest conifer seedling density in me-
dium fire severity patches, with lower density in high severity patches
and intermediate density in low severity patches. However, shrub seed-
ling density increased sharply with fire severity (Crotteau et al., 2013).
Similar post-fire patterns of seedling establishment were also found in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2015.10.024&domain=pdf
http://dx.doi.org/10.1016/j.rse.2015.10.024
mailto:ranmeng@bnl.gov
http://dx.doi.org/10.1016/j.rse.2015.10.024
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse


312 R. Meng et al. / Remote Sensing of Environment 171 (2015) 311–325
high-elevation forests dominated by red fir in the southern Cascades
(Chappell & Agee, 1996).

Post-fire climate might also control forest regeneration and interact
with factors such as landscape position to alter post-fire recovery
(Chappell & Agee, 1996; Collins & Roller, 2013; Goforth & Minnich,
2008; Russell et al., 1998). Chappell and Agee (1996) found that post-
fire red fir seedling establishment was higher in mesic areas and that
seasonal drought was an important agent of seedling mortality. Eleva-
tion, as a proxy for climate, was found to have a strongly negative
correlation with seedling density of mixed-conifer forests in the Sierra
Nevada (Mantgem, Stephenson, & Keeley, 2006). Seedling dynamics
might be the earliest signal of changing forest conditions and can
indicate environmental changes (Mantgem et al., 2006). As a result,
post-fire climate in the first growing seasons following fire may be
highly important for forest regeneration (Donato et al., 2009).

Previous studies have made substantial contributions to our under-
standing of vegetation recovery following fire in the Sierra Nevada
and southern Cascades, but most of them are ground-based and face
logistical limitations in the extent of the areas that could be sampled
(Chappell & Agee, 1996; Collins & Roller, 2013; Crotteau et al., 2013;
Shatford et al., 2007). In contrast, remote sensing-based post-fire
studies can provide insights into controls over vegetation responses to
wildfire beyond what can be measured in spatially limited ground
surveys (Chen et al., 2011; Chu & Guo, 2013; Díaz-Delgado & Pons,
2001; Gitas, Mitri, Veraverbeke, & Polychronaki, 2012; Lentile et al.,
2006; Mitri & Gitas, 2013; White, Ryan, Key, & Running, 1996). Fire
can affect the spectral and spatial properties of forests by vegetation
removal, soil exposure, and soil color alteration (White et al., 1996).
Spectral vegetation indices have been extensively examined to quantify
post-fire vegetation recovery (Díaz-Delgado, Lloret, & Pons, 2003; Gitas
et al., 2012; Ireland & Petropoulos, 2015; Lentile et al., 2006; Riaño et al.,
2002; Veraverbeke et al., 2012; Viedma, Meliá, Segarra, & García-Haro,
1997; White et al., 1996). Imaging spectroscopy, lidar, and synthetic
aperture radar data have more recently been incorporated into
investigations of post-fire vegetation recovery (Huesca et al., 2013;
Kane et al., 2013, 2014; Kane, Lutz et al., 2015a; Tanase, Santoro, de La
Riva, Pérez-Cabello, & Le Toan, 2010a; Tanase, Santoro, Wegmüller, de
la Riva, & Pérez-Cabello, 2010b; Tanase, de la Riva, Santoro,
Pérez-Cabello, & Kasischke, 2011), but have limited spatial and tempo-
ral coverage.

Land managers endeavor to identify vulnerable areas with poor
post-fire recovery potential, and then restore natural forest conditions
with priority intervention (Collins, Kelly, Van Wagtendonk, &
Stephens, 2007; Collins et al., 2009; Huesca et al., 2013). Thorough
and accurate monitoring, evaluation, and understanding of post-fire
forest regeneration are essential for assessing effects of disturbances
on ecological processes, modeling vulnerability of forest ecosystems,
and studying climate-fire regime interactions (Mitri & Gitas, 2013;
Solans Vila & Barbosa, 2010). Using forest gap and climate models,
optical remote sensing, and lidar data, a number of studies have recently
explored the effects of local climate patterns and topography on fire
regime and forest structure in the Sierra Nevada in depth (Kane et al.,
2013, 2014; Kane, Cansler et al., 2015b; Miller & Urban, 1999a, 1999b;
Schwartz et al., 2015). However, to our knowledge, previous studies
have not investigated the effects of fire severity, post-fire climate,
and topographic factors on vegetation recovery across a large spatial-
temporal scale.

In this study, we examined effects of fire severity, post-fire climate,
and topographic factors on short-term (b5 years) vegetation recovery
in mixed-conifer and red fir forests in the Sierra Nevada. Normalized
Difference Vegetation Index (NDVI) was used to monitor post-fire
vegetation recovery trajectories (Clemente, Cerrillo, & Gitas, 2009;
Epting & Verbyla, 2005; Henry & Hope, 1998; Hope, Tague, & Clark,
2007; Lee & Chow, 2015; Solans Vila & Barbosa, 2010). Competition be-
tween shrubs and trees starts immediately following fire in the Sierra
Nevada (Collins & Roller, 2013; Crotteau et al., 2013; Nagel & Taylor,
2005), so vegetation recovery in this study refers to both tree and
shrub regeneration. We used our analysis to explore two hypotheses:

(1) We hypothesized that short-term vegetation recovery patterns
as measured by NDVI should be different among various fire
severity patches, especially between low-moderate and high
severity patches, considering the strong effects of fire severity
on post-fire vegetation recovery (Chappell & Agee, 1996;
Crotteau et al., 2013; Donato et al., 2009; Russell et al., 1998).

(2) We hypothesized that post-fire climate had significant impacts
on short-term vegetation recovery as measured by NDVI in
mixed-conifer forest at lower elevation (lower montane forest)
and red fir forest at higher elevation (upper montane forest).

2. Methods

2.1. Study area

The study area encompassed the extent of two Landsat TM tiles,
covering the central portion of the Sierra Nevada mountain range with
an area of about 46,500 km2 (Fig. 1). This region has a Mediterranean
climate, with cool, moist winters and warm, dry summers. Most of the
annual precipitation is in winter, and in the form of snow at higher ele-
vation (above 1800 m). The native vegetation varies with elevation
from chaparral shrubland communities at lower elevation (~380 to
1500 m), mixed conifer forest at mid-elevations (~1100 to 1900 m),
and lodgepole pine and red fir forests (~2400 to 3000 m) to subalpine
forest and alpine meadows at higher elevations (above around
2650 m) (Storer & Usinger, 1963). This study will focus solely on
mixed-conifer and red fir forests derived from the 1977 Classification
and Assessment with Landsat of Visible Ecological Groupings (1977
CALVEG, described below). Mixed-conifer forest primarily consist of
white fir (Abies concolor), Douglas-fir (Pseudotsuga menziesii), sugar
pine (Pinus lambertiana), ponderosa pine (Pinus ponderosa), Jeffrey
pine (Pinus jeffreyi), incense-cedar (Calocedrus decurrens), California
black oak (Quercus kelloggii), and other hardwood species (Collins &
Roller, 2013). Mean fire return interval generally increases with
elevation, which is a characteristic of the Sierra Nevada fire regime
(Swetnam, Baisan, Morino, & Caprio, 1998).

2.2. Datasets

The main dataset applied to characterizing vegetation recovery
following fire was based on 30-meter spatial resolution Landsat Time
Series Stacks (LTSS) covering the period from 1994 to 2011. LTSS were
preprocessed for radiometric normalization and masking of cloud and
cloud shadow (Huang, Goward et al., 2010a; Huang, Thomas et al.,
2010b). In order to remove potential errors caused by misregistration
and terrain relief, each image in the LTSS was registered and
orthorectified precisely using a corresponding base imagewithminimal
geolocation errors and a digital elevationmodel (DEM) (Huang, Goward
et al., 2010a). Preprocessing of data used in the LTSS was done through
the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) (Gao, Masek, & Wolfe, 2009).

Corresponding maps of forest disturbance history (1984 to 2011)
were generated by Vegetation Change Tracker (VCT), an automated al-
gorithm for reconstructing forest disturbance history (Huang, Goward
et al., 2010a). Based on the spectral-temporal properties of land cover
and forest change processes, VCT disturbance maps record the changes
in forests occurring over a particular year, while not providing detailed
information on the disturbance type (Huang et al., 2009; Huang,
Goward et al., 2010a). The Landsat imagery used for annual NDVI calcu-
lation (described below) was also derived from VCT. MTBS (Monitoring
Trends in Burn Severity; http://www.mtbs.gov/) data were used to

http://www.mtbs.gov


Fig. 1. A map showing the two Landsat tiles used for this study, along with mixed-conifer and red fir forest areas as classified by 1977 CALVEG; change in NDVI of burned pixels from
Year +1 to Year +5 within the mixed-conifer and red fir forests is overlaid (see Section 3.1 below).

313R. Meng et al. / Remote Sensing of Environment 171 (2015) 311–325
supplement the VCT disturbance maps. Within the study region, fires
larger than 405 ha (1000 acres) were available in the MTBS dataset.

A 30-meter spatial resolution DEM (Digital Elevation Model) for the
study area was acquired from the SRTM (Shuttle Radar Topography
Mission) website (http://www2.jpl.nasa.gov/srtm/). Elevation, slope,
and aspect variables were derived from the DEM. Climate data —
monthly mean precipitation, January minimum temperature, and
July maximum temperature — covering the 1972–2011 period were
downloaded from the PRISM (Parameter-elevation Regressions on
Independent Slopes Model) website (http://www.prism.oregonstate.
edu/). PRISM makes use of point measurements of precipitation and
temperature to generate continuous digital grid estimations for climate
data with a 4-kilometer spatial resolution (Daly, Neilson, & Phillips,
1994).Wet season precipitationwas calculated as the total precipitation
modeled by PRISM for themonths of December throughMay.Minimum
and maximum temperature values represent the average of minimum
and maximum daily temperatures modeled by PRISM during each
month; January and July were selected as climatological extremes.
Note that one 4-kilometer PRISM pixel encompassed many 30-meter
LTSS pixels, providing a single PRISM climate variable value across
those 30-meter pixels.

Recovery from fires that occurred from 1999 through 2006 was
examined in this study, so a map of vegetation type coincident with or
prior to 1999 was needed to target pre-fire mixed-conifer and red fir

http://www2.jpl.nasa.gov/srtm/
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forest types. The 1977 CALVEG is a statewide classification system
developed by the US Forest Service, based on 1:250,000 scale Landsat
Multispectral Scanner (MSS) imagery acquired between 1977 and
1979 (Parker & Matyas, 1979). The chance of dramatic changes in
targeted forest prior to 1999 was greatly reduced by VCT. VCT was
used to identify pixels that did not experience disturbance prior to
1999 or subsequent to 2011. Although the LTSS used for VCT starts
from 1984, VCT is assumed to be able to capture “pre-series” distur-
bances before 1984 (Huang et al., 2009).

CALVEG is a hierarchical system originally derived from 6 formation
categories (forest, woodland, chaparral, shrub, herbaceous and non-
vegetated units). Through identifying distinctions among canopy
reflectance values of LandsatMSS imagery,field verification, andprofes-
sional guidance across the state, an initial 129 vegetation type series in
eight regions of California were mapped and expanded to the current
213 types in nine regions. Vegetation forms of different ecological
zones in the Sierra Nevada tend to correspond with elevation
(Wagtendonk & Fites-Kaufman, 2006). 1977 CALVEG allowed compari-
son of post-fire vegetation recovery between two ecological zones
(lower montane forest vs. upper montane forest) captured by the
mixed-conifer and red fir forest classes, respectively.
2.3. Analysis methods

2.3.1. Stratification of NDVI time series for pixels burned in wildfires
We examined 35 fires larger than 405 ha occurring between 1999 to

2006 within the study area (Table A.1), and analyzed NDVI values
5 years before and after the fires (1994–2011). Increasing NDVI follow-
ing fire was assumed to represent increasing cover of tree, shrub,
and herbaceous vegetation, but NDVI does not allow identification of
specific recovering vegetation types or species. Rapid vegetation recov-
ery and dramatic changes in species composition and cover tend to
occur in the first few years following wildfire (Collins & Roller, 2013;
Donato et al., 2009; Hope et al., 2007; Lee & Chow, 2015; Nagel &
Taylor, 2005), and species densities can likely reach a steady state
within 6 years in the Sierra Nevada (Conard, Jaramillo, & Cromack,
1985; Donato et al., 2009). As a result, NDVI 5 years following fire
(Year +5 NDVI) was chosen to study short-term vegetation recovery.
VCT did not classify disturbance and MTBS data were used to isolate
pixels within the study area that were burned once between 1999 and
2006. Pixels used for analysis were also restricted to mixed-conifer
and red fir forest types by the 1977 CALVEG data. The number of
qualified burned pixels after masking procedures varied from year to
year: no qualified pixels were available in 2000, whereas in 2001,
2003, 2004 and 2005 there were a large number of qualified pixels
(Fig. 2).
Fig. 2. Number of qualified burned pixels within two Landsat TM tiles covering the Sierra
Nevada Mountains of California.
NDVI time series were calculated from the LTSS, according to Eq. (1)
(Rouse, Haas, Schell, & Deering, 1974).

NDVI ¼ RNIR−RRedð Þ
RNIR þ RRedð Þ ð1Þ

where RNIR and RRed represent surface reflectance for TM band 4
(760–900 nm) and band 3 (630–690 nm), respectively. For each burned
pixel, an annual NDVI time serieswas constructed using the five pre-fire
years (Years −5 through −1), the year of the fire (Year +0), and
five post-fire years (Years +1 through +5). One of the biggest short-
comings in the use of NDVI for measuring vegetation status is that
NDVI can reach saturation in dense vegetation canopies (Carlson,
Perry, & Schmugge, 1990). In order to reduce the potential effects of
saturation, we focused only on the early stages of vegetation recovery
(up to 5 years) following fire. The post-fire vegetation recovery period
in this study refers to NDVI values from Year +1 to Year +5 relative
to fire.

2.3.2. Spatio-temporal modeling of vegetation recovery following fire

2.3.2.1. Variable definitions. To determine the environmental variables
that were significantly correlated with post-fire vegetation recovery in
mixed-conifer and red fir forests, OLS regression with spatial filtering
(described below) was used to model NDVI values in Year +5. Topo-
graphic elements (elevation, slope, and aspect), climate variables (de-
rived from PRISM), fire severity (derived from MTBS), the year when
the fire occurred (hereafter ‘disturbance year’), and Year +1 NDVI
were used as predictor variables (Table 1).

The predictor variables used are described in Table 1 and were se-
lected based on previous field studies (Collins & Roller, 2013; Crotteau
et al., 2013; Goforth & Minnich, 2008; Russell et al., 1998; Shatford
et al., 2007). Disturbance year was included as a dummy variable, due
to potential variation in phenology across years. Rather than using a cat-
egorical variable to define the terrain aspect, we used two continuous
variables called “northness” and “eastness” calculated using cosine
and sine of aspect, respectively. Northnesswill be close to 1 if the aspect
is generally north-facing and close to −1 if the aspect is generally
south-facing. The eastness variable behaves similarly.

Relative differenced Normalized Burn Ratio (RdNBR) values of each
fire case were derived from MTBS data and used directly as a proxy
for fire severity (Miller & Thode, 2007; Miller, Knapp et al., 2009a).
RdNBR is a remote sensing index developed for capturing the spatial
complexity of fire severity in the US (Miller & Thode, 2007). Based on
two best available Landsat images before and after fire, MTBS calculated
the RdNBR values for each fire case. RdNBR-based thresholds for fire
severity classes were developed to classify fires across time and space
in the US (Miller & Thode, 2007; Miller, Knapp et al., 2009a). RdNBR
has been shown to be correlated with field-measured fire severity,
and past efforts to validate RdNBR have included several fires used in
this study. Miller and Thode (2007) compiled fire severity data from
14 fires in the Sierra Nevada region and found an R-squared value of
0.61 field-measured severity. Four of 14 fires in Miller and Thode
(2007) overlapped with this study (ID numbers 19, 20, 21, and 26 in
Table A.1). Based on 30 fires, Miller, Knapp et al. (2009a) reported
user’s and producer’s accuracies for RdNBR-based high fire severity
classification ranging between 70.7% and 85.3%. Eight of 30 fires in
Miller, Knapp et al. (2009a) overlapped with this study (ID numbers 7,
12, 14, 17, 19, 20, 21, and 26 in Table A.1).

Year+1 NDVI was incorporated into themodel and used as a proxy
for post-fire vegetation condition (i.e. open growing conditions and
remnant tree overstory) (Collins & Roller, 2013; Donato et al., 2009).
Open growing conditions can benefit the pioneer shrub species through
more access to sunlight; remnant tree overstory can potentially produce
higher shade and provide a seed source promoting higher densities of
tree seedlings, thus limiting shrub competition (Crotteau et al., 2013).



Table 1
List of dependent and predictor variables considered in OLS regression.

Variable Units Description

Dependent variable Year +5 NDVI NDVI × 10,000 Continuous variable, a proxy for post-fire vegetation recovery status,
5-year post-fire

Burn effects Year +1 NDVI NDVI × 10,000 Continuous variable, a proxy for fire legacies
RdNBR RdNBR × 10,000 Continuous variable, a proxy for fire severity

Topography Elevation m Continuous variable, the elevation of the burned pixel
Slope Degrees Continuous variable, the slope of the burned pixel
Northness Continuous variable, calculated using cosine of aspect
Eastness Continuous variable, calculated using sine of aspect

Climate Wet season precipitation anomaly in Year +0, Year +1,
and the average anomaly of from Year +0 to Year +4

Z value Continuous variable, total precipitation deviations in December,
January, and February, March, April, and May in wet season following
fire based on 40 years' observations (1972–2011)

January minimum temperature anomaly in Year +0, Year +1,
and the average anomaly from Year +0 to Year +4

Z value Continuous variable, minimum temperature deviations in January
following fire from 40 years' observations (1972–2011)

July maximum temperature anomaly in Year +0, Year +1,
and the average anomaly from Year +0 to Year +4

Z value Continuous variable, maximum temperature deviations in July
following fire from 40 years' observations (1972–2011)

Other Disturbance year Year Dummy variable (Year 1999, Year 2001 … Year 2006)
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Year +1 NDVI was selected over immediate post-fire (Year +0) NDVI
due to the possibility of continued declines inNDVI in the year following
fire disturbance. As a consequence of wildfire, vegetation sometimes
gradually dies off in the post-fire period after surviving the direct burn
(Solans Vila & Barbosa, 2010). Dramatic changes in species composition
can occur and thus cause variations in NDVI during the post-fire period
(Epting & Verbyla, 2005; Hope et al., 2007). Changes in surface reflec-
tance following fire caused by leaching charcoals and burned remains
can also result in post-fire changes in NDVI (White et al., 1996). In this
study, the VCT algorithm may not discriminate consecutive multiple
disturbances (i.e. post-fire salvage logging). If a wildfire is followed
by salvage logging, lower NDVI values in Year +1 than in Year +0
can be expected. Also, in addition to best available Landsat images
during leaf-on seasons, composite images created by temporal interpo-
lationwere used by VCT (Huang, Goward et al., 2010a) if necessary. As a
result, Year +1 NDVI, rather than Year +0 NDVI, was used to reduce
these potential effects.

Based on the 40-year (1972–2011) climate record, pixel-wise
climate anomalies (z-scores) for wet season precipitation, January
minimum temperature, and July maximum temperature were calculat-
ed (Eq. (2)).

z ¼ X−μ
σ

ð2Þ

where X is the raw value, μ is the mean, and σ is the standard
deviation. These standardized values can be used for directly comparing
fires that occurred in different years and locations, and emphasize ex-
treme values (Arnold, Brewer, & Dennison, 2014). Prior to climate
anomaly calculation, an additional log10 transformation was performed
on the wet season precipitation to normalize the skewed distribution.
Post-fire climate anomalies in Year +0, Year +1, and the average
anomaly from Year +0 to Year +4 were used as predictor variables
to explain the variation in Year +5 NDVI (Table 1).

Modeling results showed that relationships between Year +5 NDVI
and topographic slope in mixed-conifer and red fir forests were both
significantly positive. Since steeper slopes tend to have shallow soil,
rapid runoff, and higher fire severity (Lydersen & North, 2012; Kane,
Lutz et al., 2015a), lower post-fire NDVI values were expected in high
slope areas. We further investigated the relationship between slope
and Year +5 NDVI observed in our study by comparing the pre-fire
and post-fire NDVI and RdNBR values of low slope (b5°) and high
slope (N25°) areas for mixed-conifer and red fir forests.
2.3.2.2. Model building. OLS with spatial filtering was used to determine
the multiple environmental factors that were significant in explaining
Year+5NDVI. Linearmodels with spatial filteringwere fitted separate-
ly for mixed-conifer and red fir forests using the combination of predic-
tor variables in Table 1. As a global modeling technique, OLS regression
models assume spatial stationarity (Mitchell & Yuan, 2010); the
modeled OLS relationships are assumed to be constant across space
(Miller & Hanham, 2011). The presence of spatial autocorrelation
in change in NDVI values between Year +1 and Year +5 was tested
for mixed-conifer and red fir forests through the global Moran’s I statis-
tics (Moran, 1950). The presence of spatial autocorrelation can violate
the assumptions of OLS regression and severely affect the parameter
estimates and error probabilities (Griffith, 2003).

According to the result of Moran's I, a regression model with spatial
variation coefficients was necessary. Several spatial modeling tech-
niques (e.g., spatial autoregressive, spatial filtering, Geographically
Weighted Regression (GWR)) have been proposed to deal with
the presence of spatial autocorrelation (Griffith & Peres-Neto, 2006;
Lichstein, Simons, Shriner, & Franzreb, 2002; Rodrigues, de la Riva, &
Fotheringham, 2014).We initially compared the performances of sever-
al spatial modeling techniques (Table A.2). In terms of model accuracy
and dealing with spatial dependence, spatial filtering (Griffith & Peres-
Neto, 2006) had the best performance. Eigenvector-based spatial
filtering is a method that can characterize meaningful spatial forces by
generating eigenvectors from a transformation procedure, depending
on eigenfunctions of a matrix (Griffith & Peres-Neto, 2006). The gener-
ated eigenvectors, representing the dataset’s spatial structure, can be
incorporated into the OLS regression as additional predictor variables
(Griffith, 2000; Griffith & Peres-Neto, 2006). Advantages of spatial
filtering include reducing stochastic noise found in the residuals OLS
modeling and increasing the normality and homoscedasticity of model
residuals (Griffith, 2003; Thayn & Simanis, 2013). Compared to more
conventional spatial autoregressive models, OLS with spatial filtering
demonstrates higher fit statistics and provides a straightforward
computation focus for dealing with spatial relationships in spatial
modeling (Wang, Kockelman,&Wang, 2013). Eigenvector-based spatial
filtering was implemented in the R environment with the spdep
package (Bivand et al., 2011).

Due to the large number of qualified burned pixels (Fig. 2), random
sampling was necessary to increase computational efficiency for OLS
modeling with spatial filtering. According to Eq. (3) (Kotrlik & Higgins,
2001), the mean and standard deviation of the dependent variable
population were calculated to estimate the necessary sample size (n).
The margin value was estimated by calculating the mean difference in
pre-fire NDVI values among disturbance years. At the 5% confidence



Fig. 3. Time-series mean NDVI values by disturbance year a. Mixed-conifer forests b. Red
fir forests.

Table 2
Standard deviations of NDVI values for pre-fire and post-fire periods for each disturbance
year.

Disturbance
year

Pre-fire period
(mixed-conifer)

Post-fire period
(mixed-conifer)

Pre-fire period
(red fir)

Post-fire
period
(red fir)

1999 0.026 0.057 0.041 0.050
2001 0.023 0.059 0.028 0.079
2002 0.022 0.051 0.022 0.033
2003 0.005 0.031 0.014 0.022
2004 0.017 0.045 0.032 0.096
2005 0.026 0.023 0.024 0.072
2006 0.022 0.054 0.009 0.091

316 R. Meng et al. / Remote Sensing of Environment 171 (2015) 311–325
level (critical value 1.96), 30% and 40% of burned pixels, randomly se-
lected, were estimated to represent the population of the dependent
variable for mixed-conifer forest and red fir forest, respectively.

n ¼ zα
2
δ

E

� �2
ð3Þ

where α is the confidence level, zα/2 is the corresponding critical
value, δ is the standard deviation, and E is the margin value.

In order to ensure the robustness of relationship assessment be-
tween predictor variables and the dependent variable, we repeated
the random sampling and OLS modeling with spatial filtering one
hundred times, and then the frequency of each predictor variable with
a significant relationship at the 95% level was counted. After dropping
the predictor variables with low significant frequencies (b0.8), we
repeated the whole process another one hundred times to ensure all
predictor variables still had high significant frequencies. At the same
time, the repetitive modeling results were summarized in terms of
confidence interval at the 95% level. Model residuals were checked for
normality and homoscedasticity. Pearson's correlation matrixes of
predictor variables (except the dummy variable of disturbance year)
and corresponding Variance Inflator Factor (VIF) for mixed-conifer
and red fir forests were calculated to check for multi-collinearity
(Craney & Surles, 2002).

2.3.3. Comparison of annual burned area fire severity with unburned areas
Frequency densities of NDVI values were calculated and used to

compare vegetation recovery patterns between different fire severity
classes and adjacent unburned areas. On the basis of 1977 CALVEG
and VCT, mixed-conifer and red fir pixels lacking disturbance during
the period 1984–2011 were randomly sampled from within a 4-
kilometer radius of burned areas, consistent with the spatial resolution
of the PRISM dataset. Such pixels shared the same pre-fire dominant
vegetation cover type with the pixels inside the burned areas. Burned
areas were stratified according to their fire severity (high, moderate,
and low) by RdNBR values (Miller & Thode, 2007; Miller, Knapp et al.,
2009a). Time-series frequency densities plots of NDVI values for
mixed-conifer and red fir forests were subsequently generated to com-
pare trajectories of post-fire vegetation recovery with fire severity.

3. Results

3.1. Post-fire vegetation recovery patterns

In the pre-fire period, theNDVI time series showed consistent values
with low temporal variability, indicating stability in forest cover until
the occurrence of fire (Fig. 3). In comparison to red fir forest, mixed-
conifer forest generally tended to have higher pre-fire NDVI values. As
expected, abrupt drops in mean NDVI in Year +0 following fires can
be observed in both the red fir and mixed-conifer series. Although
burned areas were generally characterized by increasing NDVI, the
mean NDVI time series indicated pronounced differences in vegetation
recovery between forest types and across fire years. NDVI decreased
Year +0 to Year +1 for mixed-conifer (e.g., fire years 2001, 2002, and
2006) and red fir forests (e.g., fire years 2002 and 2003). The NDVI
time series of both forest types also indicated a higher temporal variabil-
ity in the post-fire period than in the pre-fire period for most distur-
bance years (Table 2). Nevertheless, all of the NDVI series indicated a
general trend toward pre-fire values following fire (Fig. 3).

Before modeling post-fire NDVI values, we investigated the spatial
patterns of NDVI values for burned pixels (Fig. 1). Change in NDVI
from Year +1 to Year +5 (i.e. NDVI in Year +5–NDVI in Year +1)
tended to be spatially clustered, signifying strong spatial effects. Chang-
es in NDVI also tended to be lower in redfir forest than inmixed-conifer
forest. Positive Moran's I index values (0.33 and 0.62 for mixed-conifer
and red fir, respectively) with z-scores of 153.39 (p b 0.001) and 82.47
(p b 0.001) confirmed a tendency toward spatial clustering of change
in NDVI values between Year +1 and Year +5. These results indicated
that the relationship between the predictor variables and the depen-
dent variable in the OLS models can vary across geographic space, and
a spatial modeling technique is necessary to deal with spatial structures
in the datasets.

3.2. Relationships between environmental factors and post-fire vegetation
recovery

Average anomalies of post-fire climate variables over Years +0
through +4 were not used in modeling because of their strong multi-
collinearity with post-fire climate anomalies in Year +0 and Year +1.
Strong relationships were found between Year +5 NDVI and five pre-
dictor variables (Year +1 NDVI, slope, disturbance year, fire severity,



Table 3
Frequencies of predictor variables with a significant estimation at the 95% level after
repetitive OLS with spatial filtering run one hundred times.

Variable Frequency
(mixed-conifer)

Frequency
(red fir)

Year +1 NDVI 100 100
Elevation 13 100
Slope 93 100
Northness 95 15
Eastness 27 98
Year +0 Wet season precipitation anomaly 87 21
Year +1 Wet season precipitation anomaly 17 24
Year +0 January minimum temperature anomaly 100 96
Year +1 January minimum temperature anomaly 28 57
Year +0 July maximum temperature anomaly 2 64
Year +1 July maximum temperature anomaly 0 8
Disturbance year 100 100
Fire severity 100 100
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and Year +0 January minimum temperature anomaly) for both mixed-
conifer and red fir forests (Table 3). Northness and Year+0 wet season
precipitation anomaly were only robust for explaining variations in
Year +5 NDVI for mixed-conifer forest, and eastness and elevation
were only robust for explaining variations in Year +5 NDVI for red fir
forest.

The OLS regressions with spatial filtering shown in Eqs. (4) and (5)
were adopted after dropping predictor variables with low significance
frequency (b80) (Table 3). In the following equation, β0 is the intercept
and β1 to β6 are the coefficients; βDisturbance year is the dummy variable,
and ε is the residual:

Yearþ 5 NDVI for mixed‐conifer ¼ β0þ β1Yearþ 1 NDVIþ β2Slope
þβ3Northnessþ β4Yearþ 0 Wet season precipitation anomaly
þβ5Yearþ 0January minimum temperature anomaly
þβ6 Fire severityþ βDisturbance year þ ε

ð4Þ

Yearþ 5 NDVI for red fir ¼ β0þ β1Yearþ 1 NDVIþ β2Slope
þβ3Eastnessþ β4Elevationþ β5Year
þ0 January minimum temperature anomalyþ β6 Fire severity
þβDisturbance year þ ε

ð5Þ

We summarize the repetitive modeling results for mixed-conifer
and red fir forests in Tables 4 and 5, respectively. The modeling results
are shown in terms of confidence interval at the 95% level, based on
the repetitive random sampling and OLS modeling for one hundred
times. All of the aforementioned variables for predicting Year +5
NDVI were statistically significant at the 95% level in Tables 4 and 5. In
Table 4
Repetitive OLS modeling results for mixed-conifer forests with spatial filtering, in terms of con

Variable Coefficient

Intercept [4252.026,4309.876
Fire severity [−1.025, −0.975]
Year +1 NDVI [0.089, 0.096]
Slope [11.350, 12.716]
Year +0 January minimum temperature anomaly [−5.004, −4.682]
Year +0 wet season precipitation anomaly [154.616, 161.745]
Northness [−175.489, −158.9
Factor(Year 2001) [648.272, 691.350]
Factor(Year 2002) [1079.112, 1223.54
Factor(Year 2003) [−166.798, −130.9
Factor(Year 2004) [812.387, 858.936]
Factor(Year 2005) [1535.266, 1671.78
Factor(Year 2006) [356.478, 860.197]

a Coefficients values based on scaled NDVI by 10,000; Residual standard error = [648.558, 6
general, red fir forests (adjusted R-squared = [0.680, 0.688]) had a
slightly better modeling performance than mixed-conifer forests
(adjusted R-squared = [0.671, 0.678]).

Randomly selected pixels with all predictor variables significant at
the 95% level, out of one of the repetitive random samplings, were
used for partial regression plots and relative importance analysis of
predictor variables. By holding values for other than the corresponding
predictor variables constant, partial regression plots were used to char-
acterize relationships between the Year+5 NDVI (dependent variable)
and each predictor variable (Figs. A.1 and A.2, the dummy variable of
disturbance year was not shown) in Eqs. (4) and (5) for each forest
type (Cook, 2009).

With regards to the role of environmental factors, several lines of
evidence attested to the strong relationship between Year +5 NDVI
and predictor variables. The coefficient values and partial regression
plots for the predictor variables revealed a positive relationship be-
tween Year +5 NDVI and two of the factors— slope and Year +1
NDVI for both red fir and mixed-conifer forests; in contrast, a negative
relationship existed between Year +5 NDVI and fire severity. The
dummy variable—disturbance year—was also significant for both forest
types. Comparison of high (N25°) and low (b5°) slope areas suggested
that differences in pre-fire vegetation status caused the slope relation-
ship observed in mixed-conifer forest (Table 6). In contrast, the slope
relationship in red fir forest might be attributed to differences in fire
severity between low slope and high slope areas (Table 6).

Year +5 NDVI demonstrated different responses to some topo-
graphic and climate-related variables between mixed-conifer and red
fir forests (Tables 4 and 5). There was a positive relationship between
Year +5 NDVI and Year +0 January minimum temperature anomaly
in redfir forest,while the opposite trend existed inmixed-conifer forest.
In addition, positivewet seasonprecipitation anomalies in Year+0pre-
dicted greater NDVI values in Year +5 in mixed-conifer forest. One of
the aspect-related variables—northness—was negatively related with
Year +5 NDVI in mixed-conifer forest, and another aspect-related
variable—eastness—was positively related with Year +5 NDVI in red
fir forest. Also, the higher the elevation, the lower the expected Year
+5 NDVI value in red fir forest.

The relative importance of each predictor variable for each forest
type was explored in the R environment using the caret package
(Kuhn, 2015). Specifically, each of the predictor variables was dropped
sequentially from each model, and the drop in the absolute values of
the t-statistics was used as a measure of relative importance (Kuhn,
2015). Fire severity was most important for explaining Year +5 NDVI
in mixed-conifer forest (Fig. 4). Post-fire climate variables (Year +0
January minimum temperature anomaly and Year +0 Wet season
precipitation anomaly) also had high relative importance values
in mixed-conifer forest. In contrast, the post-fire climate variable
Year +0 January minimum temperature anomaly had much less
fidence interval at the 95% levela.

Std. error t-Statistics

] [107.263–109.031] [39.252, 40.033]
[0.078, 0.080] [−12.893, −12.383]
[0.013,0.014] [6.523,7.022]
[2.400, 2.432] [4.700, 5.252]
[0.650, 0.660] [−7.638, −7.156]
[16.483, 16.701] [9.317, 9.774]

80] [30.322, 30.720] [-5.757, −5.213]
[82.012, 83.340] [7.841, 8.400]

3] [275.438, 296.987] [3.865, 4.411]
91] [30.322, 37.057] [−2.191,1.720]

[84.637, 85.959] [7.522, 8.121]
2] [440.804, 493.831] [3.438, 3.821]

[118.206, 161.115] [3.838,4.735]

55.302]; Multiple R-squared = [0.691, 0.699]; Adjusted R-squared = [0.671, 0.678].



Table 5
Repetitive OLS modeling results for red fir forests with spatial filtering, in terms of confidence interval at the 95% levela.

Variable Coefficient Std. error t-Statistics

Intercept [7392.183, 7636.413] [390.555, 408.900] [18.537, 19.545]
Fire severity [−0.463, −0.427] [0.0750, 0.0760] [−6.141, −5.654]
Year +1 NDVI [0.194, 0.203] [0.017, 0.018] [11.152, 11.642]
Slope [13.880, 15.294] [2.802, 2.839] [4.926, 5.428]
Year +0 January minimum temperature anomaly [167.832,187.668] [45.457, 46.013] [3.669, 4.102]
Elevation [−1.448, −1.397] [0.109, 0.110] [−13.247, −12.748]
Eastness [140.160, 152.068] [28.377, 28.711] [4.911, 5.333]
Factor (Year 2001) [−339.698, −104.840] [307.553, 330.001] [−1.056, −0.364]
Factor (Year 2002) [−2079.174, −1830.554] [350.296, 371.367] [−5.874, −5.162]
Factor (Year 2003) [−1090.762, −853.424] [294.206, 317.427] [−3.660, −2.903]
Factor (Year 2004) [−295.724, −60.642] [297.777, 320.771] [−0.949, −0.233]
Factor (Year 2005) [−190.060, −37.849] [295.812, 318.896] [−0.605, 0.121]
Factor (Year 2006) [665.807, 904.538] [316.562, 338.395] [2.116, 2.815]

a Coefficients values based on scaled NDVI by 10,000; Residual standard error = [656.678, 663.936]; Multiple R-squared = [0.697, 0.704]; Adjusted R-squared = [0.680, 0.688].
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power for explaining Year +5 NDVI in red fir forest. Elevation had the
largest relative importance value in red fir forest instead. For red fir for-
ests, Year+1NDVI had a higher relative importance value compared to
fire severity. Landscape position variables (northness, eastness, and
slope) had the similar relative importance values in mixed-conifer
and red fir forests. The dummy variable (disturbance year) was a
more important predictor variable in mixed-conifer forest than in red
fir forests.

Similar to Fig. 3, abrupt changes in NDVI can be observed in frequen-
cy densities in Year+0 following fire for bothmixed-conifer and red fir
forests (Fig. 5). Burned pixels didn't recover to pre-fire status during
5 years following fire, although differences between unburned and
burned areas decreased over time. NDVI values in the high severity
group were lower than in low and moderate severity groups in
Year +0. Fire severity effects in mixed-conifer forest were apparent in
Year +0, but disappeared quickly starting from Year +1; in contrast,
apparent fire severity effects in red fir forest persisted for a longer
time from Year +0 to Year +5, although they also diminished over
time.

3.3. Model diagnostics

No strong multi-collinearity appeared to exist among predictor
variables for each forest type model as assessed by VIF (Tables 7, 8).
VIF values in the red fir model tended to be larger than in the mixed-
conifer model, but still smaller than the VIF threshold value of 10 com-
monly used for diagnosing collinearity (O'Brien, 2007). Moreover,
except the moderate correlation between the fire severity (RdNBR)
and Year +1 NDVI variables for each forest type (−0.209 and −0.353
respectively), as well as Year +0 January minimum temperature
Table 6
Mean NDVI and RdNBR values of low-slope (b5°) and high slope (N25°) pixels.

Mean Year −1 NDVI
(NDVI × 10,000)

Mean Year +5 NDVI
(NDVI × 10,000)

RdNBR
(RdNBR × 10,000)

Mixed-conifer forests
Low slope
(b5°)

6245 4418 531

High slope
(N25°)

7582 5154 666

Red fir forests
Low slope
(b5°)

6211 3833 845

High slope
(N25°)

5995 4868 649
anomaly and slope for red fir forests (0.328), most of the correlations
between predictor variables were very weak. By checking model resid-
uals, we also did not find clear violation of normality and homoscedas-
ticity (Figs. A.3, A.4).

Modeling results of OLS with spatial filtering show a large improve-
ment compared to the results of OLS alone, in terms of accuracy and
adjusted R-squared. Adjusted R-squared increased from 0.319 to 0.676
for mixed-conifer and from 0.442 to 0.687 for red fir. Accordingly, resid-
ual standard error decreased from 976.9 to 649.9 for mixed-conifer and
from 871.2 to 658.1 for red fir. Also, spatial autocorrelation among
predictor variables was filtered out for each forest type model: Moran's
I decreased and became non-significant (0.412 to 0.104 for mixed-
conifer, 0.322 to 0.081 for red fir, p b 0.001).

4. Discussion

Themodeling results (Tables 3–5) indicate that climate conditions in
the first post-fire growing seasons (Year +0) might be one of the most
important factors for vegetation recovery in the Sierra Nevada. Higher
Year +5 NDVI values in mixed-conifer forest were associated with
higher Year +0 wet season precipitation, in correspondence with the
general spatial pattern that water stress decreases with elevation in
lower montane forests of the Sierra Nevada (Miller & Urban, 1999b).
Post-fire drought is unfavorable for tree regeneration after disturbances
in Mediterranean environments (Broncano & Retana, 2004; Chappell &
Agee, 1996; Daskalakou & Thanos, 1996; Sánchez-Gómez, Valladares, &
Zavala, 2006). Enoughmoisture from immediate surroundings is impor-
tant for post-disturbance seed germination (Minore & Laacke, 1992;
Tappeiner, Newton, McDonald, & Harrington, 1992).

January minimum temperature was significant for explaining post-
fire NDVI values in both mixed-conifer and red fir forests. The negative
temperature relationship for mixed-conifer forest could be a proxy for
drought effects, but the positive relationship for red fir forest could be
related to high elevation limitations of solar radiation and temperature
on vegetation growth (Greenberg, Dobrowski, & Vanderbilt, 2009;
Miller & Urban, 1999b). Although having a small direct effect, favorable
temperature can become a critical factor, when enough moisture is
available (Minore & Laacke, 1992). An inverse relationship between el-
evation and Year +5 NDVI was found for red fir forest, which can be
probably also attributed to the decreased temperature with elevation
in upper montane forests of Sierra Nevada (Miller & Urban, 1999b).

In terms of relative importance of predictor variables, post-fire cli-
mate variables (Year +0 January minimum temperature anomaly and
Year+0wet season precipitation anomaly) had high predictive powers
in mixed-conifer forest, secondary to fire severity. Year +0 January
minimum temperature anomaly in red fir forest was not as important
as in mixed-conifer forest. Elevation had the largest predictive power



Fig. 4. Relative importance of predictor variables for (a) Mixed-conifer forests, and (b) Red fir forests.
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among all predictor variables for red fir forest. These findings as well as
the empirical relationships found in themodels together suggest that, in
our study area, vegetation recovery in mixed-conifer forest at lower
Fig. 5. Frequency distributions of NDVI values by fire s
elevationmay bemore sensitive to post-fire drought, but vegetation re-
covery in red fir forest at higher elevation, where soil moisture is less of
a limiting factor, may be more sensitive to post-fire temperature. In the
everity a. Mixed-conifer forests b. Red fir forests.



Table 7
Pearson correlation matrixes of predictor variables and corresponding VIF for mixed-conifer forests.

RdNBR Year +1 NDVI Slope Year +0 Wet season
precipitation anomaly

Year +0 January minimum
temperature anomaly

Northness

RdNBR 1 −0.209 0.136 −0.096 −0.129 0.010
Year +1 NDVI 1 −0.064 −0.172 0.172 −0.064
Slope 1 −0.104 −0.139 0.064
Year +0 Wet season precipitation
anomaly

1 −0.071 −0.072

Year +0 January minimum
temperature anomaly

1 −0.034

Northness 1
VIF 1.187 1.367 1.384 1.410 1.326 1.169
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future, stratified field sampling can be set up to account for the effects of
post-fire drought across a large spatial-temporal domain, based on the
results of this study.

The climate data used in this study had a coarser resolution com-
pared to Landsat and topographic data. The consequent scale mismatch
between environmental and climate data might result in decreased ex-
planation of spatial variation and underestimation of relationships
among other predictor variables, and thus added to model uncertainty
on multi-collinearity (Borcard, Legendre, Avois-Jacquet, & Tuomisto,
2004; De Knegt et al., 2010; Diniz-Filho & Bini, 2005). The scale
mismatch might also reduce the precision of coefficient estimation
and obstruct inferential tests (De Knegt et al., 2010). Nevertheless,
biased significance tests of regression coefficients caused by scale mis-
match should be greatly reduced in this study, because eigenvector-
based spatialfiltering is designed to capture spatial structures at varying
scales (Diniz-Filho & Bini, 2005). Partial regression plots still indicated
the strong effects of post-fire climate on Year +5 NDVI values across
the landscape (Figs. A.1 andA.2). Topographic data, especially elevation,
were used for downscaling climate data in the PRISMmodel (Daly et al.,
1994), so finer scale climate differences may be partially accounted for
by including elevation in the OLS model.

Landscape position can also strongly influence post-fire vegetation
recovery through its effects on local microclimate and hydrological pro-
cesses (Ireland & Petropoulos, 2015;Mitchell & Yuan, 2010). Regression
models in this study showed that north-facing aspects in mixed-conifer
forest tended to have higher post-fire vegetation cover compared to
south-facing exposures. This is consistent with studies (within the
northern hemisphere) showing that south-facing aspects were more
prone to drought, and therefore recovery appeared to be slower com-
pared to north-facing aspects (Ireland & Petropoulos, 2015; Malkinson,
Beeri, Halutzy, & Tesler, 2007; Mitchell & Yuan, 2010). In red fir forest,
east-facing aspects exhibited significantly higher post-fire vegetation
cover compared to west facing exposures. Further investigation is nec-
essary to explain this relationship and relationships between slope,
fire severity, and post-fire vegetation recovery.
Table 8
Pearson correlation matrixes of predictor variables and corresponding VIF for red fir forests.

RdNBR Year +1 NDVI Slop

RdNBR 1 −0.353 −0.1
Year +1 NDVI 1 0.2
Slope 1
Year +0 January minimum
temperature anomaly

Elevation
Eastness
VIF 1.545 1.674 1.9
While NDVI values have a strong increasing trend in the years
following fire, field studies have shown that it may take several decades
for burned sites to recover to pre-fire status (Collins & Roller, 2013;
Russell et al., 1998; Taylor & Halpern, 1991). Corresponding to results
from field-based studies in the Sierra Nevada and southern Cascades
(Collins & Roller, 2013; Crotteau et al., 2013), the effects of fire severity
on post-fire NDVI were still notable 5 years following fire (Fig. 5), and
lower Year +5 NDVI values were found for high-severity burn areas
(Tables 4 and 5). In addition, differences in burn effects within fire
severity patches tend to become smaller over time in terms of NDVI
(Fig. 5). But compared to mixed-conifer forest at lower elevation,
NDVI differences between fire severity patches are be more persistent
in red fir forest at higher elevation (Fig. 5). This is likely due to the
heavy snow, longer winter, and shorter growing season at high eleva-
tions where red fir forests are found (Laacke & Tappeiner, 1996).

In the Sierra Nevada, a number of plot-based studies have observed
that post-fire vegetation recovery during the early succession period
can be characterized by the competition between tree and shrub spe-
cies, especially in high-severity patches (Collins & Roller, 2013;
Crotteau et al., 2013; Kauffman & Martin, 1990, 1991; Nagel & Taylor,
2005). High shrub seedlingmortality has been also observed in the Sier-
ra Nevada in the first few years following germination, especially when
tree seedlings overtop shrub seedlings (Conard et al., 1985). Reestab-
lishment of tree species is often a forest management priority following
wildfire. In similar Mediterranean ecosystems, some studies indicate
that shrub species can act as “nurse” plants that promote the success
of forest regeneration in the long run (Castro, Zamora, Hódar, &
Gómez, 2002; Castro, Zamora, Hódar, Gómez, & Gómez-Aparicio,
2004; Dunne & Parker, 1999; Gómez-Aparicio et al., 2004). On the
other hand, with increasing fire severity and drying trends in the west-
ern US (Miller, Safford, Crimmins, & Thode, 2009b;Westerling, Hidalgo,
Cayan, & Swetnam, 2006), shrub speciesmay be strong competitors and
inhibit forest regeneration (Allen et al., 2010; Collins & Roller, 2013;
Dale et al., 2001; Miller & Thode, 2007). In decades to come, however,
ecosystem management may even struggle to maintain woody shrub
e Year +0 January minimum
temperature anomaly

Elevation Eastness

38 −0.113 0.102 −0.002
08 0.177 −0.010 0.043

0.328 −0.022 −0.088
1 −0.068 0.017

1 −0.083
1

02 1.937 1.544 1.235



321R. Meng et al. / Remote Sensing of Environment 171 (2015) 311–325
species across many currently forested areas, as conditions become
markedly hotter and drier (e.g., Batllori, Ackerly, & Moritz, 2015;
D'Antonio & Vitousek, 1992; Lenihan, Bachelet, Neilson, & Drapek,
2008).

A primary limitation of spectral vegetation indices based analysis
is that recovery of specific vegetation types or species may not be iden-
tifiable (Meng, Dennison, D'Antonio, & Moritz, 2014). While satellite-
based NDVI was used for determining vegetation recovery following
fire, we recognize that short-term NDVI following wildfire represents
relative vegetation cover rather than a directmeasure of forest regener-
ation. Thus, we could not assess vegetation species (shrub and tree)
composition and abundance in burned areas using the remote-sensing
based methodology in this study. In the future, more efforts are needed
to explore the long-term competition between forest and shrub species
in burned areas using the increasing availability of remote sensing
data or through stratified field samplings. For example, more com-
prehensive information at the species level can be derived from the
fusion of very high spatial resolution, lidar, or hyperspectral data
(Huesca et al., 2013; Kane et al., 2013, 2014; Polychronaki, Gitas, &
Minchella, 2013).

The accuracy of MTBS (i.e. fire severity) and VCT (i.e. forest distur-
bance history) products constrained the quality and validity of the re-
sults in this study. NBR and its derivative indices may not be spectrally
optimal for measuring fire severity (Roy, Boschetti, & Trigg, 2006), and
some variation in severity may be difficult to capture with these indices
(De Santis & Chuvieco, 2007, 2009; Roy et al., 2006). However, compre-
hensive accuracy assessments on RdNBR-based fire severitymapping in
the study area have shown reliable results (Miller & Thode, 2007;Miller,
Knapp et al., 2009a). The overall accuracy of VCT disturbancemaps was
found between 77% and 86% at the national scale (Thomas et al., 2011).
Based on a pixel-based interpretation in Greater Yellowstone Ecosys-
tems, the VCT fire detection was found to be highly reliable, with
user’s accuracy of 96% and producer's accuracy of 73% (Feng,
Chengquan, & Zhiliang, 2015). With the emerging of a new generation
of fire remote sensing products (Boschetti, Roy, Justice, & Humber,
2015; Csiszar et al., 2014; Parks, Dillon, & Miller, 2014), further im-
provements can be expected in post-fire recovery studies.
Table A.1
Name, ignition dates, and size of 35 fires included in the study.

ID Fire name Ignition date Size (hectares)

1 ELEANOR Aug 16, 1999 1,009
2 HIRAM Aug 8, 1999 1,142
3 NORTH PARK COMPLEX Aug 10, 1999 3,566
4 SOUTH PARK COMPLEX Jul 7, 1999 853
5 BURNT Jul 30, 2001 774
6 DARBY Sep 5, 2001 5,963
7 GAP Aug 12, 2001 6,688
8 HOOVER COMPLEX Jul 10, 2001 3,708
9 LEONARD Aug 18, 2001 2,131
10 NORTH FORK Aug 20, 2001 1,681
11 PONDEROSA Aug 27, 2001 1,240
12 STAR Aug 25, 2001 6,817
13 PLUM Nov 25, 2002 747
14 WOLF Jul 11, 2002 754
15 DUNCAN COMPLEX Jul 31, 2003 448
16 KAWEAH-KERN COMPLEX Jul 28, 2003 1,429
17 KIBBIE COMPLEX Jul 29, 2003 2,689
18 TUOLUMNE Aug 31, 2003 1,360

Appendix A
5. Conclusions

Due to the anticipated impacts of climate change on western US
ecosystems, there is a considerable body of research concerning
how climate change has andwill impact forest structure, disturbance
regimes, and carbon storage and dynamics (Allen et al., 2010;
Bond-Lamberty et al., 2014; Dale et al., 2001; Dennison, Brewer, Ar-
nold, & Moritz, 2014; Flannigan, Stocks, & Wotton, 2000; Moritz
et al., 2012; Rogers et al., 2011; Schwartz et al., 2015). Our study pro-
vides insights into the mechanisms of environment-fire interactions
on forest change by quantifying the relative contributions of multi-
ple environmental factors in two types of Sierra Nevada forests.
Given the expected increases in fire severity (Miller, Safford et al.,
2009b) and drying trend (Westerling et al., 2006) as climate changes
in western US ecosystems, we focused on the effects of fire severity
and post-fire climate on vegetation recovery. The results in this
study indicate that fire severity and post-fire climate might have sig-
nificant effects on postfire vegetation recovery, but these effects
might vary by ecological zone in the Sierra Nevada (lower montane
forest vs. upper montane forest). Therefore, adaptive management
guidelines for different forest ecosystems might be necessary under
most climate change scenarios. Our results combined with longer-
term monitoring may be useful for incorporation into a forest gap
model (Miller & Urban, 1999a) or for calibrating ecosystem simula-
tion models to gain a better understanding of the interactions be-
tween climate, disturbance and vegetation dynamics (Thonicke,
Venevsky, Sitch, & Cramer, 2001; Thornton et al., 2002). Improved
understanding of the mechanisms of environment-fire interactions
on forest change will assist management efforts to protect and sus-
tain the multiple resources valued in these ecosystems.
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ID Fire name Ignition date Size (hectares)

19 MOUNTAIN COMPLEX Jul 20, 2003 1632
20 MUD WFU Aug 31, 2003 1804
21 WHITT Aug 31, 2003 461
22 ARMSTRONG Aug 6, 2003 437
23 FREDS Oct 13, 2004 3298
24 HETCHY Oct 15, 2004 832
25 MEADOW COMPLEX Jul 1, 2004 2235
26 POWER Oct 6, 2004 6987
27 STEVENS Aug 8, 2004 395
28 COMB COMPLEX July 17, 2005 24,904
29 PW-3 SEG 3 Oct 12, 2005 761
30 BASSETTS Sep 19, 2006 939
31 BL MAST WUI06 Sep 1, 2006 957
32 CEDAR GROVE ROARING Jul 2, 2006 3,053,991
33 FROG Jul 21, 2006 2700
34 RALSTON Sep 5, 2006 3227
35 SOS 06 Dec 1, 2006 996



Fig. A.1. Partial regression plots of Year +5 NDVI against (a) RdNBR, (b) Year+1 NDVI, (c) slope, (d) Year+0wet season precipitation anomaly, (e) Year +0 January minimum temper-
ature anomaly, (f) Northness for mixed-conifer forests. The Y-axis of each panel shows the residuals from regressing the dependent variable against all predictor variables other than
the corresponding predictor variable, and the X-axis of each panel shows the residuals from regressing the corresponding predictor variable against all the remaining predictor variables
(Fox & Weisberg, 2010). The partial regression plots were implemented under R environment with the car package (Fox & Weisberg, 2010).

Fig. A.2. Partial regression plots of Year+5NDVI against (a) RdNBR, (b) Year+1 NDVI, (c) slope, (d) Year+0 Januaryminimum temperature anomaly, (e) Elevation, and (f) Eastness for
red fir forests. The Y-axis of each panel shows the residuals from regressing the dependent variable against all predictor variables other than the corresponding predictor variable, and the
X-axis of each panel shows the residuals from regressing the corresponding predictor variable against all the remaining predictor variables (Fox &Weisberg, 2010). The partial regression
plots were implemented under R environment with the car package (Fox & Weisberg, 2010).

Table A.2
Performance comparison of different spatial modeling techniques in OLS regression.

GWR Spatial autoregressive Spatial filtering

Mixed-conifer
Adjusted R-squared 0.307 0.655 0.676
Residual Moran's I 0.399 0.116 0.104

Red fir
Adjusted R-squared 0.483 0.566 0.687
Residual Moran's I 0.295 0.087 0.081
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Fig. A.3. Normal Q–Q plots of OLS models with spatial filtering a. Mixed-conifer forests b. Red fir forests.

Fig. A.4. Scatterplots of residuals and fitted values of OLS model with spatial filtering a. Mixed-conifer forests b. Red fir forests.
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