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Soil data are largely absent for most of Africa. For landscapes with recognizable
catenary elements, this data gap can be filled by mapping the catenary units and
assigning them with known soil properties. An example is the landscape map for a
region with dambos in central Uganda, which shows the four catenary units in order
from well-drained to seasonal wetland: uplands, margins, floors, and bottoms.
However, this map was created using optical data, which are cost prohibitive and are
also limited by cloud cover. We evaluated the potential of freely available aerial
gamma-ray spectrometry (AGRS) data as an alternative source of classification inputs.
Analysis of variance based upon field data for a region with dambos in central Uganda
showed gamma activity to differ along the catenary sequence, with landscape position
explaining an appreciable proportion of variation of potassium (28%), thorium (27%),
and uranium (46%). Using the three gamma channels, together with terrain indices
derived from the Shuttle Radar Topography Mission (SRTM) digital elevation model
(DEM) as inputs, three classifiers were evaluated – conditional inference trees (CITs),
random forests (RF), and multinomial-iterative self-organizing data analysis
(ISODATA). While untransformed terrain and gamma predictors were used for the
first two methods, we applied the ISODATA classification to landscape unit probability
maps generated using multinomial principal components regression. For the CIT
classification, all decision rules were based on terrain data, which might explain why
the map was slightly less accurate (unweighted kappa = 0.61, linear weighted
kappa = 0.73) than the map created using a RF classifier (unweighted kappa = 0.63,
linear weighted kappa = 0.74), where both terrain and gamma predictors were used.
But the existence of artefacts of margins within uplands in the map based on CIT
modelling, and not that created using RF, is because the former missed the smoothing
effect of gamma, attributed to zonal differences in activity of all three gamma channels.
The multinomial-ISODATA predictions were poor (unweighted kappa = 0.56, linear
weighted kappa = 0.67), partly because the regression model could not adequately
resolve differences between bottoms and floors. However, we did find the probability
maps generated using multinomial regression to be useful end products that capture the
continuous nature of landscape unit transitions. It is important to note that in this study
we used 90 m grid resolution gamma and terrain data to predict features that transition
over distances of less than 10 m, so better results might be possible with finer-
resolution gamma and terrain data.
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1. Introduction

Good-quality soil information is required to guide land management decisions (Cambule,
Rossiter, and Stoorvogel 2013; Sanchez et al. 2009). It is also increasingly sought by
scientists, who use it for many applications (Scull, Franklin, and Chadwick 2005) such as
watershed hydrological (Zhu and Mackay 2001) and climate change (Sanchez et al. 2009)
modelling. However, soil data are sparse for many parts of the world (Hartemink,
Krasilnikov, and Bockheim 2013). Where they are available, the resolution is inappropri-
ate for hydro-ecologic modelling (Quinn, Zhu, and Burt 2005), and is not suitable for land
management applications at the field scale (Sanchez et al. 2009).

Africa is host to countries where soil maps not only lack detail (Dewitte et al. 2013), but
are also highly fragmented (Dewitte et al. 2012) and outdated (Dewitte et al. 2012; Odeh et al.
2012) and cannot readily be improved because of limits imposed by the cost of soil surveys
(see Dewitte et al. 2012;McBratney, Santos, andMinasny 2003;Moore et al. 1993). Formany
of these areas, mapping catenary units with predictable soil properties would contribute soil
information needed to manage the soil resource (see Hansen et al. 2009). Furthermore, it
would provide the African Soil Information Services (AfSIS) project with information
required to implement digital soil mapping routines (see McBratney, Santos, and Minasny
2003), especially where legacy soil data are scarce (Sanchez et al. 2009).

Classification of soil–landscape elements has always been an integral activity of soil
mapping (Schoknecht, Tille, and Purdie 2004), where the correspondence between
landform and soil characteristics (Cook et al. 1996; Odeh, Chittleborough, and
McBratney 1991; Summerell et al. 2005) is the basis upon which landscape units are
demarcated (Irvin, Ventura, and Slater 1997; Schoknecht, Tille, and Purdie 2004). The
process has traditionally been accomplished by manually delineating landscape units
from aerial photographs (Burrough, van Gaans, and MacMillan 2000; Hengl and
Rossiter 2003; Irvin, Ventura, and Slater 1997), although this is subjective (Burrough,
van Gaans, and MacMillan 2000), not reproducible (MacMillan et al. 2000), and the
rules are not adaptable across a range of scales (Burrough, van Gaans, and MacMillan
2000). Improvements in computing technology and availability of digital elevation
models (DEMs) have allowed replacement of this manual approach by automated
landscape classification methods (e.g. Burrough, van Gaans, and MacMillan 2000;
Drăguţ and Blaschke 2006; Hengl and Rossiter 2003; Irvin, Ventura, and Slater 1997;
Iwahashi and Pike 2007; MacMillan et al. 2000; McKenzie and Gallant 2007; Schmidt
and Hewitt 2004; Summerell et al. 2005), reliant on terrain parameters, purposely
selected to mirror the influence of hydrogeomorphic processes on soil development
(MacMillan et al. 2000).

Given the complementary effect of information from different sensor systems
(Taramelli and Melelli 2009; Wright and Gallant 2007), multi-sensor approaches have
recently been tested and used to delineate landscape elements. Saadat et al. (2008) used
parameters from a 10 m-resolution DEM together with advanced spaceborne thermal
emission and reflection radiometer (ASTER) data to map landforms in a watershed in
Iran; Ehsani and Quiel (2009) combined Landsat Thematic Mapper (TM) with morpho-
metric parameters derived from the Shuttle Radar Topographic Mission (SRTM) DEM
and mapped landscape elements for a region at the Poland/Slovakia/Ukraine border; and
Hansen et al. (2009) used variables derived from Système Pour l’Observation de la Terre
(SPOT-4) and SRTM DEM imagery to accurately delineate landscape elements of a
dambo in central Uganda. However, use of high-resolution spectral imagery is limited
by costs (Adam, Mutanga, and Rugege 2010), and optical data are affected by cloud cover
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(Ju and Roy 2008; Roy et al. 2006; Schroeder, Csiszar, and Morisette 2008). A potential
substitute for optical remote-sensing data for soil–landscape classification routines is
aerial gamma-ray spectrometry (AGRS). This is because (i) data are collected by aircraft
flying at a maximum of 225 m above the ground (Pitkin and Duval 1980), hence cloud
cover is not an issue, and (ii) data are readily available in countries where geophysical
surveys have been conducted.

AGRS is a passive form of remote sensing (Wilford, Bierwirth, and Craig 1997) that
involves the use of a gamma-ray spectrometer, mounted on the belly of an aircraft, to measure
high-frequency gamma photons emitted during the decay of naturally occurring radioactive
isotopes of potassium (K), thorium (Th), and uranium (U) (Pitkin and Duval 1980). For land
surface applications, the instrument is able to take measurements integrated over the upper part
of the solum (McKenzie and Ryan 1999) – within the first 30–45 cm of the soil surface
(Bierwith 1996; Dickson and Scott 1997;Wilford et al. 2001) – hence providing data reflective
of bedrockmineralogy and geochemistry, and soil development (Wilford, Bierwirth, and Craig
1997). However, the amount of energy recorded by the sensor is affected by several factors,
including soil moisture and vegetation (Minty 1997). For example, a 10% increase in soil
moisture can reduce the amount of radiation by the same proportion (Minty 1997; Wilford,
Bierwirth, and Craig 1997); although precipitation can also result in increased concentration of
U on the ground, since rain is contaminated by dust particles onto which daughter products of
airborne radon (a nuclide in the U decay series) are attached (Minty 1997). The amount of
gamma radiation attenuated by vegetation is dependent upon vegetation density (Wilford,
Bierwirth, and Craig 1997). Where vegetation is sparse, energy is mostly unaffected (Wilford,
Bierwirth, and Craig 1997). However, for densely vegetated areas, gamma radiation reaching
an aerial platform is reduced (Wilford, Bierwirth, and Craig 1997), so that correction for
vegetation interference is necessary (see Lavreau and Fernandez-Alonso 1991).

K, U, and Th are the only elements of interest in aerial radiometrics because during
decay, their radionuclides (or the radionuclides of their daughter products) produce
sufficient energy that can be detected using an airborne detector (Minty 1997). It is
from the characteristic emittance peak of a radioisotope that the abundance of the element
is estimated (Wilford et al. 2001). K is the only element whose concentration is directly
measured following the decay of 40K to argon (40Ar) (Dickson and Scott 1997; Minty
1997). The concentrations of U and Th are estimated using their radioactive daughter
products (Minty 1997; Wilford 2012), because these elements themselves do not emit
gamma rays during decay (Dickson and Scott 1997; Minty 1997). As a result, their
measurements are expressed in units of ‘equivalent’ parts per million (e.g. eU and eTh),
while K is expressed as a percentage (K%) (IAEA 2003; Wilford et al. 2001).

Historically, AGRS has been used in geologic mapping (McBratney, Santos, and
Minasny 2003; Wilford, Bierwirth, and Craig 1997), owing to the correspondence
between the abundance of radioactive elements and the nature of bedrock mineralogy
and geochemistry (Wilford 2012). Because the distribution of these elements is modified
by pedologic processes acting on the bedrock (Pitkin and Duval 1980), aerial gamma-ray
data are now increasingly integral to soil mapping. To date, AGRS has been used to
predict the spatial distribution of soil phosphorus (e.g. McKenzie and Ryan 1999);
identify landscape anomalies, such as salt stores (e.g. Wilford et al. 2001); map regolith
density (e.g. Beckett 2007); delineate geomorphic (e.g. McKenzie and Gallant 2007) and
soil-mapping units (e.g. Triantafilis, Gibbs, and Earl 2013); develop weathering intensity
indices (e.g. Wilford 2012); and predict regolith thickness (e.g. Wilford and Thomas
2013). All these studies were conducted outside Africa, despite availability of free AGRS
data in most African countries where geophysical surveys have been conducted.
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In this study, we used AGRS and topographic data to delineate landscape elements of a
dambo in central Uganda. Dambos are seasonally inundated grassy valleys found on
headward ends of drainage systems (Ackermann 1936) in seasonally wet tropical and
sub-tropical locations in Africa (Meadows 1985). They are channel-less (Boast 1990;
Mäckel 1973), linear (Mäckel 1973; Meadows 1985), or lobate (Whitlow 1985) depres-
sions, subdivided into three landscape elements – bottoms, floors, and margins. Margins are
adjacent to the interfluve (uplands). Their widths vary from narrow (Hansen et al. 2009;
Mäckel 1973) to broad belts, hundreds of metres in width (Mäckel 1973). They are sandy
(Mäckel 1985; Young 1976) and have sparse vegetation, mainly grasses (Bullock 1992;
Hansen et al. 2009; von Der Heyden 2004). Floors fringe bottoms, and are the largest
portions of dambos (Mäckel 1973). They have clayey subsoils and are more vegetated than
the margins (Bullock 1992). At the centre of a dambo is the bottom, the size of which is also
variable. Here, soils have more clay, vegetation is herbaceous and denser than at the floors,
and the water table is usually close to the surface (Mäckel 1973; Acres et al. 1985; Mäckel
1985). We sought to examine whether aerial gamma-ray data are sensitive to the differences
in soil properties across dambo cross-profiles, and therefore whether inclusion of AGRS
data improves separability of dambo landscape elements in a classification where inputs also
include DEM-derivatives. We compared three classification approaches in order to choose a
method that maximizes information from the two data sources. With dambos occupying an
estimated 11% of Africa’s arable land (Hansen et al. 2009), use of AGRS and DEM as the
only sources of predictors of dambo soil-landscape units is an inexpensive way to collate
soil information for a significant proportion of Africa’s arable land.

2. Methods

2.1. Study area

The study area is found in central Uganda (Figure 1), in a region with undulating
topography underlain by Precambrian granitic gneisses. The area experiences a
tropical climate characterized by two rainfall seasons, with mean annual
precipitation and mean annual temperature of ~120 cm and 23°C, respectively
(Survey Department 1967).

Vegetation in the area varies along cross-profiles in a manner similar to what has
been observed in other regions with dambos (e.g. Bullock 1992). The low-lying bottoms
and floors have sedges (e.g. Cyperus alba and Cyperus denudata), grasses (e.g.
Commelina subulata and Setaria sphacelata), and forbs (e.g. Dyschoriste magchena
and Emilia javanica), but height and density of cover are lower on the floors, perhaps
due to animal grazing (Hansen et al. 2009). Grasses, such as Pasparum scrobiculatum
and Hyparrhenia filipendula, and the forb, Murdania simplex, dominate the margin,
while in the uplands, woody bushy vegetation of the family Combretaceae dots a mat of
grass dominated by C. subulata and the drought-tolerant grass, Brachiaria brizantha
(Hansen et al. 2009).

The study was restricted to the area in Figure 1 because in the northeast and
southwest of this area are swampy streams. To include swampy areas would require
use of data other than what has been proposed, given that gamma activity recorded
over them does not differ from measurements made in the wetter elements of dambos.
Attempts are under way to use other data types (e.g. active radar) to differentiate these
swampy rivers from the lowest members of dambos in areas where they occur along-
side each other.
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2.2. Data sources and classification inputs

2.2.1. Terrain data

A 90 m SRTM DEM was the source of terrain variables used in this study. It was down-
loaded in its native US Geological Survey (USGS) format from the Global Land Cover
Facility (GLCF) website (http://www.landcover.org/) and re-projected to the Universal
Transverse Mercator spatial reference. The DEM was corrected for elevation anomalies
(e.g. tall vegetation and termitaries in the area) by smoothing with a nine-pixel neighbour-
hood mean (e.g. Hansen et al. 2009). From this DEM, we extracted elevation data and
computed terrain indices, namely, topographic wetness index (TWI), relative slope position
(RSP), topographic position index (TPI), tangential curvature, and elevation relative rank
(RR). These variables were thought to be sufficient to differentiate landscape elements
because: (i) some are proxies of hydrologic processes (e.g. TWI and TPI) that account for
the differences in soils and vegetation observed in dambos; (ii) others (e.g. elevation, RSP,
RR, and tangential curvature) are intended to differentiate elements that cannot otherwise be
differentiated using TWI or TPI alone; and (iii) RR successfully distinguished a dambo from
the upland when it was used in the study area (see Hansen et al. 2009).

The topographic wetness index is used to predict saturation by quantifying topo-
graphic control of hydrology (Wilson and Gallant 2000; Sørensen, Zinko, and Seibert
2006), and is therefore a useful predictor for systems such as dambos where surface
hydrology plays an important role in the variability of soil properties (Young 1976;
Mäckel 1973, 1985; Hansen et al. 2009) and vegetation composition (Whitlow 1985;

Location of samples sites

0°
0′

0″
30°0′0″E 35°0′0″E

0 95 190
km

Training

Accuracy assessment

Figure 1. Location of the study area. Included are the sites where training and validation polygons
were delimited by Hansen et al. (2009).
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Bullock 1992) along cross-profiles. RSP represents the percentage distance of a location
from slope bottom to the nearest ridge top. It is used in particular to enable low-gradient
locations found in the bottom of the landscape to be differentiated from their counterparts
in the uplands. Where this was not possible, elevation and/or tangential curvature were
expected to overcome the ambiguities because uplands comprise the elevated part of the
landscape, characterized by convex hilltops. The topographic position index is the differ-
ence between a smoothed and unsmoothed DEM (e.g. Roberts, Dowling, and Walker
1997; Guisan, Weiss, and Weiss 1999; Wilson and Gallant 2000). It is a measure of the
relative depth of the water table, assuming the water table conforms to the topography
(Roberts, Dowling, and Walker 1997). Our use of TPI is premised on the consideration of
groundwater level as an alternative discriminator of landscape elements, especially where
surface flow conditions for areas with subtle differences in elevation are inappropriately
modelled using TWI (Böhner and Selige 2006). RR defines elevation of a location relative
to its neighbourhood, and is suitable to classify catenary units for a landscape with
inconstant elevation range (see Hansen et al. 2009).

Prior to calculating TWI, and in order to ensure correct hydrologic flow, the fill
tool in ArcGIS 10.2 (ESRI 2013) was used to correct the DEM for sinks. TWI was
computed using the wetness index tool in SAGA (2.1.0) geographic information
systems (GIS) software. This is because for landscapes such as dambos, where terrain
is characterized by low amplitude and wide valleys which are also levelled in places,
small differences in elevation would result in poorly modelled flows at cells in valleys
when a specific catchment area (SCA) is determined using algorithms other than
SAGA’s modified SCA (see Böhner and Selige 2006). We also used tangential
curvature in place of plan curvature because the latter would exaggerate curvature
for locations with very low gradient (see Wilson and Gallant 2000).

In the absence of information regarding the version of TPI that best approximates the
relationship between topography and water table depth in the study area, 10 versions of
TPI were used. They were differentiated by varying the radius of the processing window
from 200 to 2000 m. Similarly, 12 versions of RR were used. These were derived by
varying the processing window from 11 × 11 cells to 231 × 231 cells. This was also
intended to enhance and contrast local (small windows) and regional (large windows)
topographic conditions (see Hansen et al. 2009).

2.2.2. Aerial gamma-ray data

The Ministry of Energy and Mineral Development, Uganda, contracted Fugro Airborne
Surveys (Pty) Limited to collect and process AGRS data as part of the High Resolution
Airborne Geophysical Survey Programme, involving magnetic, radiometric, and electro-
magnetic surveys of almost three-quarters of the country. Data were collected between
2006 and 2008, and are archived at the Department of Geological Survey and Mines,
Ministry of Energy and Mineral Development, Uganda. These were provided in a
processed form after removing cosmic and background noise, levelling, correction for
height, and amplifying the low signal-to-noise regions of the survey (Fugro 2008). For the
selected area, gamma-ray measurements were made in 2007 based on the following
survey specifications: 100 m of mean terrain clearance, with traverse (flight-line spacing)
and control lines (tie-line spacing) at 500 and 5000 m, respectively. We considered all
three channels – K%, eTh, and eU. The spatially geocoded data points of each channel
were interpolated using ordinary Kriging in ArcGIS 10.2 (ESRI 2013). The rasters were
set to the same spatial resolution and assigned a similar spatial reference as the DEM.
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2.2.3. Model training and validation data

The model training and calibration data used in this study are the same as those used by
Hansen et al. (2009). They consisted of (i) randomly selected polygons delimited around
areas belonging to the same dambo class and (ii) polygons based on locations sampled
along selected cross-section transects (see Hansen et al. 2009). These data were intended
for use with images gridded at 20 m. Unlike the validation dataset, the training data were
modified to suit the data sources used in this study. Since aerial gamma-ray and terrain
data have 90 m pixels, the polygons were used to create a new training dataset made up of
point features. This was a two-stage process involving a polygon-to-raster conversion,
followed by a raster-to-point transformation. To convert raster to points, point features are
positioned at centres of pixels, and the distance between points is determined by the raster
resolution. We tested several pixel dimensions and found a 50 m pixel raster to be
appropriate. This is because the resultant points had a neighbourhood distance of ~71 m
(equivalent to the diagonal of a 50 m pixel), which ensured that many training sample
locations would not lie in the same 90 m pixel. This minimized the tendency to generate
an over-fit conditional inference tree (CIT) – one of the proposed modelling approaches.
A total of 869 training sample locations were generated – 174, 189, 227, and 279
locations representing bottom, floor, margin, and upland catenary units, respectively.
Onto these, pixel values of the respective predictor variables were extracted and the
data used as described in the following section.

In addition to these data, a second set was needed to analyse gamma variability along
dambo cross-profiles. This included all locations sampled for gamma-ray activity and
bound by the training and accuracy assessment polygons described above. In all, 102
samples were selected: 15 in bottoms, 20 in floors, 29 in margins, and 38 in uplands.

2.3. Statistical analysis and landscape modelling

2.3.1. Variability of gamma activity along a dambo cross-profile

We used R (R Development Core Team 2013) and the 102 samples described in
Section 2.2.3 to construct box plots. These were intended to illustrate differences in
gamma-ray activity along dambo cross-profiles. To determine whether there is any
significant difference in K%, eTh, and eU activity between dambo classes, the same
software was used to implement a single-factor analysis of variance (ANOVA), where
dambo landscape classes were considered to be the factor levels for which mean μið Þ
responses of K%, eTh, and eU were derived. The null model – K% or eTh or eU
concentration is the same across a dambo cross-section – was tested using the F-test for
equality of factor levels. If this was not the case (i.e. the null model rejected at α = 0.05),
differences in mean gamma activity amongst classes were assessed using a modification
of the Tukey–Kramer multiple comparison procedure, suitable when a dataset has unequal
class sizes (Herberich et al. 2010). In addition, we sought to determine the proportion of
variance in K%, eTh, and eU activity attributed to landscape position, by deriving the
coefficient of determination (R2) for each scenario.

2.3.2. Predicting the spatial distribution of dambo catenary units

2.3.2.1. Terminal classifiers. The distribution of dambo catenary units was predicted
using the approaches shown in Figure 2, which differ based upon the terminal classifier.
CITs and random forests (RF) are variants of classification tree analysis (CTA). These
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involve induction of rules based upon input predictor variables, and use of these rules to
repeatedly partition sample data in such a way that at each successive split (node) purer
descendant nodes are created – nodes are expected to be dominated by a single class (out
of n target classes or objects) at each successive split (Breiman et al. 1984; Franklin,
McCullough., and Curtis 2000; Simard, Saatchi, and De Grandi 2000; Xu et al. 2005).
The process is terminated using a stopping criterion (Everitt and Hothorn 2010), resulting
in what are referred to as terminal nodes (leaves) at the lowest level of the hierarchy
(Simard, Saatchi, and De Grandi 2000). A terminal node is assigned a class label with
more samples in that node (Simard, Saatchi, and De Grandi 2000). Among the advantages
of CTA include its ability to handle both ordered and categorical data in a single suite, its
insensitivity to data with outliers, and the ease with which interpretations can be drawn
from the structure of the decisions (Breiman et al. 1984). Furthermore, CTA techniques
are non-parametric (Breiman et al. 1984; Simard, Saatchi, and De Grandi 2000; Adam,
Mutanga, and Rugege 2010) and therefore no normality assumptions have to be made
(Wright and Gallant 2007).

CIT is a simpler form of CTA. It differs from other single-tree classifiers based on the
selection criteria of features used to split nodes. The decision about which variable to use
at a split is made by conducting a test of independence between the response and
competing covariates, and a variable is elected based upon a p-value lower than a
predetermined α value (Everitt and Hothorn 2010). In regard to RF, an ensemble of
trees is grown (Breiman 2001) where each tree is independently constructed using a
bootstrap sample of the training data, and at each node a split is effected using randomly
selected variables (Breiman 2001; Liaw and Wiener 2002). This increases the possibility
of using most of the variables in the classification process. Class predictions for new data
are made by aggregating predictions from n number of independently grown trees (Liaw
and Wiener 2002).

The iterative self-organizing data analysis (ISODATA) procedure is parametric and is
commonly used in unsupervised clustering of sensor data (e.g. Irvin, Ventura, and Slater
1997; Lillesand, Kiefer, and Chipman 2008). The algorithm requires that the user defines
the number of clusters or classes, k. It then searches in multidimensional attribute space to
assign means to these clusters (Ventura and Irvin 2000). This process is repeated n times,
where at each iteration statistics describing the clusters (e.g. standard deviation, distance
between mean points of clusters) are evaluated to determine whether they deviate from
preset thresholds (Lillesand, Kiefer, and Chipman 2008). If they do, clusters are merged,

Primary inputs
Gamma

K%

eU

Elevation (m)

TPI

Tangential
curvature

Multinomial
regression
modeling

Secondary inputs

Bottom
Floor

Upland

CIT

ISODATA

Random
forests

D
A

M
B

O
 L

A
N

D
SC

A
PE

 M
A
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Margin

Probability maps for:Principal
Components

Analysis

RR

RSP
TWI

Terrain data

eTh

Figure 2. Schematic diagram showing the general flow of the modelling approaches. ISODATA,
Iterative Self-Organizing Data Analysis Technique.
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split, or deleted (Lillesand, Kiefer, and Chipman 2008). The process is terminated if
cluster statistics do not change or when the maximum n is reached (Lillesand, Kiefer, and
Chipman 2008). In ArcGIS 10.2, the procedure is accomplished using the Iso Cluster tool
to define the clusters, and the maximum likelihood classification (MLC) algorithm to
implement the classification, using parameters in the signature file created by the Iso
Cluster tool.

2.3.2.2. Implementation of the classification methods. The training data described in
Section 2.2 was used to build a CIT with the help of the party package (Hothorn et al.
2013) in R (R Development Core Team 2013). The emergent decisions were used to classify
the input raster data, creating a landscape map of the study area. The randomForest package
(Liaw and Wiener 2013) in R (R Development Core Team 2013) was used to generate
decisions based upon the same training data used in CIT modelling. We maintained the
default parameters (e.g. number of variables sampled at a node, minimum samples required
to split a node) and constructed forests (e.g. models) with 100, 300, 600, and 900 trees. The
model with the lowest out-of-bag error rate (e.g. 600 trees) was used to predict the
distribution of landscape units over the entire study area. For this model, we also extracted
variable importance measures in order to examine the contribution of each variable to node
purity (e.g. mean decrease in Gini coefficient) and overall class prediction (e.g. mean
decrease in accuracy) (see Breiman 1996; Breiman 2001; Liaw and Wiener 2002).

The inputs used in ISODATA classification were derived via an intermediate step –
multinomial regression modelling (Figure 2). Since the variables described in Section 2.2
are correlated (results not shown), not all could be used in the same multinomial regres-
sion model because this would impact the reliability of model coefficients. Using ArcGIS
10.2, principal components (PCs) were derived after standardizing the rasters. Fifteen PCs
accounting for ~100% of the total variation were selected (Table 1). The first two PCs do
not seem to be dominated by any single variable (Table 1). PCs 5 and 9 are dominated by
gamma-ray variables (Table 1) and can therefore be considered to represent variability in
K% (e.g. PC 5), eTh, and eU (e.g. PC 9). The remainder are dominated either by terrain-
based variables or a combination of terrain and aerial gamma-ray data (Table 1).

Pixel values were extracted from the imagery (15 PCs) onto the training data, to create
a set of predictors used in multinomial regression modelling. Generally a multinomial
regression model constitutes n logits, where n is the number of categories that define the
response variable. In the case of this analysis, four logits were expected – one for each
landscape element. The logits for the non-baseline category are defined as

πij ¼
exp βj � xTi

� �

1þP
k�j� exp βk � xTi

� �
0
@

1
A; (1)

where x represents the predictors (e.g. the most significant PCs), j� is the baseline
category (e.g. bottom), and j denotes the non-baseline categories (e.g. floor, margin,
and upland zones), so that j� j� (see Kutner et al. 2005). Predictions for the baseline
category = 1 –

P
πij. To set up these logits, the mlogit package (Croissant 2012) in R was

used. Each logit was then implemented in ArcGIS 10.2 (ESRI 2013) to create a prob-
ability map. The four probability maps were classified using ISODATA classification,
resulting in a single soil–landscape unit map.

The accuracy of the maps was tested using the validation data collected by Hansen
et al. (2009). The maps based on the three modelling approaches were independently
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assessed and compared using the usual estimates of class accuracy (e.g. producer’s and
user’s accuracies) and overall prediction accuracy (e.g. overall accuracy and linearly
weighted kappa). Linearly weighted kappa was preferred over unweighted kappa because
dambo landscape elements are ordinal – owing to the prevailing environmental gradients
(e.g. bottoms are wetter than the outward-lying floors, margins, and uplands). Given that
Hansen et al. (2009) used unweighted kappa to assess the accuracy of their map, we also
derived a similar statistic for each of the three maps and compared the results to the
statistics in the article by Hansen et al. (2009).

3. Results

3.1. Gamma activity along a dambo cross-profile

Gamma concentration is shown to vary along dambo cross-profiles (Figure 3). K activity
is highest at margins and lowest at uplands, while eTh and eU activity increases toward
the uplands (Figure 3 and Table 2). These trends mirror a dependence of gamma activity
on landscape position, particularly eU, ~50% of whose variability is explained by land-
scape position (Table 2). However, it is eTh with concentrations that significantly differ in
most landscape elements – the concentrations between bottom and margin, bottom and
upland, floor and upland, and margin and upland, are significantly different (Figure 4). In
regard to K% and eU, differences are only significant between uplands and the remainder
of the landscape (Figure 4).

Bottom

(a) (b) (c)
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Landscape element

Bottom Floor Margin Upland
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Bottom Floor Margin Upland
Landscape element

Figure 3. Variability in gamma activity along a dambo cross-profile. (a) is K%, (b) is eTh, and
(c) is eU.

Table 2. Results of ANOVA analysis.

Gamma ANOVA P-values

Adjusted Predicted mean (μi) for each zone

R2 Bottom Floor Margin Upland

%K <0.0001 0.282 0.350 0.358 0.458 0.175
eTh <0.0001 0.273 11.9 12.4 14.5 16.7
eU <0.0001 0.460 1.87 1.92 2.34 3.37
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3.2. Performance of modelling approaches

The root node of the CIT attests to the observation that dambos are generally low-lying
(Figure 5). It is also shown that the drier uplands can be reliably separated from the
remainder of the landscape using proxies of potential saturation (e.g. TPI and RSP)
(Figure 5). The remainder of the landscape elements were differentiated using a combina-
tion of elevation and potential of saturation of land (Figure 5). For example, three
decisions based on elevation were used to differentiate bottoms from either of floors
and margins, and one decision based on hydrologic position was used to separate bottoms
from the remainder of the landscape (Figure 5). However, none of the aerial gamma-ray
channels were used in CIT modelling, despite their potential (Table 2). RF variable-
importance measures show that gamma activity strongly influences the prediction of
floors (e.g. eTh and K%), margins, and uplands (e.g. eU and eTh), and the overall
strength of the RF model (Figures 6 and 7). Terrain variables are equally important. As
an example, the accuracy of bottoms, floors, and margins would severely be affected if
RR11 was not part of the inputs (Figure 7), while removing TPI400 would lower the
accuracy of uplands by over 15% (Figure 7). Jointly, TPI400 is an important predictor
(Figure 6) and, like TPI600, TPI800, RR11, and TPI1000, the nodes attributed to it are
purer (Figure 6).

For the multinomial-ISODATA approach (Figure 2), the final multinomial model is
based on 13 PCs (Table 3) because initial analysis showed PCs 6 and 11 to be insignificant
across all logits (results not shown). In this model, most PCs are significant in more than
one logit (Table 3). As was the case with RF, PCs dominated by terrain variables strongly
influenced predictions in all logits (coefficients are positive and relatively large). However,
they were complemented by PCs whose variability is attributed to aerial gamma-ray
channels (Table 3). For instance, PC 5 is dominated by K% and influenced the prediction
of uplands (where K% activity is lowest) while PC 9 is jointly influenced by eTh and eU
and contributed to predictions of margins and uplands (where the concentration of Th and U
is highest). Principal component 7, which is generally influenced by K% and TWI, had a
similar effect on the prediction of margins and uplands (Table 3).

Predictions resulting from the four logits are shown in Figure 8. While margins and
uplands appear to be well predicted, the probability maps of bottoms and floors show
difficulties in separating the two classes. For example, in the north and east of the study
area, some locations tend to have approximately equal probability of membership to the
two classes (Figure 8). This explains the positive correlation between the two maps
(Table 4) and the tendency to confuse bottoms with floors (Table 5 and Figure 9). This
problem compounds the limits imposed by the difficulty to discriminate marginal zones.

Floor - Bottom (a) (b) (c)

Upland - Bottom

Margin - Floor

Upland - Floor

Upland - Margin

–2 –0.5 2.01.51.00.50 642
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Figure 4. Multiple comparison of differences in mean activity of K% (a), eTh (b), and eU (c) at
95% family-wise confidence level.
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Figure 6. Importance of variables to the overall prediction of dambo landscape units using RF.

RR11 > 0.489
(p < 0.001)

RR11 > 0.186
(p < 0.001)

RR151 > 0.569
(p < 0.001)

RR151 > 0.09
(p < 0.001)

RR111 > 0.07
(p < 0.001)

RSP > 0.627
(p < 0.001)

RSP > 0.08
(p = 0.005)

TPI400 > –0.185
(p < 0.001)

TPI400 > –0.091
(p < 0.001)

TPI400 > –0.821
(p < 0.001)

Bottom

Upland

Upland

Margin

Margin

Bottom

Bottom

Floor

Floor

Floor

RSP > 0.032
(p < 0.001) UplandMargin

Figure 5. Decision tree based on CIT modelling.
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Figure 7. Importance of variables to the prediction of each landscape element using RF.

Table 3. Characteristics of the multinomial logistic regression model.

Logits

Floor Margin Upland

Variable Coefficient p-Value Coefficient p-Value Coefficient p-Value

Intercept 7.12 0.3134 26.56 0.0024 61.80 < 0.0001
PC1 −0.39 0.0134 −2.10 < 0.0001 −4.06 < 0.0001
PC2 −0.07 0.6021 0.97 < 0.0001 1.45 < 0.0001
PC3 −0.24 0.1876 −0.15 0.4948 −1.71 < 0.0001
PC4 −0.19 0.3529 −0.74 0.0024 −0.74 0.0291
PC5 −0.21 0.4101 0.71 0.0153 2.64 < 0.0001
PC7 0.26 0.4033 2.05 < 0.0001 1.90 0.0026
PC8 0.99 0.0093 2.75 < 0.0001 4.72 < 0.0001
PC9 2.49 < 0.0001 1.97 < 0.0001 2.67 0.0013
PC10 −2.18 < 0.0001 −7.83 < 0.0001 −11.21 < 0.0001
PC12 −1.00 0.2376 −1.97 0.0471 −3.66 0.0119
PC13 1.94 0.0132 3.44 < 0.0001 6.34 < 0.0001
PC14 1.24 0.1523 3.65 0.0055 6.34 0.0057
PC15 −3.74 0.0058 −3.91 0.0194 −12.09 < 0.0001

The 4th logit (not shown) is for the bottom class (i.e., 1 −
P

πij). The model was significant at α = 0.05 and had a
fairly good fit (maximum likelihood ratio index = 62.4%).
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Overall, margins and uplands were fairly well classified using the three modelling
approaches. This is the reason why weighted kappa is high, especially for the CIT and
RF methods (Table 6). In general, omission and commission errors are comparable to those
of the output by Hansen et al. (2009) (Table 5), and accuracy statistics (overall accuracy and
kappa) are not very different (Table 6) save for the ISODATA approach, which poorly
classified bottoms and floors (Table 5). The difference between CIT and RF methods is seen
in the way the former classified margins. These were clearly over-represented, resulting in
high omission and commission errors for the margin and upland classes (Table 5). This
translated to a weighted kappa difference of 1% (Table 6) but does not seem to be
significant. However, a close visual inspection of the map created using CIT reveals
artefacts of margins within upland zones (Figure 9).

4. Discussion

The observed variability of gamma activity along dambo cross-profiles (Table 2 and
Figure 3) corresponds with the frequently reported differences in soil properties, particu-
larly when inferences are limited to subsurface soils readily sampled by a spectrometer on
board an aerial platform. The low concentration of K measured in the uplands is attributed

0 15 30
km

Probability

(a)

(d)(c)

(b)

1

0

Figure 8. Results of multinomial regression modelling showing the potential occurrence of bottom
(a), floor (b), margin (c), and upland (d) landscape elements.

Table 4. Correlation between probability maps.

Probability maps Floor Margin Upland

Bottom 0.204 −0.381 −0.506
Floor −0.100 −0.633
Margin −0.416
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to losses of K that accompany extensive weathering (Dickson and Scott 1997; Wilford,
Bierwirth, and Craig 1997; Wilford 2012), which is characteristic of this zone (Brown,
Helmke, and Clayton 2003; Mäckel 1973, 1985; Young 1976). In dambo margins, the
dominance of sand (Hansen et al. 2009; Mäckel 1973, 1985; Young 1976) derived from
felsic gneisses constituting the area’s geology (Brown, Helmke, and Clayton 2003)
accounts for the increased K% activity. Since sand is also washed to the floor (Young
1976), there is an equivalent increase in K concentration relative to the bottom, where the
concentration of clay is highest (Young 1976; Hansen et al. 2009).

Thorium and eU activity are highest in uplands (Table 2 and Figure 3) because clay
and residual oxides are present (see Young 1976; Hansen et al. 2009) onto which these
radio-elements preferentially adsorb (see Dickson and Scott 1997; Kiss, De Jong, and
Bettany 1988; Wilford, Bierwirth, and Craig 1997; Wilford 2012). The concentration of
these elements is low where soils are weakly weathered (e.g. margins). In regard to the
more low-lying members of the landscape (e.g. bottoms and floors), it appears that the

Some of the
artefacts
of margins
predicted to
occur within the
upland zone

(a)

(c)

(b)

Bottom

0 15 30
km

Margin

Upland

Floor

Figure 9. Dambo landscape maps created using: (a) CIT – included is an inset showing artefacts of
margins within the upland zone; (b) RF; and (c) ISODATA.

Table 6. Accuracy level of the respective mapping methods.

Overall accuracy
Kappa

(%) Unweighted Weighted

CIT 71.8 0.61 0.73
RF 73.2 0.63 0.74
Multinomial-ISODATA 68.1 0.56 0.67
Hansen et al. (2009) 75.5 0.67 –
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presence of water and/or dense vegetation act to reduce the amount of gamma energy
recorded by the sensor (Cook et al. 1996; Minty 1997) although the trends fits our
expectation – this is a zone with soils not as developed as those found at the interfluve
(Mäckel 1973), where K% activity is lowest and eTh and eU activity is highest.

Owing to differences in gamma activity along dambo cross-profiles, gamma variables
complemented terrain data, resulting in a fairly accurate map (e.g. based on RF model-
ling). However, the accuracy level of this map was not very different from that of the map
created using a CIT (where terrain variables masked the contribution of gamma inputs to
the classification), implying that information in gamma variables is redundant in the
presence of terrain data, especially when a simpler classifier is used. However, the
presence of artefacts of margins in uplands in this map, and not the map based on RF
modelling (Figure 9), signifies the value of gamma – gamma had a smoothing effect on
the RF output, hence correcting anomalous class assignment, particularly at the inter-
fluves. Furthermore, the minimized tendency to confuse uplands for margins (Table 5) in
this map is partly attributed to eTh and eU (Figure 7), elements the activity of which
significantly differs at the two landscape locations (Figure 4). Therefore, in the interest of
using all relevant information in the classification process, a robust classifier (e.g. RF) is
favoured.

Probability surfaces created by multinomial regression modelling can also be used
because of the flexibility of the modelling process, that is, the ability to objectively select
the most important variables prior to regression modelling. In addition, the approach allows
an examination of the magnitude of influence of each variable on the logits. Thus the
outputs can be interpreted in the context of this relationship. Further, the outputs or
probability maps are optimized and therefore readily classifiable (Figure 8), although this
depends on how well each variable defines the landscape class. This also depends on how
well the model fits. In our case, it seems to be fair but not adequate (~62%), with the result
that two probability maps (i.e. bottom and floor) were positively correlated. This impacted
the ability of ISODATA to discriminate bottoms from floors (Table 5), because the prob-
ability that a location is either class was largely indeterminate (Table 4). Otherwise
ISODATA classification would have been appropriate if the probability that a location
was a given dambo class tended to be 1 for that class and 0 for all other landscape classes. In
this way, feature clouds representing catenary units would be perfectly separated in multi-
dimensional space, lying nearer to the terminus of the respective axes.

A major limitation of this study was the spatial resolution of the data used. At 90 m,
some of the narrow dambo zones are difficult to represent. Moreover, dambo landscape
elements have indistinct environmental boundaries and are therefore prone to misclassi-
fication. The generally high omission and commission errors associated with bottoms and
floors are indicative of this. Therefore, better results might be obtained if finer-resolution
aerial gamma-ray and terrain data are used.

5. Conclusion

We found landscape position to have a proportionate influence on the variability of eU
(46), K% (28%), and eTh (27), arising from differences in activity of these elements along
dambo cross-profiles, due in part to variable soil properties. We sought to exploit these
differences by using these data together with terrain variables to delineate dambo land-
scape elements, with the help of three classifiers: CITs, RF, and ISODATA. For the last
classifier, inputs were landscape probability maps resulting from multinomial regression
modelling of PCs, derived from gamma-ray and terrain variables.
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The maps were generally accurate – CIT (unweighted kappa = 0.61, weighted
kappa = 0.73), RF (unweighted kappa = 0.63, weighted kappa = 0.74), and multi-
nomial-ISODATA (unweighted kappa = 0.56, weighted kappa = 0.67) – and did not
differ much from the map created by Hansen et al. (2009). Results also show that terrain
data provided more information. In fact on their own, terrain data allowed creation of an
output that was only slightly different from that based on both data sources although it
had errors in the upland class, which did not appear when gamma-ray imagery was
included. A look at the variable importance statistics that accompanied the RF classifica-
tion showed a strong contribution of eTh and eU to the prediction of uplands. This is the
reason that artefacts of margins are not in uplands of the RF map, because the concentra-
tions of both radio-elements significantly differ at margins and uplands. Although for this
study the information contained in aerial gamma-ray imagery is largely redundant in the
presence of terrain data, especially where a simple classifier is used, there may be other
applications where aerial gamma-ray data provide more unique information.

Generally, it was difficult to distinguish bottoms from floors because the imagery used
had low spatial resolution (90 m), which cannot allow separation of most of the narrow
structures of these landscape elements. A convenient solution is to merge these landscape
elements, given that they were mostly separable from margins and uplands. We should
also consider using probability maps created using multinomial regression modelling.
Given that these illustrate a location’s probability of class membership and not the
definitive class, they are most suited to show the distribution of the continuous catenary
units of dambos.
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