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Abstract 
Defoliation by the northern tamarisk beetle (Diorhabda cari-
nulata) causes changes in the reflectance of tamarisk (Tama-
rix spp.) canopies. Cross correlogram spectral matching was 
used to examine spectral separability of green, yellow desic-
cated, brown desiccated, and dead tamarisk canopy types. 
Using a feature selection technique (the instability index), 
four spectral regions were identified as important for canopy 
type discrimination, including one red (645-693 nm), one near 
infrared (735-946 nm), and two shortwave infrared regions 
(1,960-2,090 nm and 2,400-2,478 nm). The random forests 
decision tree algorithm was used to compare classification 
performances of full-range and feature-selected hyperspectral 
spectra as well as simulated WorldView-2 spectra. Classifica-
tion results indicated that the process of feature selection 
can reduce data redundancy and computation time while 
improving accuracy of tamarisk canopy type classification. 

Introduction
Tamarisk (Tamarix spp., a.k.a. saltcedar) is one of the most 
widely dispersed invasive plant species in the western United 
States, occupying an estimated 526,000 hectares and causing 
ecosystem service-related economic losses ranging between 
133 and 285 million US dollars annually (Zavaleta, 2000), not 
to mention millions of dollars spent on eradication and resto-
ration projects (Hultine et al., 2010a). Previous studies have 
reported that tamarisk has cumulative negative effects on 
riparian ecosystems, such as reduced biodiversity, increased 
soil surface salinity, changes in riparian wildfire occurrence, 
and water use (Dudley et al., 2000; Shafroth et al., 2005). 
In order to control tamarisk, the northern tamarisk beetle 
(Diorhabda carinulata) has been released in the western 
United States (Tracy and Robbins, 2009). The beetle removes 
the leaf cuticle of tamarisk and eats the leaf mesophyll cells 
selectively in both the larval and adult stages, leading the leaf 
to desiccate and drop (Plate 1) (Meng et al., 2012; Nagler et 
al., 2014). Defoliation may not kill the tamarisk plant, and in 
many cases, tamarisk can refoliate in six to eight weeks after 
defoliation; however, studies show that the repeat defoliation 
caused by the tamarisk beetle can increase tamarisk mortal-
ity (Carruthers et al., 2008; Dudley and Bean, 2012; Nagler et 
al., 2014). Repeat herbivory caused up to 40 percent tamarisk 
mortality near the release sites after five years (Hultine et al., 
2010a).    

Many studies have been implemented to investigate and 
monitor the impacts of beetle attack on tamarisk populations 
(Hudgeons et al., 2007; Nagler et al., 2008; Dennison et al., 
2009; Hultine et al., 2010a; Hultine et al., 2010b; Pattison et 
al., 2011; Meng et al., 2012; Nagler et al., 2012; Snyder et al., 
2012; Nagler et al., 2014). Due to the unexpected dispersal 
speed of the tamarisk beetle, the corresponding defoliation 

has spread to an extensive area that is unrealistic to track and 
analyze from the ground (Nagler et al., 2014). Projected cli-
mate warming and drying trends in the southwestern United 
States may increase the over-winter survival of beetle popu-
lations, and consequently lead to increased herbivory (Dale 
et al., 2001; Raffa et al., 2008). Remote sensing techniques 
may be the most effective way to evaluate the effectiveness 
of tamarisk bio-control at the landscape scale (Dennison et 
al., 2009; Meng et al., 2012; Nagler et al., 2012; Snyder et 
al., 2012; Nagler et al., 2014). Nevertheless, previous remote 
monitoring studies of tamarisk defoliation have not differenti-
ated between desiccated (live) tamarisk canopies and dead 
tamarisk canopies at the stand scale (Dennison et al., 2009; 
Meng et al., 2012; Nagler et al., 2012; Nagler et al., 2014). 
Desiccated and dead tamarisk canopies will have very differ-
ent ecosystem impacts, since desiccated canopies will regrow 
leaves and resume photosynthesis and transpiration. Identi-
fying the spectral differences between green, desiccated and 
dead tamarisk canopies may help establish more informative 
and accurate assessment of tamarisk bio-control impacts and 
assist development of more adaptive management plans.

We hypothesized that spectral analysis techniques devel-
oped for hyperspectral processing can be used to study spec-
tral features of tamarisk canopies and spectral separability 
among green, desiccated and dead tamarisk canopy spectra. If 
accurate classification of tamarisk canopy types based on field 
spectroscopy is proven feasible, hyperspectral and/or high 
spatial resolution imagery may be useful for mapping tama-
risk bio-control impacts. The objectives of this study are to: 
(a) develop a methodology for selecting suitable wavelengths 
for discrimination of green, desiccated and dead tamarisk 
canopies, and (b) analyze the spectral signatures of these 
canopy types at both fine and coarse spectral resolutions. 

Background
Previous studies of tamarisk defoliation by the northern tama-
risk beetle have used multispectral remote sensing data from 
the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER), Landsat Thematic Mapper (TM), Landsat 
Enhanced Thematic Mapper+ (ETM+) and Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) instruments. Denni-
son et al. (2009) mapped defoliation of large, dense tamarisk 
stands on the Colorado and Dolores Rivers using both ASTER 
and MODIS imagery. ASTER normalized difference vegeta-
tion index (NDVI) and MODIS enhanced vegetation index (EVI) 
both declined during periods of defoliation. Using Landsat 
TM imagery, Meng et al. (2012) compared two algorithms for 
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detecting tamarisk defoliation, the forest disturbance index 
(Healey et al., 2005) and a decision-tree model (random 
forests) (Breiman, 2001). Nagler et al. (2012) developed an 
approach for estimating regional evapotranspiration (ET) 
and foliage density changes caused by beetles using Landsat 
TM and MODIS data. Their results for six western US rivers 
indicated that defoliation events contributed to about 15 
percent of the overall ET and foliage density reduction, with 
marked variations among river systems. Snyder et al. (2012) 
compared ET and carbon flux measured by eddy covariance 
to NDVI calculated from Landsat TM and ETM+ data. Declines 
in NDVI occurred during summer decreases in leaf area and ET 
caused by defoliation (Snyder et al., 2012). Nagler et al. (2014) 
synthesized MODIS data, networked digital camera images and 
ground surveys to track beetle dispersal and its impacts on the 
Virgin River from 2010 to 2013. They concluded that beetle 
damage progressed at a rate of about 25 km yr-1, much faster 
than previous expectations, and caused a 50 percent reduc-
tion in leaf area index and ET of tamarisk stands by 2012. 

Identification of desiccated or dead tamarisk canopies may 
be aided by the availability of high spatial resolution (e.g., 
GeoEye, WorldView) or hyperspectral (e.g., Hyperion, AVIRIS) 
remote sensing data. High spatial resolution images may re-
duce spectral mixing at the stand scale to allow the separation 
of desiccated and dead canopies (Dennison et al. 2009, Meng 
et al. 2012), and can estimate ET at plant canopy scales (Nouri, 
2014). In contrast with multispectral data, spectroscopic (hy-
perspectral) analysis can resolve spectral features related to 
vegetation structure and biochemistry using hundreds of near-
contiguous narrow bandwidth channels (Ustin et al., 2004). 
As a result, hyperspectral data have been used to assess spec-
tral separability among different vegetation species (Dennison 
and Roberts, 2003; Pu, 2009; Van Aardt and Wynne, 2001), 
to estimate the change in biochemical compounds caused 
by disturbance or stress (Bian et al., 2010; Estep and Carter, 
2005; Pu et al., 2008), and to distinguish between green plant, 
plant litter, and soil at both leaf and canopy levels (Nagler et 
al., 2000; Nagler et al., 2003; Inoue et al., 2008). After measur-
ing spectral reflectance of plant litter and soil samples using 
a spectroradiometer, Nagler et al. (2000 and 2003) found 
no unique spectral feature for discrimination of plant litter 
and soil existed in the visible or near infrared (NIR) spectral 
regions. However, in the shortwave infrared (SWIR) region, an 
absorption feature associated with cellulose and lignin was 
found and a corresponding spectral index called cellulose 
absorption index (CAI) was designed to quantify plant litter 
cover (Nagler et al., 2000; Nagler et al., 2003).

Various non-photosynthetic vegetation and green vegeta-
tion cover types have been successfully classified through 
spectral matching and linear mixture modeling techniques 
(Cochrane, 1998; Roberts et al., 1998; Datt, 2000; Hostert et 
al., 2003; Herold et al., 2004; Daigo et al., 2004; Zhang et al., 
2006; Sonnentag et al., 2007; Zhang et al., 2007; Pacheco and 
McNairn, 2010; Haest et al., 2013; Somers and Asner, 2013). 
Spectral matching is one of the most widely used spectroscop-
ic techniques, aiming to detect targeted pixels or endmembers, 
while linear spectral mixture analysis (LSMA) is designed for 
disaggregating mixed spectral pixels from remote sensing data 
sets. Asner and Lobell (2000) claimed that a careful selection 
of wavelengths or spectral features for LSMA may improve 
classification accuracy and reduce computation complexity. 
Somers et al. (2010) developed and tested an automated LSMA 
algorithm, known as stable zone unmixing (SZU), to overcome 
the limitations of the AutoSWIR algorithm presented by Asner 
and Lobell (2000). The instability index (ISI) was calculated to 
select stable spectral features (Somers et al., 2008). ISI account-
ed for both the spectral variability within a class and the spec-
tral similarity among classes to indicate the most useful and 

stable wavelength ranges over the full spectral range. Somers 
and Asner (2013) demonstrated that a proper wavelength 
selection strategy could avoid redundant information and 
improve classification accuracies, by emphasizing the subtle 
spectral and phenological differences among targeted classes. 
Discrimination of defoliated and dead tamarisk canopy types 
could benefit from a similar wavelength selection strategy. 

Material and Methods
Study Site and Spectral Measurement
The study site was located at the University of Utah Rio Mesa 
Center, 65 km northeast of Moab in southeastern Utah. The 
riparian corridors along the Dolores River at Rio Mesa Center 
consist of dense tamarisk stands as well as some native cot-
tonwood (Populus fremontii) and willow (Salix gooddingii) 
trees. As a first step towards spectroscopic analysis, the re-
flectance of green, desiccated and dead tamarisk canopies was 
measured in situ along the Dolores River over the 350-2,500 
nm wavelength range using an Analytical Spectral Devices 
(ASD) field spectrometer with a 25° field of view (PANalyti-
cal; Analytic Spectral Devices, Boulder, Colorado). A white 
spectralon standard was used to calibrate the spectral mea-
surements. The full-width-at-half maximum (FWHM) and the 
sampling interval of the spectrometer for the 350-1,050 nm 
spectral range were 3 nm and 1.4 nm, respectively. Over the 
1,050-2,500 nm spectral range, the FWHM and sampling inter-
val were 8 nm and 2 nm. A Gaussian function with a 5 nm 
FWHM was used to resample the 1 nm instrument output.  

The reflectance measurements were carried out in early 
October 2013 within two hours before or after solar noon to 
reduce solar zenith angle effects, and under cloudless sky 
conditions. Reflectance spectra were measured from nadir at a 
height of approximately 15 cm above the canopy using a pis-
tol grip with extension. The representative tamarisk canopy 
types (green, desiccated and dead) with different heights 
along riparian corridors were selected in situ to ensure signifi-
cant variations in ground cover fractions and reflectance spec-
tra. Desiccated tamarisk canopies showed two colors: yellow 
and brown (Plate 1). Dead canopies were devoid of desiccated 
leaf material, with only branches showing (Plate 1). Reflec-
tance measurements for selected targets were performed five 
times and averaged for analysis. In total, 67 canopy spectra 
were collected and analyzed including 17 green, 15 dead, 27 
yellow desiccated, and 8 brown desiccated canopies. Means 
and standard deviations for reflectance spectra of green, 
brown desiccated, yellow desiccated and dead canopies are 
shown in Figure 1. The major absorption regions influenced 
by atmospheric water vapor content were excluded from 
analysis (Somers et al., 2009). 

Cross Correlogram Spectral Matching
A suitable number of mapping classes is important for im-
proving classification accuracy and efficiency (Richards and 
Jia, 2006). Desiccated tamarisk canopies showed two distinct 
colors (yellow and brown) in situ (Plate 1) representing dif-
ferent desiccated status, while Figure 1 indicated the spectral 
signatures of yellow and brown canopies were similar. Con-
sidering the computational task of remote sensing classifica-
tion, it may be beneficial to examine if spectral separability 
between yellow and brown desiccated canopies is minor or 
if it is reasonable to split the desiccated canopy type into two 
subtypes (yellow and brown). A spectral matching tech-
nique called cross correlogram spectral matching (CCSM) was 
implemented to compare the spectral separability of different 
tamarisk canopy types (Van Der Meer and Bakker, 1997). CCSM 
compares the differences between a reference spectrum and 
an unknown spectrum in the form of reference amplitude as 
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	 (a)	 (b)

	 (c)	 (d)

Figure 1. (a) Reflectance spectra of green, (b) brown desiccated, (c), yellow desiccated, and (d) dead tamarisk canopies. Atmospheric 
absorption regions were excluded.

		  (a)	 (b)

		  (c)	 (d)

Plate 1. Photographs of (a) green, (b) brown desiccated, (c)yellow desiccated, and (d) dead tamarisk canopies in situ.
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well as shape variations. In the CCSM procedure, a reference 
spectrum is compared to a “test” spectrum by calculating the 
linear correlation coefficient between the two spectra at dif-
ferent match positions (Van Der Meer and Bakker, 1997; Datt, 
2000). The cross correlogram function can be created by plot-
ting the correlation coefficients against match positions. The 
location of the correlation maximum also indicates the degree 
of similarity between the test spectrum and the reference 
spectrum. The cross correlogram shape for high similarity is 
parabolic and symmetric around match position 0 with a peak 
correlation near to 1; on the contrary, the cross correlogram 
shape for low similarity is skewed with the correlation peak 
shifted towards either positive or negative match positions 
(Datt, 2000). Cross correlograms were calculated and inspect-
ed visually for different canopy type combinations (Figure 2), 
where “canopy type combination” refers to the comparison 
between a test spectrum (i.e., an averaged spectrum of sam-
ples from one tamarisk canopy type) and a reference spectrum 
(i.e., an averaged spectrum of samples from a second tamarisk 
canopy type) when applying CCSM. 

The Instability Index 
ISI was used to identify wavelengths that were least sensi-
tive to spectral variability for tamarisk canopy classifica-
tion (Somers et al., 2008). ISI was calculated as the ratio of 
the within-class variability to the between-class variability 
(Somers et al., 2010):    
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where Rz,i and Rj,i are the reflectance values at wavelength i 
for class z and class, j, respectively, and δz,i and δj,i are the 
standard deviations at the same wavelengths of class z and j, 
respectively, and m is the number of classes. An ISI value that 
is below one indicates the between-class variability exceeds 
the within-class variability, while an ISI value which is above 
one signifies the opposite trend. Wavelengths with an ISI 
value below one are expected to contain useful information 
for spectral feature separation and should be selected for fur-
ther analysis (Somers et al., 2010).

Low ISI values were found for four spectral regions within 
the canopy spectra. Two of these spectral regions (red and 
NIR) corresponded to spectral regions covered by the high 
spatial resolution WorldView-2 multispectral instrument. 
WorldView-2 provides one panchromatic band (0.5 m spatial 

resolution) and eight multispectral bands (2 m spatial resolu-
tion) with an average revisit time of 1.1 days (Table1; http://
digitalglobe.com). Considering the size and distribution of 
tamarisk stands along riparian corridors, WorldView-2 is one 
of the most suitable sensors for high spatial resolution remote 
monitoring of tamarisk defoliation and mortality, but lacks 
SWIR bands found on coarser spatial resolution sensors. Field-
measured spectra were convolved using a sensor response 
function in ENVI software (http://www.exelisvis.com/) to 
simulate WorldView-2 multispectral spectra. ISI was also 
applied to select bands from the simulated WorldView-2 spec-
tra. Following this convolution step, four sets of spectra were 
used for random forests classification analysis: full-range field 
spectra, feature-selected field spectra, simulated WorldView-2 
spectra with all eight bands, and feature-selected World-
View-2 spectra with only bands 5 through 8 (Table 1). 

Table 1. Wavelength Ranges of Multispectral Bands of the WorldView-2 
Sensor (nm)

Band1 (coastal) 400-450 Band5 (red) 630-690

Band2 (blue) 450-510 Band6 (red edge) 705-745

Band3 (green) 510-580 Band7 (NIR1) 770-895

Band4 (yellow) 585-625 Band8 (NIR2) 860-1,040

Random Forests
The random forests (RF) algorithm was used to classify the 
tamarisk canopy field spectra and simulated WorldView-2 
spectra. RF is a machine learning algorithm based on tradi-
tional decision tree classification. It randomly selects input 
variables from a large number of available variables and 
generates a large ensemble of independent tree classifiers that 
vote for class membership (Breiman, 2001). RF provides an 
internal unbiased estimate of the training set error called the 
out-of-bag (OOB) error (Breiman, 2001). During the process 
of RF classification, each tree classifier was constructed from 
bootstrapped samples comprising about two-thirds of the orig-
inal dataset. Samples not used in the tree construction were 
put in the tree classifier to get a classification. In the end, 
a class is given to the largest number of votes from the OOB 
sample. The ratio of the times that a class is not the true class 
across all bootstrap iterations is called the OOB error estima-
tion (Breiman, 2001). In addition, standard methods for evalu-
ating classification accuracies such as confusion matrices and 
the kappa coefficient (Congalton, 1991a and 1991b; Congalton 

	 (a)	 (b)

	 (c)	 (d)

Figure 2. Cross correlograms using each tamarisk canopy type: (a) green, (b) brown desiccated, (c) yellow desiccated, and (d) dead as 
the reference over the 350-2,500 nm region.
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and Green, 2009) were calculated to compare the RF classifica-
tion of green, desiccated, and dead tamarisk canopies using 
full-range field spectra, feature-selected field spectra, 8-band 
simulated WorldView-2 spectra, and bands 5 through 8 from 
simulated WorldView-2 spectra. 

Results 
CCSM Results
Green, desiccated, and dead tamarisk canopy spectra had 
important differences in their reflectance spectra, but yellow 
desiccated and brown desiccated spectra were similar in terms 
of amplitude and shape (Figure 1). Mean green and desiccated 
canopy spectra possessed a steep increase in reflectance beyond 
visible wavelengths (>700 nm, referred to as the “red edge”), 
while the mean dead canopy spectrum showed a continual, 
gradual increase in reflectance. The contrast between the red 
and NIR spectral regions was highest for the mean green canopy 
spectrum, similar for both mean desiccated canopy spectra, and 
lowest for the mean dead canopy spectrum. The region with 
the highest reflectance (750-1,300 nm), called the “near infrared 
plateau,” contains a unique plant spectral feature. Two liquid 
water absorption features were evident on the NIR plateau 
centered near 980 and 1,200 nm for both green and desiccated 
canopy spectra. The NIR plateau is produced by high internal 
leaf scattering at cell wall interfaces (Nilson and Olsson, 1995; 
Kokaly et al., 2003). On the canopy level, NIR reflectance is fur-
ther enhanced by multiple leaf layers which can amplify the al-
ready large difference in red and NIR reflectance of single leaves 
(Knipling, 1970). These spectral features are also influenced 
by proteins, lignin and cellulose (Kokaly et al., 2003). Previous 
studies have indicated that the red and NIR regions can be used 

effectively for monitoring the active biomass of plant canopies 
and even vegetation vigor (Tucker, 1979, Rock et al., 1988). 

The SWIR spectral region has been identified as sensitive to 
vegetation moisture and senescence, and thus may be suitable 
for discrimination of green, desiccated and dead vegetation 
(Nagler et al., 2000; Nagler et al., 2003; Inoue et al., 2008; 
Piekarczyk et al., 2012). In the SWIR region, differences in am-
plitude can be observed among all the tamarisk canopy types 
(Figure 1), due to the changes in foliar water content (Gates 
et al., 1965): the mean dead canopy spectrum had the high-
est reflectance value, the mean green canopy spectrum had 
the lowest, and the mean desiccated canopy spectra (brown 
and yellow) were in the middle but similar. The mean and 
±1 standard deviation dead canopy spectra show evidence of 
lignin and cellulose absorption in the SWIR between 2,000 and 
2,200 nm, while this spectral feature is not readily apparent 
in green or desiccated canopy spectra (Figure 1).

CCSM results were consistent with the visual assessment of 
reflectance spectra (Figure 2): in comparison to other canopy 
type combinations, spectra of yellow and brown desiccated 
canopies were very similar with little difference, and the dead 
canopy spectrum was significantly different from the spectra of 
other canopy types. The cross correlogram with the reference 
spectrum itself was parabolic and nearly symmetrical with a 
correlation maximum up to 1 at match position 0, indicating a 
perfect match. Canopy type combinations using the green, yel-
low desiccated, and brown desiccated canopy spectra as refer-
ence spectra showed that the dead canopy spectrum was dis-
tinct. The dead canopy cross correlograms were highly skewed 
with much smaller correlation coefficients, and the correlation 
peak was shifted towards positive match positions (Figure 2). 
The cross correlograms for yellow/brown desiccated canopy 

Table 2. RF Confusion Matrices for Dead, Green, and Desiccated Canopies Using Full-Range and Feature-Selected Canopy Spectra

Full-range spectra Dead canopies Green canopies Desiccated canopies User’s accuracy (%)

Dead canopies 12 0 3 80.0

Green canopies 0 12 5 70.6

Desiccated canopies 2 3 30 85.7

Producer’s accuracy (%) 85.7 80.0 78.9

OOB error (%), Kappa and run time (seconds) 17.9 0.678 1.37

Feature-selected spectra

Dead canopies 13 0 2 86.7

Green canopies 0 13 4 76.5

Desiccated canopies 2 3 30 85.7

Producer’s accuracy (%) 86.7 81.3 83.3

OOB error (%), Kappa and run time (seconds) 16.4 0.730 0.26

Table 3. RF Confusion Matrices for Dead, Green, and Desiccated Canopies Using Simulated Full and Feature-Selected WorldView-2 Spectra 
Full WV2 spectra Dead canopies   Green canopies Desiccated canopies User’s accuracy (%)

Dead canopies 13 0 2 86.7

Green canopies 0 13 4 76.5

Desiccated canopies 3 1 31 88.6

Producer’s accuracy (%) 86.7 92.3 83.8

OOB error (%), Kappa and run time (seconds) 14.93 0.753 0.08

Feature-selected spectra

Dead canopies 12 0 3 80.0

Green canopies 0 14 3 82.4

Desiccated canopies 2 1 32 91.4

Producer’s accuracy (%) 85.7 93.3 84.2

OOB error (%), Kappa and run time (seconds) 13.43 0.776 0.07
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and green canopy combinations were moderately skewed, but 
the correlation maxima were still high around match posi-
tion 0; most important of all, the cross correlograms of yellow 
and brown desiccated canopies combinations were mostly 
indistinguishable. Since the differences between yellow and 
brown desiccated canopies were proven to be small and hard 
to distinguish, these canopy types were combined into a single 
desiccated canopy type for further analysis.

Feature-selected Wavelengths
Figure 3 plots ISI values based on the reflectance of green, des-
iccated and dead canopy spectra as a function of wavelength. 
As previously explained in the Instability Index Section, low 
ISI values were expected to correspond with low levels of 
similarity between canopy types and/or low levels of variabil-
ity within each canopy type indicating high separability. In the 
end, the feature-selected wavelengths with low ISI values were 
found in four spectral regions: one red region (645-693 nm), 
one NIR region (735-946 nm), and two SWIR regions (1,960-2,090 
nm and 2,400-2,478 nm). In previous studies, these regions 
were sensitive to changes in chlorophyll, damaged leaf layer 
structures and loss of water content (Knipling, 1970; Heller, 
1978; Boochs et al., 1990; Carter, 1993; Radeloff et al., 1999; 
Lentile et al., 2006; Inoue et al., 2008; Piekarczyk et al., 2012). 

Figure 3. ISI values based on the reflectance of green, desic-
cated, and dead canopy spectra, plotted against wavelength. 
Atmosphere absorption regions were excluded.   

Classification of Full-range and Feature-selected Spectra
RF confusion matrices, OOB error, kappa, and run time were 
used to compare the classification performance of full-range 
and feature-selected spectra (Table 2 and Table 3). In general, 
desiccated canopies were the most difficult to distinguish and 
caused most of the classification errors among the three canopy 
types. User’s accuracy for green canopies was lowest (70.6 per-
cent) using the full-range spectra, due to the misclassifications 
of green and desiccated canopies. In addition, Table 2 showed 
that using the feature-selected spectra instead of the full-range 
spectra, the OBB error dropped from 17.9 percent to 16.4 
percent. Correspondingly, the kappa coefficients of confusion 
matrices increased from 0.678 to 0.730. The computation time 
of feature-selected spectra decreased significantly compared to 
full-range spectra. Using a desktop computer, the run time of 
RF classification for feature-selected spectra was 0.26 seconds, 
while the time for full range spectra was 1.37 seconds. 

In comparison with the full WorldView-2 spectra, the 
feature-selected set of WorldView-2 spectra tended to have 
higher accuracy or lower OOB error (Table 3). These results 
indicate that a process of feature selection is likely beneficial 

for improving classification accuracy and reducing the compu-
tation time. Kappa values indicate that separation of canopy 
types improved when WorldView-2 bands were used, indicat-
ing that classification of green, desiccated, and dead tamarisk 
canopies may not require SWIR bands or hyperspectral data.  

Based on high accuracies for feature-selected canopy and 
simulated WorldView-2 spectra, the same feature-selected 
bands were applied to classification of four classes: green 
canopy, yellow desiccated canopy, brown desiccated canopy, 
and dead canopy. Table 4 shows the classification perfor-
mance for using feature-selected canopy spectra for separa-
tion of desiccated yellow and desiccated brown classes. 
User’s accuracy for brown desiccated canopies was 0 percent, 
due to the misclassification error between yellow and brown 
desiccated canopy spectra. In comparison to the classification 
performance based on three canopy types (Table 2), OOB error 
increased to 32.84 percent from 16.4 percent and kappa coef-
ficient decreased to 0.526 from 0.730 (Table 4). Using the best 
classification for three canopy types (four-band WorldView-2 
spectra), classification for four classes was attempted again. 
OOB increased from 13.43 percent to 28.36 percent, and at 
the same time, kappa coefficient decreased dramatically from 
0.776 to 0.585 (Table 3, Table 5). Similar to the results from 
CCSM, Table 4 and Table 5 indicate that combining desiccated 
canopies into one type was necessary. 

Discussion and Conclusions 
Our study contributes to continuing efforts for evaluating the 
impacts of tamarisk bio-control in the western United States, 
and extends our understanding of vegetation disturbance 
monitoring. Compared to previous studies using high spatial 
resolution or hyperspectral imagery to map vegetation canopy 
disturbance, our analysis using field spectra had similar 
classification accuracy. Using high spatial resolution (<4 m) 
QuickBird-2 images, Wulder et al. (2008) mapped mountain 
pine beetle “red attack” with 89 percent to 93 percent accura-
cies in British Columbia, Canada. Based on airborne hyper-
spectral imagery (PROSPECTIR-VS, 2 m spatial resolution) 
and field measurements, Santos et al. (2010) mapped asymp-
tomatic, senesced and dead trees in a pine forest of southeast-
ern United States using a decision tree method. Stressed tree 
mapping had a kappa coefficient of around 0.70, indicating 
that asymptomatic trees are likely to have significantly higher 
reflectance in the red-NIR regions, senescent trees are likely 
to have significantly lower reflectance in the NIR regions, and 
dead trees are likely to have significantly higher reflectance in 
the SWIR regions. 

Our analysis applied wavelength selection techniques on 
canopy spectra collected in situ before classification by RF, 
resulting in an increased classification accuracy of tamarisk 
canopy types compared to using the full wavelength range 
(Asner et al., 1998; Somers et al., 2010; Somers and Asner, 
2013). Using selected wavelengths (bands) that display high 
between-class variability and low within-class variability, 
not only was higher classification accuracy achieved, but the 
computational time was greatly reduced (Table 2 and Table 
3). In addition, feature-selected WorldView-2 bands demon-
strated better classification performances over field spectra for 
separating green, desiccated, and dead canopy types. Somers 
and Asner (2013) hypothesized that redundant spectral infor-
mation in hyperspectral data caused decreased accuracy and 
additional computational time in the spectral mixture analy-
sis. Redundant spectral information may have caused lower 
classification accuracies for full spectrum canopy spectra and 
simulated WorldView-2 spectra used in this study.  

In conclusion, this study proposed a methodology to 
improve remote monitoring of tamarisk bio-control by a 
combination of spectral analysis techniques (CCSM, ISI, and 

204	 March 2015 	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



RF). The step of feature selection might be useful not only for 
spectral mixture analysis of hyperspectral remote sensing, but 
also for multi-spectral remote sensing classifications. The red, 
NIR, and SWIR wavelength regions were found to be important 
for discriminating desiccated and dead canopy spectra. Our 
analysis shows again that the variations in spectral signatures 
caused by stress or disturbance are not equal across the full 
wavelength range, and that spectral features at specific wave-
lengths are valuable for monitoring disturbed or stressed plant 
canopies  (Ahern et al., 1991; Radeloff et al., 1999; Hurley et 
al., 2004; Santos et al., 2010).  

Further studies evaluating the impacts of the tamarisk bio-
control program could be accomplished using data acquired 
from high spatial resolution sensors (i.e., WorldView-2) and 
ground-based ET measurements. More detailed and accurate 
mapping of tamarisk canopy classes may be possible with 
high spatial resolution, multispectral data. By exploring the 
relationship between spectral indices and ground-based ET 
measurements, high spatial resolution data may also assist 
in assessing water salvage (Nouri, 2014). Multi-temporal 
analysis using either high spatial resolution multispectral or 
hyperspectral data may also result in improved classification 
of tamarisk defoliation and mortality, as well as identification 
of mortality trends over time. 
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