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ABSTRACT

The specific temporal patterns of an-
tecedent conditions associated with fire 
occurrence in the Great Basin and Up-
per Colorado River Basin are poorly 
understood.  Using 25 years of com-
bined fire and climate data, we identi-
fied unique antecedent patterns of cli-
mate conditions prior to fires in the 
Great Basin and Upper Colorado River 
Basin.  Five distinct antecedent pat-
terns of climate related to fire were 
found within the region; with these an-
tecedent patterns we were able to con-
struct models of fire danger.  The oc-
currence of these antecedent patterns 
varies both spatially and temporally, 
and appears to be driven by drought se-
verity.  We used a Maximum Entropy 
approach to model the spatial extent 
and strength of these fire-climate pat-
terns, and the associated fire danger.  
This approach provides land managers 
with a practical way to assess fire dan-
ger at a relatively fine spatial scale and 
also gives researchers a tool for assess-
ing future fire danger.

RESUMEN

Los patrones temporales específicos de condi-
ciones que anteceden a la ocurrencia de fuegos 
en la Gran Cuenca (Great Basin) y la Alta 
Cuenca del Río Colorado en los EEUU han 
sido poco estudiados.  Usando 25 años de da-
tos combinados de clima y fuego, identifica-
mos patrones de condiciones climáticas pre-
vias a incendios en la Gran Cuenca y la Alta 
Cuenca del Río Colorado.  Cinco patrones pre-
cedentes del clima relacionados con incendios 
fueron hallados para la región.  Con estos pre-
cedentes pudimos construir modelos de peli-
gro de incendio.  La ocurrencia de estos patro-
nes precedentes variaron tanto espacial como 
temporalmente, y parecen estar condicionados 
por la severidad de la sequía.  Utilizamos la 
aproximación de Máxima Entropía para mode-
lar la extensión espacial y la fortaleza de esos 
patrones precedentes de clima-fuego y del pe-
ligro de incendios asociado.  Esta aproxima-
ción provee a los gestores de recursos de una 
manera práctica de evaluar el peligro de incen-
dios en una escala espacial relativamente espe-
cífica, y brinda a los investigadores una herra-
mienta para evaluar el peligro de incendios a 
futuro.
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INTRODUCTION

Shaping many of the landscapes 
throughout the temperate regions of the world, 
fire is an important ecological component of 
many ecosystems (Pyne et al. 1996).  Wildfire 
occurrence is highly dependent on suitable 
conditions in order for ignition to occur and 
combustion to be sustained.  Sufficiently dry 
fuel in quantities large enough to support the 
persistence of the fire is essential, and is large-
ly dependent on climate.  Climate, however, 
has varied impacts on fuels and fire that vary 
across space (Westerling et al. 2003, Littell et 
al. 2009).  Arid regions often do not contain 
enough fuel to sustain a large persistent fire 
and fires are often preceded by a moist period 
to build up sufficient biomass to support fire.  
On the other hand, alpine regions generally re-
ceive more moisture and thus require more se-
vere drought conditions to sufficiently dry out 
fuels (Swetnam and Betancourt 1998, Wester-
ling et al. 2003). 

Swetnam and Betancourt (1990) and Hold-
en et al. (2007) examined relationships be-
tween precipitation and area burned within 
forests of the southwestern United States.  
Both found relationships between increased 
area burned and decreased precipitation during 
the fire season.  Dennison and Moritz (2009) 
found monthly precipitation fluctuations asso-
ciated with changes in the timing of fuel mois-
ture decline in southern California, reinforcing 
the idea of a relationship between precipitation 
during the fire season and area burned.  In 
northwestern US forests, Trouet et al. (2006) 
and Gedalof (2011) found relationships be-
tween increased area burned and increased 
drought conditions. 

Studies that have examined relationships 
between area burned and climate conditions 
for regions throughout the western US have 
found positive relationships between fire and 
prior year precipitation, and negative relation-
ships between drought conditions and area 
burned in locations dominated by fine fuel 

types (e.g., grasses).  Fires in areas containing 
heavier fuels (e.g., forests) were positively as-
sociated with drought conditions during the 
fire season (Westerling et al. 2003, Littell et al. 
2009, Abatzoglou and Kolden 2013).  Denni-
son et al. (2014) examined fire and climate 
trends for nine ecoregions in the western US.  
Southern and mountain ecoregions with in-
creasing trends in drought severity also experi-
enced the largest increases in number of fires 
and area burned.  Spring temperatures, and 
thus timing of snowmelt, also have an impact 
on fire danger (Westerling et al. 2006).  These 
previous studies not only suggest that regions 
are affected by climate conditions differently, 
but also emphasize the importance of anteced-
ent conditions at least one year prior.

Although the climatic factors associated 
with fire occurrence have been examined re-
gionally (e.g., Swetnam and Betancourt 1990, 
Trouet et al. 2006, Holden et al. 2007, Denni-
son and Moritz 2009, Gedalof 2011) and 
across the western United States (e.g., Wester-
ling et al. 2003, Littell et al. 2009, Abatzoglou 
and Kolden 2013, Dennison et al. 2014), there 
is an incomplete understanding of the patterns 
leading to fire occurrence within regionsspe-
cifically within the interior portions of the 
western US.  Ecosystems in the interior west-
ern US range from deserts to alpine environ-
ments, and these diverse environments can be 
part of differing fire regimes in terms of domi-
nant fuel types and fire frequency.  An analysis 
that examines intraregional relationships is 
crucial for understanding the connections be-
tween climate and fire within complex regions 
like the interior western US.  We used anteced-
ent climate conditions to characterize and 
model fire danger based on data derived from 
known fires exceeding 404 hectares (1000 
acres) in size between 1984 and 2009.  Grid-
ded datasets representing climatic conditions 
across the study area for this time period were 
used to construct the models; these datasets in-
cluded monthly maximum temperature, 
monthly precipitation, and monthly drought 
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severity.  Our analysis revealed both wet and 
dry patterns of antecedent climate, which vary 
both spatially and temporally, associated with 
fire occurrence.  

METHODS

Study Area

The location of the study area was delin-
eated using Hydrologic Unit Codes (HUC) de-
veloped by the US Geological Survey (Seaber 
et al. 1987) and incorporates the Great Basin 
(HUC 16) and the Upper Colorado River Ba-
sin (HUC 14) (Figure 1).  These two water-
sheds encompass much of the interior western 
USthe intended focus for this study.  Using 
watersheds to define the study area helps en-
sure that the inputs from the climate variables, 
particularly precipitation, are self-contained 

hydrologically, and makes boundaries simpler 
in terms of management.  This area covers ap-
proximately 662 000 km2, and contains a di-
verse collection of ecosystems from high ele-
vation deserts to alpine wetlands.  The land-
scapes within the study area are fairly repre-
sentative of those occurring throughout the in-
terior western US.

Climate, Fire, and Land Cover Data

We used the Parameter-elevation Regres-
sions on Independent Slopes Model (PRISM) 
dataset (PRISM Climate Group 2010) for the 
climate variables, which consists of continu-
ous gridded maximum monthly temperature 
(TMAX) and average total monthly precipita-
tion (PPT).  These data are interpolated from 
weather stations for each month across the 
United States at a spatial resolution of 2.5 min 

Figure 1.  Location of the study area.  Red polygons represent the fire perimeters we used for the study. 
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(≈4 km), and are used extensively for short 
term regional scale climate studies in the Unit-
ed States (PRISM Climate Group 2010).  The 
sophisticated spatial interpolation methods 
used by the model consider complex topo-
graphic phenomena such as rain shadows and 
inversions, which are prevalent throughout the 
highly variable topography of the study area 
(Daly et al. 2000).  Although the distribution 
of weather stations can be relatively sparse in 
certain areas of the western US, potentially de-
creasing the accuracy of the interpolation, 
PRISM performs better in these areas when 
compared to datasets with a similar spatial res-
olution (Daly et al. 2008). 

The PRISM dataset is used in conjunc-
tion with the Variable Infiltration Capacity 
model (VIC) by the Western Regional Climate 
Center to create a gridded Self-Calibrated 
Palmer’s Drought Severity Index (SCPDSI; 
Wells et al. 2004).  The SCPDSI represents a 
location’s water balance compared to that lo-
cation’s historical normal; if the measure is 
negative, the location is at a water deficit, and 
a positive value represents a water surplus rel-
ative to the past neutral water balance of that 
location.  This measure is based on the tradi-
tional Palmer’s Drought Severity Index (Palm-
er 1965) except that the constants used to cal-
culate the index are calibrated for each loca-
tion as opposed to the regionally derived con-
stants used in the original index.  This makes 
the index more robust and allows for direct 
comparisons between sites, something that is 
problematic with the original PDSI since the 
constants used to determine the water balance 
are calculated and applied regionally.  The re-
gional application of constants is a particular 
problem for the arid West, given the complex 
topography and climate.  Regional constants 
are therefore unlikely to reflect local climate, 
and limit the index’s comparability (Wells et 
al. 2004).

We used fire occurrence data from the 
Monitoring Trends and Burn Severity (MTBS) 
project.  These data provide information for 

large fires (>400 ha) from 1984 to 2009 at a 
spatial resolution of 30 meters (Eidenshink et 
al. 2007).  There were a total of 1433 large 
fires used in this study, with an average of 55 
fires occurring per year.  A maximum of 142 
large fires occurred in 2006 and a minimum of 
9 large fires occurred in 1990. 

The 2006 National Land Cover Dataset 
(NCLD) was used as a static indication of veg-
etation types present throughout the study 
area.  The NCLD is produced by classifying 
Landsat TM imagery acquired circa 2006 
based on the spectral reflectance for each loca-
tion (Fry et al. 2011).  Although this dataset 
provided a snapshot of land cover at a specific 
point in time, it was used to indicate broad 
spatial and elevational distributions of vegeta-
tion types within the study area.

Data Analysis

First, we calculated pixel-wise z-scores for 
TMAX, PPT, and SCPDSI for each month in 
the study period to reduce autocorrelation and 
remove the effects of spatial and seasonal vari-
ation in absolute values.  These standardized 
values can be directly compared across data-
sets and between months, allowing the differ-
ent variables and fires to be analyzed together.  
The PPT required an additional log10 transfor-
mation prior to z-score calculation to correct 
its generally skewed distribution.  For each 
fire, values from each climate variable were 
extracted for the 24 months prior to the date of 
fire ignition.  Some larger fires encompassed 
multiple 2.5 minute PRISM pixels; the pixels 
covering these larger fires were averaged, 
yielding one set of climate variables per fire. 

We compared the set of antecedent climate 
variables to randomly extracted sets of 
24-month time series from across the entire 
study period to assess if the antecedent condi-
tions showed trends that differed from non-fire 
climate conditions.  In order to preserve the 
autocorrelation structure of the climate 
z-scores, a block 24-month time series was ex-
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tracted from all fire locations with a random 
start date, and the median climate value for the 
24 months across all locations was taken.  This 
sampling was done 1000 times and a 95 % 
confidence interval was constructed to assess 
the random variation in each variable.  We ob-
served that prefire SCPDSI had a different 
temporal structure and was significantly differ-
ent for the entire 24 months prior to fire, while 
PPT and TMAX both deviated from the confi-
dence interval generated by the random sam-
pling approximately 6 months prior to fire.  On 
this basis, we retained for analysis only the 6 
antecedent months of TMAX and PPT, but the 
full 24 months of SCPDSI. 

We used a Hard Competitive Learning 
clustering method to group the antecedent con-
ditions.  Hard Competitive Learning is similar 
to k-means clustering, with the exception that 
the initialization of the centers is driven by the 
data density rather than being entirely random 
(R Development Core Team 2008).  This 
method has been shown to be more robust in 
datasets that have varying densities within the 
data space and prevents the common issue of 
centers falling into ‘local minimums’ (Fritzke 
1997).  The Calinski Criterion, developed by 
Calinski and Harabasz (1974) to optimize 
cluster partitioning, was used to determine the 
appropriate number of clusters for the data.  
This approach identified five groups of an-
tecedent conditions based on specific temporal 
patterns in climate anomalies preceding fire 
occurrence. 

Maximum Entropy (MaxEnt) modeling 
(Phillips et al. 2006) was used to predict fire 
danger based on climate patterns preceding 
each fire.  MaxEnt has been used extensively 
in ecological research and has multiple advan-
tages over more traditional modeling methods: 

(1) MaxEnt is designed to work with pres-
ence-only data, which offers an intui-
tive approach to modeling fire.  Since 
fires don’t occur in all places where 
fire-prone conditions exist, it is diffi-

cult to define a true absence.  MaxEnt 
also does not treat background values 
where fire has not been observed as ab-
sences during the modeling process. 

(2) Probabilities are generated for predict-
ed areas, which make for more nu-
anced interpretation as opposed to a bi-
nary presence-absence prediction. 

(3) Environmental data from across the 
study area are used to characterize the 
environment instead of simply using 
conditions at presence sites (Phillips et 
al. 2006).  

Species distribution modeling is generally 
concerned with predicting areas of potential 
species occurrence; we use a similar approach 
here for modeling fires.  The results indicate 
areas with potential for fire occurrence based 
on similarities to previously observed fires. 

As a statistical learning model, MaxEnt 
does have some potential limitations.  Overfit-
ting is a concern with any statistical learning 
method.  As the model becomes increasingly 
complex, there is the possibility that it matches 
the data used to calibrate the model too close-
ly, resulting in limited predictive ability out-
side of the domain used for calibration.  Max-
Ent addresses this limitation with a method 
called regularization, which essentially limits 
the complexity of the model (Phillips and 
Dudík 2008).  The use of presence-only data 
can also be problematic.  Presence-only data is 
often biased, likely because of access to data 
collection sites (e.g., near roads, waterways, 
etc.).  This bias can result in models that are 
incompletebased only on observations from 
a particular type of site (Yackulic et al. 2013).  
However, by using the remotely sensed MTBS 
dataset rather than field-based observations, 
this set of fires represents the most complete 
dataset available for the region, reducing sam-
pling bias.

We created separate models for each clus-
ter of antecedent conditions, and ran each 100 
times, leaving out a random 25 % of the data 
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for validation.  The variables for each model 
included 6 months of antecedent PPT and 
TMAX, 24 months of antecedent SCPDSI, and 
the raw value of TMAX at lag 0 (the month of 
the prediction).  This raw maximum tempera-
ture value was included to inform the model 
about the season since the use of z-scores for 
the other variables removed seasonality from 
the dataset. 

We chose one month outside (August 
2011) and one month within (June 2007) the 
study period to test the predictive skill of the 
fire danger model.  Each pixel in the study area 
was classified into one of the clusters of an-
tecedent conditions based on the lowest Eu-
clidean distance between the pixel’s time se-
ries and the cluster centers.  The distances 
were retained to give a quick assessment of 
prediction uncertainty.  To assess the good-
ness-of-fit for the 100 model runs for each 
cluster, the Area Under Curve (AUC) score 
was used in addition to an error matrix com-
paring observed fires to the calculated fire dan-
ger of the fire’s location.  The AUC score re-
flects the ability of a model to discriminate be-
tween the group being tested (climate patterns 
associated with fire) and the other data.  An 
AUC of 0.5 means that the model does no bet-
ter than random at distinguishing the test 
group from the rest of the data.  As the AUC 
increases, the model’s ability to separate the 
two groups is improved. 

The raw probability values from each 
model are not directly comparable to other 

models.  The variation in the probability val-
ues between models is partly due to varying 
model performance in addition to the charac-
teristics of the group being modeled (Phillips 
et al. 2006).  Thresholds based on model per-
formance provide a way to assign common 
values to different models, and these were 
used to determine classes of fire danger.  A 
confidence interval was calculated for each 
pixel by creating a probability distribution 
function of the predicted probability values 
from the 100 model runs.  We then compared 
the probability distribution to the thresholds 
associated with the fire danger classes (Table 
1).  The highest fire danger category with a 
threshold value below the 95th percentile of the 
distribution was assigned to the pixel.  The fi-
nal classification was created by taking the 
predicted danger class from the pixel’s as-
signed cluster.

The clustering of antecedent conditions re-
vealed five distinct patterns present in the 
months prior to fire (Figure 2A).  These five 
groups may be more generally characterized as 
having predominately wet or predominantly 
dry antecedent conditions, but are further sep-
arated by the magnitude and timing of these 
wet and dry periods.  Cluster 1 was wetter than 
baseline over most of the 24 months prior to 
fire occurrence, but trended towards drier than 
baseline and became slightly drier than base-
line around 2 months prior to fire occurrence.  
Cluster 2 showed 12 months of increasing wet 
conditions that then remained relatively con-

Fire danger class Threshold Threshold description

Very Low <Minimum training presence Predicted value was less than any training fire’s 
predicted value.

Low Minimum training presence Predicted value was at least the minimum value 
predicted for a training fire.

Moderate Equal
A value which balances commission error (false 
negative) with omission error (false positive) for the 
training fires.

High 5th percentile training Predicted value was in the 5th percentile of training fire 
predicted values.

Table 1. Descriptions of fire danger assignment.
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sistent for the remaining 12 months.  Cluster 3 
looked similar to Cluster 1 in terms of trend, 
but overall conditions were drier.  Cluster 3 
crossed over to drier than baseline approxi-
mately 10 months prior to fire occurrence.  
Cluster 4 showed consistent drought for the 
entire 24 month period.  Cluster 5 was almost 
the opposite of Cluster 2 with consistent 
drought for the first 12 months followed by in-

creasingly wet conditions beginning 12 
months before fire occurrence. 

The ‘wet’ clusters (1 and 2) were at signifi-
cantly lower elevations (P-value = 5.74E-10), 
1768 m on average, and were composed of 
significantly more shrubland compared to the 
mid-elevation (1930 m) clusters (3 and 5), 
which had more mixed composition.  Cluster 5 
had more shrubland and Cluster 3 had more 
evergreen forest.  The highest elevation (2034 
m) cluster (4) exhibited the most severe an-
tecedent drought trend and was predominantly 
composed of conifer forest. 

Variation in the abundance of individual 
clusters varied over space and time.  For exam-
ple, multiple clusters (wet and dry) were pres-
ent during a given month as opposed to a single 
cluster dominating the study area based on av-
erage conditions within the region.  Fires with 
antecedent wet conditions appear in a cyclical 
pattern throughout the study period, compared 
to a fairly consistent occurrence of fires with 
antecedent dry conditions (Figure 3A).  The oc-
currence of fires with antecedent wet conditions 
corresponds well to periods of positive regional 
SCPDSI (i.e., wetter conditions).

The MaxEnt models successfully identi-
fied areas with antecedent climate patterns 
similar to those that have resulted in fire in the 
past (e.g., Figure 2B).  The average AUC for 
all clusters was 0.945 and remained consistent 
between the months tested.  This consistency 
is expected, and results from using the same 
training data for each prediction.  Since the 
AUC measures the ability of the model to dis-
tinguish antecedent patterns of climate associ-
ated with fire from everything else, the varia-
tion in AUC from month to month should be 
minimal. 

A test dataset of fires that occurred in Au-
gust 2011 was compared with the model pre-
dictions of those areas.  Out of the 16 fires that 
occurred during this month, 38 % of fire loca-
tions were classified as high danger areas and 
63 % were either moderate or high danger.  
Another comparison was done with the model 

Figure 2.  (A) Cluster centers for drought severity 
(SCPDSI).  Blue lines denote fires in which condi-
tions preceding fire are characterized by generally 
wetter than baseline while red lines are associated 
with antecedent conditions that are drier than base-
line.  (B) Median climate pattern observed during 
June 2007 compared to Cluster 3.  The expectation 
is that fire danger will be well predicted by the 
model due to the similarity in the two patterns. 
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output from June 2007 to assess model predic-
tions for months within the study period.  The 
classification results showed 50 % of observed 

fire locations classified as having a high dan-
ger and 83 % of the locations were classified as 
either moderate or high danger.

DISCUSSION

The antecedent climate patterns we found 
support observations made in previous studies 
(Westerling et al. 2003, Littell et al. 2009, 
Whitlock et al. 2010) that attributed the rela-
tionship between antecedent dry vs. anteced-
ent wet fires to climate-limited vs. fuel-limited 
fire regimes, with wetter conditions increasing 
fuel loads in fuel-limited areas, and drier con-
ditions affecting fuel moisture in climate-lim-
ited locations (Westerling et al. 2003). 

This idea of climate-limited vs. fuel-limit-
ed regimes is reinforced when the average land 
cover composition and elevation are compared 
between the clusters.  Clusters 3 to 5 have land 
cover and elevation consistent with a cli-
mate-limited regime, meaning that fuel is al-
ways abundant enough to support a large wild-
fire, but the typical climate in these areas does 
not often support the conditioning of fuels re-
quired for fire.  In the interior western US, 
these areas would most often be higher eleva-
tion locations, which generally receive more 
precipitation and are dominated mostly by for-
est when compared to lower elevations, which 
are often composed of mostly grass and shrub-
land.  In contrast, clusters 1 and 2 are fuel-lim-
ited (i.e., the climatic conditions are frequently 
sufficient for fuel conditioning but the sparse 
vegetation often results in insufficient fuel to 
support a large fire).  An antecedent wet period 
increases the fine fuel biomass and connectivi-
ty in these areas, and higher fuel loads are 
readily dried out when conditions return to 
baseline. 

Fuel type may explain differences in the 
distribution of fire size within each cluster 
(Figure 3B), where antecedent wet clusters 
had larger fires relative to antecedent dry clus-
ters.  Topography may also contribute to the 
differences in fire size distributions.  Within 

Figure 3. (A) Area burned per year by each clus-
ter.  Drought severity (SCPDSI) is overlaid to 
show how area burned is associated with fluctua-
tions in drought severity.  Fires preceded by anom-
alously dry conditions (red bars) remain relatively 
constant, while fires preceded by anomalously wet 
conditions (blue bars) appear during and after peri-
ods of anomalously high SCPDSI (low drought se-
verity).  (B) Comparison of fire sizes between 
clusters.  Blue lines are associated with clusters 
characterized by antecedent wet conditions, while 
red lines are associated with antecedent dry clus-
ters.  Fire size is calculated as the log10 of the fire 
size in hectares.  Fires that were preceded by wet 
conditions tended to be larger than those preceded 
by dry conditions.
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the study area, lower elevation locations are 
often less complex topographically compared 
to higher elevations.  Complex topography can 
impede fire spread due to variations in slope 
with respect to wind direction and physical 
barriers (e.g., riparian areas, steep slopes, etc.).  
The slowing of fire spread may, however, re-
sult in an increase in fire severity as the fire 
burns longer in a particular location (Pyne et 
al. 1996). 

Given the importance of antecedent cli-
mate in determining fire danger, we used the 
cross-correlation function (Venables and Rip-
ley 2002) to examine synchronous and lagged 
correlations between SCPDSI and multiple 
broad scale synoptic patterns, including the 
North American Monsoon, El Niño Southern 
Oscillation (ENSO), Pacific Decadal Oscilla-
tion (PDO), and 500 hPa geopotential height 
anomalies.  No significant correlations were 
found between these synoptic patterns and 
SCPDSI within the study area.  Wise (2010) 
describes a ‘Precipitation Dipole Transition 
Zone.’  This transition zone lies between two 
regions (the southwestern US and Pacific 
Northwest) that are highly affected by these 
larger patterns, but in opposite directions.  For 
example, a positive ENSO anomaly is typical-
ly associated with decreased cool season pre-
cipitation in the southwestern US, but is also 
associated with increased cool season precipi-
tation in the northwestern US.  Since a large 
portion of our study region lies in this transi-
tion zone, synoptic patterns do not have a clear 
impact on climate, and are unlikely to have 
strong correlations with fire activity.  Also, re-
lationships between fire and synoptic indices, 
like those found by Collins et al. (2006), may 
not be apparent due to the limited length of the 
MTBS time series.

In addition to climate, Westerling et al. 
(2006) addressed the notion that land use 
change may play a role in the increase of area 
burned by wildfires over the past decades, 
showing that even areas that have seen little to 
no land use change since the mid-1980s have 
experienced this increase in area burned—par-

ticularly in the Rocky Mountains.  While man-
agement plays a role in fire occurrence, cli-
mate has a strong connection as well (Littell et 
al. 2009, Dennison et al. 2014).  

MaxEnt does exhibit some difficulty in 
identifying novel climate patterns different 
from those used to develop the model.  Using 
MaxEnt, a prediction was made into July 
2012.  The results showed very low danger of 
fire across Utah, despite 2012 being an above 
average fire year (National Interagency Fire 
Center 2014).  The poor performance during 
this time period is understandable as anteced-
ent conditions for July 2012 show a much 
more exaggerated and abrupt change from wet 
to dry when compared to the antecedent condi-
tions represented by the antecedent wet clus-
ters.  As more data become available, these ex-
treme patterns can be incorporated and better 
identified within the model.  The distances cal-
culated during the modeling process can also 
be used to examine where these novel patterns 
are located.

When the correspondence between predic-
tive antecedent conditions and those used to 
calibrate the model is high, MaxEnt produces 
useful information regarding the implications 
for fire danger associated with those condi-
tions.  This information could be readily uti-
lized by land managers to inform decisions re-
lated to dangerous fire conditions.  The quality 
and availability of climate data makes the use 
of these data for fire danger assessment an at-
tractive option.  Another powerful application 
of these models is their use in conjunction 
with long-term projections made by climate 
models (Liu et al. 2013).  If relationships be-
tween climate and fire can be assumed to per-
sist as climate changes, MaxEnt fire danger 
models could provide an indication of the 
prevalence of fire-associated climate patterns 
under different change scenarios.  While cli-
mate projections would be limited by an as-
sumption of stationary land cover, they would 
still yield valuable information related to the 
future of fire occurrence in the region.
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As the climate continues to shift, the pat-
terns currently associated with fire provide in-
sight into the potential changes in fire regime 
that can be expected in response to the chang-
ing climate.  Projections from the Coupled 
Model Intercomparison Project (CMIP3 global 
climate) archive for the western United States 
under a moderate emission scenario (A1B) de-
scribe increasing drought throughout the re-
gion (Gutzler and Robbins 2011).  Increasing 
drought may result in more dry fires (clusters 3 
to 5), which tend to occur at higher elevations 
in locations with abundant heavy fuels.  How-
ever, drought may also reduce the number of 
lower elevation grass fires as biomass and fuel 
connectivity are reduced.

Our investigation into the climatic condi-
tions prior to fires within the interior western 

US identified clear and distinct patterns asso-
ciated with fire, including wet and dry an-
tecedent conditions.  Five clusters of anteced-
ent climate conditions were further discrimi-
nated by land cover composition and eleva-
tion.  These distinctions appear related to fuel 
vs. climate-limited fire regimes with unique 
interactions with climate.  Models built using 
these relationships provide a good indication 
of fire danger within our study region, but their 
predictive ability declines when these anteced-
ent conditions are markedly different from 
those used in model calibration.  As more data 
become available to describe these novel con-
ditions, we expect the model performance to 
improve.  The current results do, however, il-
lustrate the models’ utility for predicting and 
characterizing fire danger. 
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