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Carbon dioxide is emitted from the combustion of fossil fuels and is an important contributor to anthropogenic
climate change. Multiple current and planned satellite missions are designed to quantify atmospheric carbon
dioxide concentrations on a global scale, but most of these sensors do not have the spatial resolution necessary
to resolve point sources such as fossil fuel power plants. Airborne imaging spectrometer data, such as those
from the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS), canhavemultiple, contiguous bands covering
shortwave infrared (SWIR) absorption features produced by carbon dioxide. Therefore, high spatial resolution
data fromAVIRIS-like sensorsmay offer ameans for detecting plumes and retrieving carbon dioxide concentrations
for point source emissions. The objectives of this study include modeling minimum carbon dioxide anomalies
detectable in AVIRIS data under different conditions and applying a Cluster-Tuned Matched Filter for detection of
carbon dioxide plumes in simulated data and in AVIRIS images acquired over power plants. Radiative transfer
simulations were used to model the residual radiance produced by increased absorption by carbon dioxide as
concentration was elevated above background levels within a 0–500 m layer. Carbon dioxide anomalies, surface
reflectance, water vapor concentration, solar zenith angle, sensor height, and aerosol scattering were varied in
simulation sets and the resulting residual radiance spectra were compared against noise equivalent delta radiance
(NEdL) for the “classic” and “next generation” AVIRIS instruments. Sensitivity to carbon dioxide anomalies
improved with increased surface reflectance and declined with increased water vapor concentration, solar zenith
angle, sensor height, and aerosol scattering. Zero to 500 m concentration anomalies as low as 100 parts per milion
by volume (ppm) for AVIRIS C and 25 ppm for AVIRIS NG produced residual radiance values that exceeded SWIR
NEdL. Carbon dioxide concentrations modeled for a generic power plant emissions scenario using a plume disper-
sion model were combined with randomly-generated reflectance spectra to create simulated images with varying
surface reflectance and NEdL. For these simulated images, true positive and false positive detection rates improved
as background reflectance increased and asNEdL decreased. Apparent plumeswere detected in all four AVIRIS C im-
ages acquired over power plants, although the characteristics of the plumes varied according to solar-plume-sensor
geometry. Improvements in modeling may allow retrieval of plume concentration, providing a valuable means for
quantifying point source emissions and a basis for comparison with column concentrations retrieved from in situ
measurements and coarse resolution satellite data.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Greenhouse gases affect Earth's energy balance by absorbing outgoing
longwave radiation. Anthropogenic increases in the atmospheric
concentration of multiple greenhouse gases, including carbon dioxide
(CO2),methane (CH4), nitrous oxide (N2O), andhalocarbons, have caused
on).

ghts reserved.
positive radiative forcing resulting in increased global temperature
(Forster et al., 2007). Of the long-lived greenhouse gases, carbon dioxide
has contributed themost radiative forcing since the start of the industrial
era. Pre-industrial atmospheric concentrations are estimated between
275 and 285 parts per milion by volume (ppm) (Forster et al., 2007). Cu-
mulative emissions from fossil fuel combustion and cement production
have exceeded 350 billion tons of carbon (Boden, Marland, & Andres,
2011), resulting in a global average carbon dioxide concentration sur-
passing 390 ppm in 2012 (NOAA, 2012).
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Fig. 1. Atmospheric transmittance for the three primary greenhouse gases, based on a
MODTRAN simulation convolved to the 2011 AVIRIS C sensor response function.
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Increasing population and demand for electricity has resulted in
increased global energy consumption, with the global annual primary
energy supply nearly doubling between 1973 (2.56 × 1020 J) and
2009 (5.09 × 1020 J) (IEA, 2011). The dominant source of electricity
generation is power plant combustion of fossil fuels, resulting in point
source emission that comprises a significant share of global anthropo-
genic carbon dioxide emissions. Within the United States, 40.6% of CO2

emissions are attributed to stationary sources that generate electricity
by combusting fossil fuels (EPA, 2012). Emission estimates from
power plants can have large uncertainties; for example, Ackerman and
Sundquist (2008) found a 16.9% average absolute difference for emission
estimates from the U.S. Department of Energy's Energy Information
Administration (EIA) and the U.S. Environmental Protection Agency's
eGRID database. In the U.S., uncertainty in fossil fuel carbon dioxide
emissions was estimated to be between −1 and 6% (EPA, 2011). For
the EU-25 nations emission uncertainty was 7% when comparing four
inventory methods (Ciais et al., 2010), and between 15 and 20%
for China when including both fossil fuel consumption and cement
production (Gregg, Andres, & Marland, 2008).

Given these uncertainties, there is increased interest in developing
methods of quantifying anthropogenic carbon dioxide emissions using
remote sensing. Past and ongoing satellite missions have provided the
ability to monitor global carbon dioxide concentrations at coarse spatial
resolutions, including the Atmospheric Sounding Interferometer (IASI;
Crevoisier et al., 2009), the Atmospheric Infrared Sounder (AIRS;
Jiang, Chahine, Olsen, Chen, & Yung, 2010), the Tropospheric Emission
Spectrometer (TES; Kulawik et al., 2010), the Scanning Imaging Absorp-
tion Spectrometer for Atmospheric Chartography (SCIAMACHY;
Schneising et al., 2008), and the Greenhouse Gas Observing Satellite
(GOSAT; Saitoh, Imasu, Ota, & Niwa, 2009). In addition to detecting
temporal and spatial variability in carbon dioxide concentrations, data
like those provided by SCIAMACHY and GOSAT have great potential
for estimating surface fluxes by inverse modeling of satellite observa-
tions (Chevallier et al., 2009; Schneising et al., 2012). Scheduled for
launch in 2014, the Orbiting Carbon Observatory (OCO)-2 is equipped
with a near infrared (NIR)/SWIR spectrometer that should provide a
1 ppm column concentration accuracy and km-scale spatial resolution
needed for constraining regional sources and sinks (Crisp et al., 2004).
Further, space-based detection of carbon dioxide emissions from
power plants appears feasible using the proposed Carbon Monitoring
Satellite (CarbonSat; Velazco et al., 2011).

Airborne sensors offer the potential to better constrain local emissions
and improve greenhouse gas budgets (NRC, 2010). Recently developed
airborne sensors have great potential for measuring carbon dioxide
emissions at local and regional scales while complementing global
monitoring efforts at coarser resolutions. For example, the non-imaging
SWIR spectrometer MAMAP (Methane Airborne MAPper) has been
used to measure a carbon dioxide plume emitted from a coal-fired
power plant (Bovensmann et al., 2010). As part of the Carbon in Arctic
Reservoirs Vulnerability Experiment (CARVE), a nadir-viewing Fourier
transform spectrometer (FTS) is being used tomeasure total atmospheric
columns of carbon dioxide in Alaskan terrestrial ecosystems (Miller &
Dinardo, 2012). However, these sensors provide atmospheric column
concentrations for a small footprint; MAMAP is non-imaging and has a
ground sample distance of approximately 33 m for a 1 km flight height
(Gerilowski et al., 2011), while the FTS telescope for the CARVE
mission has a 10° field of view with a spatial resolution approximately
100 × 1000 m (Miller & Dinardo, 2012).

The finer spatial resolution Airborne Visible InfraRed Imaging
Spectrometer (AVIRIS) measures reflected solar radiance across 224
contiguous spectral bands between 350 and 2500 nm with a 10 nm
spectral sampling (Green, Eastwood, &Williams, 1998). For the “classic”
AVIRIS instrument (AVIRIS C) spatial resolution typically ranges
between 3 and 20 m depending on platform altitude, while the “next
generation” AVIRIS instrument (AVIRIS NG) is capable of spatial resolu-
tions as fine as 1 m with an improved spectral sampling of 5 nm. The
objectives of this study are to establish minimum carbon dioxide
anomalies as thresholds for plume detection, and to demonstrate
carbon dioxide plume detection in simulated images and in AVIRIS
C data acquired over power plants. Using radiative transfer modeling,
we compare residual radiance caused by increased carbon dioxide
absorption to noise equivalent delta radiance for AVIRIS C and AVIRIS
NG. Simulated images and AVIRIS C images acquired over four U.S.
power plants are used to demonstrate carbon dioxide plume detection
based on a Cluster-Tuned Matched Filter (CTMF) approach.
2. Background

In addition to strong vibrational absorptions in themid infrared and
longwave (thermal) infrared, carbon dioxide has distinct vibrational–
rotational absorptions in the SWIR. Fig. 1 shows modeled atmospheric
transmittance for the three primary greenhouse gases: carbon dioxide,
methane, andwater vapor. These transmittance spectrawere generated
using the MODTRAN radiative transfer model (Berk, Bernstein, & Rob-
ertson, 1989) and convolved to the 10 nm spectral sampling of AVIRIS
C. The strongest carbon dioxide absorptions peak at approximate wave-
lengths of 1960, 2010, and 2060 nm. At shorter wavelengths in this
range, carbon dioxide absorption features overlap with strong water
vapor absorption (Fig. 1). Weaker carbon dioxide absorption features
present at 1570 and 1600 nmare free of strongwater vapor absorption,
but the absorption feature at 1430 nm is completely within a strong
water vapor absorption band.

Imaging spectrometer data that include carbon dioxide SWIR
absorption bands have potential for mapping spatial variation in
atmospheric carbon dioxide concentration. Absorption of reflected
solar radiance occurs for both direct and scattered radiance, complicating
measurement of the carbon dioxide absorption signal. Solar zenith angle,
view zenith angle, sensor height, and surface elevation determine the
length of the direct path. These factors, alongwith scattering and absorp-
tion by water vapor and aerosols, influence carbon dioxide absorption of
scattered radiance. While the length of the direct path is usually known,
aerosol and water vapor effects are often unknown and must be mea-
sured. Atmospheric pressure and temperature also impact carbon dioxide
absorption through broadening of absorption lines at higher pressures
and temperatures. All radiance measured by a sensor is normally as-
sumed to be solar radiance, but emitted radiance can significantly reduce
apparent carbon dioxide absorption by greatly reducing path length
(Dennison, 2006). Reduction in carbon dioxide absorption due to emitted
radiance provides a means for fire detection using imaging spectrometer
data (Dennison, 2006; Dennison & Roberts, 2009; Matheson & Dennison,
2012).



118 P.E. Dennison et al. / Remote Sensing of Environment 139 (2013) 116–129
Parameters such as solar and view zenith angles, sensor and surface
height, aerosol scattering characteristics, and atmospheric water vapor
concentration can be used as inputs for radiative transfer modeling of
reflected solar radiance. Concentration of carbon dioxide in themodeled
atmospheric column can be altered to determine the effects of concen-
tration on reflected radiance, and radiance or index values can be used
to retrieve trace gas concentration using model inversion (Roberts
et al., 2010). Previous efforts have used radiative transfer modeling to
demonstrate carbon dioxide concentration retrieval from AVIRIS C
data. Marion, Michel, and Faye (2004) estimated carbon dioxide con-
centrations from AVIRIS C data using the Joint Reflectance and Gas
Estimator (JRGE), a two-step algorithm that first calculates surface
reflectance and then carbon dioxide column concentrations. Concentra-
tions estimated frommulti-pixel areaswithin anAVIRIS C image obtained
during the 1994 Quinault prescribed fire in Washington State were in
good agreement with in situ carbon dioxide measurements (Marion
et al., 2004). In a subsequent study using the same AVIRIS C image, the
accuracy of carbon dioxide concentrations was improved by estimating
aerosol properties using a look up table (LUT) inversion approach prior
to running the JRGE algorithm (Deschamps, Marion, Briottet, Foucher, &
Lavigne, 2011). Using a Continuum Interpolated Band Ratio (CIBR)
based on a carbon dioxide absorption maximum at 2011 nm and
accounting for aerosol and water vapor content, Spinetti, Carrere,
Buongiorno, Sutton, and Elias (2008) calculated carbon dioxide
concentrations ranging from 40 to 350 ppm above background
and estimated an integrated flux rate in good agreement with in
situ measurements.

Imaging spectrometer data have been used to quantify spatial
variation in trace gas absorption, includingwater vapor, carbon dioxide,
andmethane. Gao andGoetz (1990) usedwater vapor absorption bands
at 940 and 1140 nm to retrieve column water vapor amounts and
generate maps for entire AVIRIS C scenes. Green, Conel, and Roberts
(1993) developed a radiative transfer-based inversion to calculate
column water vapor from AVIRIS C data, and Roberts, Green, and
Adams (1997) used this method to observe a strong linear, inverse
relationship between elevation and column water vapor as well as
seasonal variations across multiple scenes. Ben-Dor and Kruse
(1996) used Geophysical Environmental Research (GER) 63 spec-
trometer data to show that carbon dioxide and water vapor absorp-
tion vary with surface elevation due to changes in path length.
Ogunjemiyo et al. (2002) demonstrated that AVIRIS C data can be
used to detect elevated water vapor concentrations resulting from
evapotranspiration under favorable boundary layer conditions.

AVIRIS C has a signal-to-noise ratio that is favorable to mapping in-
creased methane concentrations (Leifer, Roberts, Margolis, & Kinnaman,
2006), and Roberts et al. (2010) estimated methane concentrations
over the Coal Oil Point (COP) seep field in the Santa Barbara Channel,
California by calculating spectral residuals and a methane index.
Bradley, Leifer, Roberts, Dennison, and Washburn (2011) developed a
Table 1
Simulation sets modeled using MODTRAN. Carbon dioxide anomalies were consistent across a
aerosol optical depth at 2060 nm.

Simulation set CO2 anomaly
(ppm above background)

Reflectance

Baseline 0, 25, 50, 100, 200, 400, 800, 1600 0.15

Reflectance 0.025–0.50

Water vapor 0.15

Zenith angle 0.15

Height 0.15

Aerosol 0.15
band ratio technique using methane absorption band (2298 nm) and
carbon dioxide absorption band (2058 nm) radiance. For solar-view
geometries providing sun glint, they were able to clearly map a
methane plume at the COP site. For spectrally and spatially hetero-
geneous terrestrial surfaces, Thorpe et al. (2013) mapped a number
of methane plumes from natural seeps and fugitive emissions using
a Cluster-Tuned Matched Filter approach (Funk, Theiler, Roberts, &
Borel, 2001) applied to AVIRIS C scenes from the Los Angeles Basin.
Based on this previous work with methane seeps, point sources
offer the strongest potential for detection of carbon dioxide plumes
using AVIRIS data.

3. Methods

3.1. Radiative transfer modeling

MODTRAN 5.3 (Berk et al., 2005) was used to simulate the effects of
increased carbon dioxide concentration on reflected solar radiance. Six
different sets of simulations that varied atmospheric and geometric
characteristics were created (Table 1). Within themodeled atmospheres,
background carbon dioxide concentration was set to 390 ppm across the
entire atmospheric profile. All simulation sets also created an atmospher-
ic layer from sea level to an altitude of 500 m, within which the carbon
dioxide concentration could be increased to simulate the presence of a
carbon dioxide plume. Concentration within this layer was varied from
25 ppm above background to 1600 ppm above background. For each
increment in each simulation set, the carbon dioxide anomaly within
the 0–500 m layer was doubled (Table 1). Equivalent integrated column
anomalies for each 500 m layer anomaly are shown in Table 2. Two-way
transmittance was assumed for the 0–500 m layer, so modeled solar
radiance passed through the layer in both the downwelling and
upwelling directions.

Values used for surface reflectance, atmospheric water vapor
concentration, solar zenith angle, and sensor height were based
on the ranges of values found in previously studied AVIRIS C images
(e.g. Dennison et al., 2003; Matheson & Dennison, 2012). The baseline
simulation set used a 15% background reflectance, a 25 mm atmospheric
water vapor concentration, a 35° solar zenith angle, and a 10 km sensor
height. Baseline reflectance, water vapor, and solar zenith angle values
were representative of averages over previously studied AVIRIS C images,
and the 10 km sensor heightwas a compromise between extremes in the
range of altitudes AVIRIS C data are collected from (3–20 km). For the
reflectance simulation set, reflectance was varied from a minimum of
2.5% to a maximum of 50%. All other parameters used values from the
baseline simulation set (Table 1). The water vapor simulation set varied
the depth of water vapor from a minimum of 10 mm to a maximum of
40 mm. The solar zenith simulation set varied solar zenith angle from
0° to 70°. The sensor height simulation set varied the altitude of the
sensor from 500 m above sea level to 100 km above sea level. 100 km
ll simulation sets. τa550 is aerosol optical depth at 550 nm and τa2060 is the corresponding

Water vapor
(mm)

Solar zenith angle
(°)

Sensor height
(km)

τa550,
τa2060

25 35 10 0.325,
0.039

25 35 10 0.325,
0.039

10–40 35 10 0.325,
0.039

25 0–70 10 0.325,
0.039

25 35 0.5–100 0.325,
0.039

25 35 10 0.1–3.0,
0.01–0.43



Table 2
Equivalent integrated column anomalies for each 0–500 m carbon dioxide anomaly
used for MODTRAN modeling.

0–500 m anomaly (ppm) Column anomaly (ppm)

25 1.4
50 2.8
100 5.6
200 11.3
400 22.5
800 45.1
1600 90.2

119P.E. Dennison et al. / Remote Sensing of Environment 139 (2013) 116–129
is effectively the height of a satellite platform, since the highest layer
modeled in MODTRAN ended at an altitude of 100 km.

All simulations used a mid-latitude summer atmospheric profile.
The default rural boundary layer aerosol profile (for layers up to 2 km
altitude) and tropospheric aerosol profile (for layers above 2 km and
up to 10 km altitude) in MODTRAN were used to model scattering
and absorption by aerosols. MODTRAN also allows selection of urban
or maritime boundary layer aerosol characteristics (Shettle & Fenn,
1979); rural boundary layer aerosol characteristics were used for this
study due to the rural location of most power plants in the United
States. Aerosol optical depth at 550 nm (τa550) is used by MODTRAN
to scale aerosol extinction across all wavelengths. τa550 for the first
five simulation sets was set to a value of 0.325, which corresponds to
an aerosol optical depth at 2060 nm (τa2060) of 0.039. The aerosol sim-
ulation set varied τa550 from 0.1 to 3.0, equivalent to a range in τa2060 of
0.01 to 0.43 (Table 1).

The at-sensor reflected solar radiance modeled by each MODTRAN
simulation was convolved using the sensor response function of
AVIRIS C for 2011, producing radiance spectra with 224 bands and an
approximate 10 nm fullwidth halfmaximum. For each spectrumwithin
a simulation set, a residual radiance was calculated by subtracting the
spectrum from a spectrum with no elevated carbon dioxide concentra-
tion. Within the spectral region with the highest residuals (2000–
2090 nm), bands centered closest to 2000 nm (moderate carbon diox-
ide absorption and moderate water vapor absorption) and 2060 nm
(peak carbon dioxide absorption and low water vapor absorption)
were selected for comparison of residuals produced by the reflectance,
water vapor, solar zenith angle, sensor height, and aerosol simulation
sets.

To determine the theoretical minimum detectable change in carbon
dioxide concentration, residual radiance values for different carbon
dioxide anomalies were compared to the noise equivalent delta radiance
(NEdL) for AVIRIS C and AVIRIS NG. NEdL is the minimum change in
radiance distinguishable from sensor noise and is dependent on both
wavelength and radiance. NEdL values were calculated from sensor-
specific radiometric models that included photon (“shot”) and read
noise for each spectral band. Detector quantum efficiency and through-
put for each mirror and transmissive element were included in the
radiometric models. At-sensor reflected solar radiance spectramodeled
Table 3
Descriptions of four AVIRIS C images acquired over power plants, and the estimated annu
Emissions & Generation Resource Integrated Database (eGRID) for 2009 (http://www.epa

Image Mount Storm

Latitude 39.20
Longitude −79.27
Date 2008/7/2
Time (GMT) 15.8
Solar azimuth 122.7
Solar zenith 25.5
Water vapor (mm) 10.5
Sensor altitude (km) 20.25
Ground elevation (m) 995
Image spatial resolution (m) 16.4
2009 annual power plant emission (×106 Mg CO2) 9.5
by MODTRAN for the 0 ppm anomaly in each simulation set were used
tomodel the NEdL spectra. It should be noted that NEdL does not account
for all potential errors in imaging spectrometer data. Spectroscopic
calibration, sensor alignment, and scanning artifacts can also introduce
error into measured radiance.

3.2. Plume detection

NEdL establishes a minimum detection threshold for increased
carbon dioxide concentration, however, itmay be difficult to distinguish
this signal when a spectrally heterogeneous background is present. To
assess whether carbon dioxide plumes from power plants should be
detectable in AVIRIS C data, concentrationsmodeled by a plume disper-
sion model were combined with a variable spectral background and a
MODTRAN-generated look-up table to create simulated radiance im-
ages. The Cluster-Tuned Matched Filter (CTMF) detection algorithm
(Funk et al., 2001; Thorpe et al., 2013) was then applied to the simulat-
ed radiance images. NEdL and background surface reflectance were
varied to assess detection sensitivity to these factors. Finally, CTMF
was used to demonstrate detection of carbon dioxide plumes in four
AVIRIS C radiance images possessing a variety spatial resolutions and
atmospheric conditions (Table 3).

Matched filter algorithms are trained with a target spectrum to
generate a linear weighting function that produces high values
when an unknown spectrum matches the shape of the target spec-
trum. In this case, the target spectrum contains the residual radiance
signal of increased carbon dioxide absorption. A CTMF approach can
improve performance by first applying k-means clustering to partition
the surface (background clutter) to minimize within-class variance,
and then creating a matched filter that is specifically tuned for each
cluster (Funk et al., 2001). In clustering pixels with similar radiance
signatures, this approach assumes that the target radiance signal is a
small contribution to the overall background covariance (Thorpe et al.,
2013). CTMF uses a sample-based k-means algorithm on image principal
components to assign extreme locations for class centroids. The number
of k-means classes must be defined a priori and reflects a balance
between maximizing the number of clusters to adequately classify
an image, while maintaining enough pixels in each cluster to ensure
adequate sample size.

After the k-means algorithm assigns clusters, a matched filter tuned
for each cluster is applied to the image using the following equations:

qj ¼
C−1

j bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bTC−1

j b
q ð1Þ

f i; j ¼ qTj ri; j: ð2Þ

For class j, qj is the CTMF and represents an n-dimensional vector
of optimal weights, where n is the number of spectral bands (channels).
Cj

−1 is the inverted n by n covariancematrix for the jth class and b is the
al power plant carbon dioxide emissions from the U.S. Environmental Protection Agency
.gov/cleanenergy/energy-resources/egrid/index.html, last accessed March 2013).

New Madrid Moss Landing Jack Watson

36.51 36.80 30.44
−89.56 −121.78 −89.03
2011/7/27 2011/9/28 2011/10/13
15.3 20.1 16.7
104.4 182.5 157.5
39.8 38.9 40.7
32.7 22.1 28.9
9.11 3.25 3.97
91 8 4
7.6 2.7 3.3
6.6 1.8 2.8

http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html
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n-dimensional vector containing the target spectrum. The CTMF is
multiplied by each image spectrum, ri,j, a n-dimensional vector for the
ith pixel in class j (Eq. 2), resulting in a CTMF score, fi,j, for each pixel
within the class. Multiplication by the inverted covariance matrix in
the numerator in Eq. (1) ‘whitens’ the data, removing spectral cross-
correlation in the background clutter, while the denominator normalizes
the filter so that the CTMF image has a variance of 1 when the signal is
absent. The CTMF score for each pixel within a class is standardized,
resulting in a mean CTMF score of 0 and standard deviation of 1 for the
class. Filtered pixels are then recomposed as a final output image that
reduced noise and sensitivity to surface featureswhile enhancing the tar-
get spectrum signature. AVIRIS C spectra input into CTMF exclude the first
four bands (365–395 nm), last three bands (2475–2500 nm), and strong
water vapor absorption bands (1340–1495 nm, 1780–1960 nm) due to
low signal. Otherwise, all bands are included for clustering and filtering.

Rather than tune the MODTRAN simulation parameters to match
expected conditions in the simulated and real AVIRIS C images, a single
Fig. 2. (a) Carbon dioxide anomalies over a 500 m layer, for a 2 km by 2 km area,modeled
by the plume dispersion model. Pixels with an anomaly less than 10 ppm above back-
ground are shown in black. (b) A simulated radiance image showing the 2060 nm band
for the same area as (a). Note that decreased radiance is not discernible within the area
of the plume, due to the high variability of background reflectance.
carbon dioxide residual radiance spectrumwas used for theCTMF target
spectrum. The baseline simulation set (15% reflectance, 25 mm water
vapor, 35° solar zenith angle, 10 km sensor height, and 0.325 τa550;
see Table 1) was used to generate the residual radiance by subtracting
simulated radiance with 100 ppm carbon dioxide above background
(within the 0–500 m layer) from simulated radiance for the background
concentration. The resulting target spectrum was multiplied by nega-
tive one to produce positive CTMF scores that would correspond with
increased carbon dioxide absorption.

CTMF was first applied to simulated image data containing a carbon
dioxide anomaly modeled using a plume dispersion model (Fig. 2a).
Generic parameters approximating a typical natural gas-fired power
plant were used to create the plume dispersion model (ESI, 1971). The
dispersion model used 10 m grid cells with a vertical height of 500 m,
and the plume was positioned within a 2 km by 2 km area. A simple
bent-over Gaussian plume model with reflection at the ground surface
was implemented closely following the (Hanna, Briggs, & Hosker,
1982) plume rise model with a Pasquill–Gifford stability class C for
rural conditions and light to moderate winds (Briggs, 1973). Source
strength was assumed to be 2 million metric tons of carbon dioxide
per year (63.4 kg s−1), close to the minimum annual emissions of the
four power plants captured in AVIRIS C images (Table 3). The wind
speed at stack height (U = 3.6 ms−1) was computed using a power
law model with an exponent of 0.1 assuming 10 m winds of 3 ms−1.
The stack was assumed to be 60 m tall with a radius (Rs) of 2 m. The
concentration of emitted carbon dioxide (c) was modeled as:

c x; y; zð Þ ¼ Q
2πUσyσ z

exp
−y2

2σ2
y

 !

� exp
z−heð Þ2
−2σ2

z

 !
þ exp

zþ heð Þ2
−2σ2

z

 ! !
: ð3Þ

In Eq. (3), x, y, and z are coordinate distances in the along-wind,
cross-wind and vertical directions respectively. Q is the source strength
(kg s−1) and the plume spread parameters (Briggs, 1973) are σy and σz.
he is the effective height of the plume, and is equal to the stack height
plus the plume rise (hpr(x)) at a distance x downstream of the stack.
The effective plume height was computed again following Hanna et al.
(1982) as:

hpr xð Þ ¼ 3M
β2U2 xþ

3B
2β2U3 x

2
� �1=3

: ð4Þ

In Eq. (4), the coefficient βwas taken as 0.6 following Briggs (1984).
M is the plume momentum flux and B is the buoyancy flux. They are
computed using Eqs. (5) and (6) respectively,

B ¼ gR2
s Vs

Te−Tamb

Tamb
; ð5Þ

M ¼ R2
s V

2
s

Tp

Tamb
: ð6Þ

In the above equations, Vs is the stack exit velocity, Tp is the
plume temperature at the exhaust and Tamb is the ambient surrounding
temperature. The ambient temperature was estimated as 303 K for a
warm, slightly unstable day. The exhaust temperature and velocity
were assumed to be 443 K and 13 ms−1 respectively, following
information from ESI (1971).

Background reflectance for the simulatedAVIRIS C imageswas based
on a spectral library containing reflectance spectra for a variety of urban
materials and vegetation species found in southern California, USA.
Urban material spectra from Herold, Roberts, Gardner, and Dennison
(2004) and vegetation spectra from Roberts et al. (1999)were collected
in the field using an Analytical Spectral Devices full range field
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spectrometer (ASD Inc., Boulder, Colorado, USA). A total of 1659
spectra were used as the basis for a simulated reflectance image.
All spectra were convolved to the 2011 AVIRIS C sensor response
function. A 200 by 200 pixel image (covering 2 km by 2 km) was
created by assigning two random reflectance spectra from the library
to each pixel. The first random spectrum was multiplied by a random
fraction between 0 and 1, and the second endmember was multiplied
by the reciprocal of the random fraction.

MODTRAN runs that varied carbon dioxide concentration and
background surface reflectance were used to create a radiance lookup
table. Carbon dioxidewas varied from 0 ppm to 1500 ppm above back-
ground in 10 ppm increments. Background surface reflectance was
varied from 0% to 60% in 0.1% increments. All other factors were set to
the values for the baseline simulation set listed in Table 1, producing a
total of 90,751modeled radiance spectra. Carbon dioxide concentration
from the plume model and reflectance from the simulated reflectance
image were used to look up the radiance value for each band in each
pixel,which converted the simulated reflectance image into a simulated
radiance image. A noise termbased on AVIRIS CNEdLwas then added to
each band. The noise term was generated using a random Gaussian
distribution, with NEdL assumed to represent one standard deviation.
Finally, the simulated radiance image was converted to integer scaling
using AVIRIS C gain factors (Fig. 2b).

The simulation sets listed in Table 1 revealed that NEdL and
background surface reflectance were the twomost important variables
impacting detectability of carbon dioxide absorption at low-to-moderate
solar zenith angles. To assess the sensitivity of plume detection to these
two factors, NEdL was set to 0.33, 1.0, and 3.0 times the AVIRIS C NEdL
for each band. Mean background surface reflectance at 2060 nm was
adjusted to 6%, 12%, and 24%, where 12% is the approximate average of
2060 nm surface reflectance found under carbon dioxide plumes in the
four AVIRIS C images (see Table 4). The CTMF was then applied to a
total of nine simulated AVIRIS C radiance images containing themodeled
carbon dioxide plume. Ten clusters were used for k-means clustering of
all nine simulated radiance images.

True positive and false positive detection rates were determined
using subsets of the simulated images. The true positive detection rate
was calculated for 500 pixels containing a modeled carbon dioxide
anomaly of 100 ppm or greater (Fig. 2a). The false positive detection
rate was calculated for 32,136 pixels containing an anomaly of less
than 10 ppm, which is well below the detection threshold for AVIRIS
data. Partial receiver operating characteristic (ROC) curves were
generated using true positive and false positive detection rates for
matched filter score detection thresholds ranging from +1 to +6.

The CTMF was also applied to four AVIRIS C images acquired over
fossil fuel power plants (Table 3). Spatial subsets of each AVIRIS C
image containing 160,000 pixels were created. The subsets were
processed to apparent surface reflectance using ACORN atmospheric
correction software (ImSpec LLC) to retrieve average surface reflectance
and atmospheric water vapor concentration within each image. A 2008
AVIRIS C image collected over the Mount Storm coal-fired power plant
in West Virginia, USA had the highest sensor height, producing a geo-
metrically corrected and resampled spatial resolution of 16.4 m. The
Mount Storm image also had the smallest solar zenith angle and the
driest atmosphere (Table 3). All other AVIRIS C images were collected
in 2011. An image acquired over the New Madrid coal-fired power
Table 4
Mean reflectance at 2000 nm and 2060 nm for contiguous areas of increased carbon
dioxide absorption in each AVIRIS C image.

Image Mean plume ρ2000 Mean plume ρ2060

Mount Storm 0.106 0.123
New Madrid 0.098 0.127
Moss Landing 0.143 0.157
Jack Watson 0.047 0.056
plant in Missouri, USA had the highest atmospheric water vapor con-
centration. The geometrically corrected and resampled New Madrid
image had an intermediate spatial resolution of 7.6 m (Table 3). The
AVIRIS C image acquired over the natural gas-fired Moss Landing
power plant in California, USA had the finest spatial resolution at
2.7 m. An image collected over the coal-fired Jack Watson power
plant in Mississippi, USA had a fine 3.3 m spatial resolution and the
highest solar zenith angle (Table 3). The largest number of clusters
that still maintained a minimum of 1000 pixels per cluster was used
for the CTMF applied to each AVIRIS C image. Twenty-five clusters
were selected for the Mount Storm, New Madrid, and Moss Landing
subsets, while the Jack Watson subset used five clusters.

4. Results

4.1. Radiance simulations

As carbon dioxide concentration in the 0–500 m layer was increased,
residual radiance values also increased (Fig. 3). Several features associat-
ed with enhanced carbon dioxide absorption were evident. Residuals
were strongest in two broad spectral regions: from 1530 to 1640 nm
and from 1970 to 2090 nm. Within those regions, residual radiance
peaked at 1570 nm, 1600 nm, 2020 and 2030 nm, and again at 2060
and 2070 nm. NEdL thresholds were exceeded at lower concentrations
for the longer wavelength peaks. AVIRIS C NEdL was exceeded at a con-
centration anomaly of 100 ppm, while AVIRIS NG NEdL was exceeded
at a lower anomaly of 25 ppm.

Residual radiance at 2000 and 2060 nm decreased linearly with
decreasing surface reflectance. To better display the full range of
residuals, residual radiance was plotted using a log10 scale on the
y-axis of Fig. 4. Decreasing surface reflectance resulted in decreased
at-sensor radiance and a correspondingly reduced residual radiance
due to carbon dioxide absorption. NEdL also decreased with decreasing
surface reflectance. At 20% reflectance and 2000 nm, the 100 ppm resid-
ual exceeded AVIRIS C NEdL, while an anomaly in excess of 400 ppmwas
necessary to exceed AVIRIS C NEdL at 2.5% reflectance (Fig. 4a). Carbon
dioxide anomalies as low as 50 ppm could theoretically be detected for
high reflectance surfaces using AVIRIS C.

Because the absorption coefficient of water vapor is higher at
2000 nm than at 2060 nm, residual radiance changed more rapidly
with water vapor concentration at 2000 nm (Fig. 5). Sensitivity to
carbon dioxide anomalies was highest for drier atmospheres, and
decreased with increasing water vapor. NEdL also declined slightly
with increasingwater vapor, caused by increasedwater vapor absorption
and reduced reflected radiance. At 2000 nm, the 100 ppm residual
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Fig. 3.Residual radiance across a range of carbon dioxide anomalies, compared to AVIRIS C
and AVIRIS NG NEdL spectra. Carbon dioxide anomalies are for a 0–500 m layer.
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Fig. 4. Residual radiance across a range of surface reflectances for bands centered near
2000 nm (a) and 2060 nm (b). Carbon dioxide anomalies are for a 0–500 m layer.
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Fig. 5. Residual radiance across a range of water vapor concentrations for bands centered
near 2000 nm (a) and 2060 nm (b). Carbon dioxide anomalies are for a 0–500 m layer.
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exceeded the AVIRIS C NEdL threshold at 10 mmofwater vapor (Fig. 5a),
while the same anomaly produced a residual thatwas below the AVIRIS C
NEdL threshold at 20 mm of water vapor.

Due to the increased atmospheric path length of solar irradiance,
reduction of irradiance by the cosine of the incidence angle, and
the relatively high absorption coefficient of carbon dioxide, solar
zenith angle had a strong, non-linear effect on sensitivity to carbon
dioxide anomalies (Fig. 6). Sensitivity to anomalies was highest at nadir,
and decreased rapidly at solar zenith angles beyond 30°. At 70° solar
zenith angle, background carbon dioxide absorption was greatly
enhanced by the long path length, which reduced sensitivity to carbon
dioxide concentration anomalies in the 0–500 m layer. Water vapor
absorption also increased with path length, which had a greater effect
at 2000 nm than at 2060 nm.

Path length was also a key factor in the simulation set that varied
sensor height. Lower heights increased sensitivity to carbon dioxide
anomalies, due to reduced background absorption from the surface to
the sensor. At 100 ppm and a sensor height of 0.5 km, the residual radi-
ancewas above AVIRIS CNEdL at bothwavelengths (Fig. 7). At 100 ppm
and a sensor height of 10 km, only the 2060 nm band had a residual
radiance that exceeded AVIRIS C NEdL. To ensure that changes in residual
radiance remained visible for lower sensor heights, sensor heights above
20 kmwere omitted from Fig. 7. Residual radiance changed more slowly
above 5 km, and residuals at 100 km were effectively similar to those at
20 km. With a constant surface reflectance, varying aerosol optical
depth had relatively minor effects on sensitivity to carbon dioxide
anomalies (Fig. 8). Scattering by aerosols is low in the SWIR, but scatter-
ing effects are more pronounced at 2000 nm where increased scatter-
ing is compounded by increased water vapor absorption.
4.2. Plume detection in simulated images

CTMF scores represent a standardized scale where strong positive
scores indicate increased carbon dioxide absorption. Both NEdL and
mean reflectance impacted the spatial extent of strong positive CTMF
scores within the simulated images (Fig. 9). Only the portion of the
plume with the highest carbon dioxide anomalies was detected in the
simulated imagewith the highest noise (3 × AVIRIS CNEdL) and lowest
reflectance (6%). More of the plume was detected as NEdL decreased
and reflectance increased. Based on the range of reflectance at 1 × AVIRIS
CNEdL, power plant carbondioxide plumesproducedby similar emission
and atmospheric characteristics should be readily detectable in AVIRIS C
data using CTMF. AVIRIS NG NEdL in the SWIR is approximately 1/3rd
that of AVIRIS C. Fig. 9 demonstrates that AVIRIS NG should have im-
proved ability to detect carbon dioxide plumes, even without accounting
for the higher spectral resolution of AVIRIS NG.

True positive detection rates varied with the selected CTMF score
detection threshold, but were highest for low NEdL and high back-
ground reflectance (Fig. 10). At a +1 CTMF score detection threshold,
24% mean background reflectance, and 0.33 × AVIRIS C NEdL, the true
positive detection rate peaked at 85%. False positive detection rates
were much lower than true positive detection rates. The false positive
rate was highest for the simulated image with the highest NEdL and
lowest reflectance. False positive rates decreased more rapidly than
true positive rates as the CTMF score threshold was increased. At +1,
the average true positive rate across all simulated images was more
than 6.5 times the false positive rate. At +2, the average true positive
rate was almost 38 times the false positive rate, and at +3 the average
true positive rate was 372 times the false positive rate. However, using
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Fig. 6. Residual radiance across a range of solar zenith angles for bands centered near
2000 nm (a) and 2060 nm (b). Carbon dioxide anomalies are for a 0–500 m layer.
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Fig. 7.Residual radiance across a range of sensor heights for bands centered near 2000 nm
(a) and 2060 nm (b). Values above 20 km are not shown. Carbon dioxide anomalies are
for a 0–500 m layer.
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higher CTMF score detection thresholds also reduced true positive rates,
averaging 40% at +2 and only 20% at +3. True positive detection rates
are strongly influenced by the selection of a minimum carbon dioxide
anomaly, and true positive rates would decrease for anomalies below
100 ppm.
4.3. Plume detection in AVIRIS C images

Figs. 11–14 show the four AVIRIS C images, with part (a) of each fig-
ure displaying a true color composite and part (b) displaying CTMF
scores. In all four AVIRIS C images, high CTMF scores in the immediate
vicinity of power plants are clearly visible and indicate the likely pres-
ence of plumes with elevated carbon dioxide concentration.

TheMount Storm power plant was located on the east side (forward
scattering geometry) of its AVIRIS C image, resulting in specular
reflection off of the adjacent Mount Storm Lake (Fig. 11a). Surfaces
within the image ranged from bare soil to forest cover. Sensor “slew”, a
known AVIRIS C artifact produced when the instrument scans across
areas of differing brightness (Montes, 2004), appears to have caused
extreme low and high CTMF scores in several areas of the image. Sensor
slew can increase or reduce measured radiance in carbon dioxide
absorption bands. Although the changes in radiance are small, they
are similar in magnitude and spectral shape to increased or decreased
carbon dioxide absorption. This effect is clearly seen as a dark, linear
feature in the upper right side of the CTMF image (Fig. 11b) and is
caused by the sensor scanning across the edge between bright cleared
land and dark forest.

A large, contiguous area with CTMF scores in excess of two was
located over the power plant. The long axis of this feature was
approximately 500 m long, and extended to the east from the
power plant to Mount Storm Lake. Due to the lack of wind observations
within this sparsely populated area and the relatively coarse resolution
of the image, it is difficult to irrefutably demonstrate that this feature
was in fact a carbon dioxide plume, but the feature is consistent with
increased carbon dioxide absorption. Water vapor within the plume
emanating from the power plant would result in a reduced expression
of carbon dioxide absorption (Fig. 5), and cannot be solely responsible
for the pattern in the CTMF scores. This feature crosses a variety of
surfaces (Fig. 11a) and the average reflectance within the region of
high CTMF scores was 10.6% at 2000 nm and 12.3% at 2060 nm (Table 4).

High CTMF scores in the NewMadrid image are also consistent with
a carbon dioxide plume (Fig. 12b). Two roughly parallel carbon dioxide
absorption anomalies extend approximately 400 m north of the power
plant towards the Mississippi River. The smoke plume from the power
plant is visible over the dark water of the Mississippi River in the
same direction as the carbon dioxide anomalies. The use of only one op-
erational smoke stack at New Madrid rules out two discrete, parallel
plumes. Only one plume is emitted from a 244 m smokestack at the
plant, but the carbon dioxide absorption anomalies are separated due
to solar-view geometry. The feature on the right results from solar irra-
diance reflected off of the surface that subsequently passes through the
plume to the sensor. The feature on the left is producedby solar irradiance
first passing through the plume, then reflecting off of the surface and to
the sensor. The separation of the two featureswas aided by the tall height
of the smokestack and the high solar zenith angle (39.8°). The lower end
of the right feature is alignedwith the smokestack,while the lower end of
the left feature is aligned with the shadow of the smokestack, which is
faintly visible at the “eight o'clock” position on the yellow circle in
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Fig. 8. Residual radiance across a range of aerosol optical depths for bands centered near
2000 nm (a) and 2060 nm (b). Aerosol optical depth values are specific to each wave-
length. Carbon dioxide anomalies are for a 0–500 m layer.

Fig. 9. CTMF scores for the modeled plume shown in Fig. 2a, over a simulated

124 P.E. Dennison et al. / Remote Sensing of Environment 139 (2013) 116–129
Fig. 12a. Both features are perpendicular to the shadow and the solar
azimuth. The distance between the two features closest to the source
is 28 pixels, approximately equal to an expected distance of 27 pixels
based on solar zenith angle, stack height, and image resolution. Average
reflectance within the area contained by the two carbon dioxide
absorption features was slightly lower than Mount Storm at 2000 nm,
but slightly higher at 2060 nm (Table 4).

The Moss Landing image had the finest spatial resolution, at 2.7 m.
As a result, the Moss Landing power plant and plume are resolved in
muchhigher detail (Fig. 13). A plume-shaped carbondioxide absorption
anomaly is clearly visible in Fig. 13b. The highest CTMF scores extend for
approximate 500 m east of the power plant, and more subtle increases
carbon dioxide absorption continue to the edge of the image. Although
no wind speed was measured at the closest available weather observa-
tion 5 km inland from the power plant, the feature is consistent with a
typical westerly on-shore wind. It is not obvious whether multiple
plumes are present or whether one-way absorption dominates as in
the case of New Madrid. However, there are short, separate stacks for
each of four generators on the site, and the plume features are not exactly
perpendicular to the solar azimuth angle as seen in the New Madrid
image. These factors make it more likely that the high CTMF scores are
caused by two-way absorption or mixed one-way and two-way ab-
sorption. Reflectance in the area of the plume was relatively high
due to concrete and senesced grass surfaces beneath the plume (Table 4).

The Jack Watson image shares many similarities with the New
Madrid scene (Fig. 14). Two roughly parallel areas of high CTMF scores
extend to the east of the power plant. The origin points of the two
features align with solar azimuth (Table 3), and the solar zenith angle
is close to 40°. Like New Madrid, a single, tall stack is present at this
power plant, so the resulting absorption anomalies must result from
one-way absorption. UnlikeNewMadrid, theplume shadow(solar irradi-
ance that passes through the plume and then reflects off the ground, seen
as the upper left feature in Fig. 14b) appears to have the highest CTMF
scores near the plume source. The closest recorded wind observation
measured a 1.5 ms−1 wind from 240° approximately 10 min after the
imagewas acquired. Thiswind direction roughly alignswith the apparent
image background with varying NEdL and mean background reflectance.



Fig. 10. Partial receiver operating characteristic curves showing true positive rates (TPR) and false positive rates (FPR) for the simulated images. TPR is formodeled anomalies higher than
100 ppm, and FPR is formodeled anomalies lower than 10 ppm. Note that TPR and FPR are scaled differently. Detection thresholds used CTMF scores ranging from+1 to+6. TPR and FPR
at CTMF score detection thresholds of +1, +2, and +3 are marked by points.
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direction of plume travel in Fig. 14b. The reflectance of the area beneath
the plume was much lower than the other three AVIRIS C images, with
average reflectance below 5% at 2000 nm and below 6% at 2060 nm
due to a large coal pile and forest downwind of the power plant (Table 4).

5. Discussion

The New Madrid and Jack Watson images reveal a discrepancy
between the MODTRAN simulation sets, simulated images, and
spectrally-expressed absorption within some AVIRIS C images. A
combination of tall smoke stacks at these two plants and high solar
zenith angles resulted in two discrete features; one caused by solar
irradiance reflecting off the surface and then through the plume,
and a second “plume shadow” caused by solar irradiance transmitted
through the plume and reflected off of the surface. The MODTRAN
simulation sets and simulated images assumed two-way absorption
and did not explicitly separate the downwelling and upwelling
paths. One-way absorption will result in a reduced expression of a
carbon dioxide anomaly, making detection more difficult. Discrete
separation of plume and plume shadow may be advantageous, how-
ever, since one-way and two-way absorption may not be reliably
distinguishable where the plume and plume shadow overlap. Multiple
images acquired from different view zenith and azimuth angles, and/or
as solar zenith and azimuth change, could help resolve plume geometry.

Aerosols and cirrus clouds have been shown to be major sources of
uncertainty in carbon dioxide retrievals for GOSAT, SCIAMACHY, and
OCO (Boesch, Baker, Connor, Crisp, & Miller, 2011; Butz, Hasekamp,
Frankenberg, & Aben, 2009; Guerlet et al., 2013; Houweling et al.,
2005). Our simulations showed that for a fixed reflectance, aerosols
had a relatively minor impact on carbon dioxide residual radiance
at 2000 and 2060 nm (Fig. 8). Examination of changes in residuals
at additional wavelengths and in conjunction with variable background
surface reflectance could reveal stronger aerosol effects. Plumes emitted
by coal-fired power plants are likely to produce substantial aerosol
scattering within the plume itself. This scattering should be examined
as a potential source of error in carbon dioxide anomaly detection and
concentration retrieval at fine spatial scales. The effects of cirrus clouds
on anomaly detection using imaging spectrometer data should also be
determined.

AVIRIS NG provides several important advantages over AVIRIS C for
detection of elevated carbon dioxide concentrations. AVIRIS NG is a
pushbroom instrument capable of flying at lower altitude without



Fig. 11. a) A true color composite of a 2008AVIRIS C image.Mount Stormpower plant is in
the lower right portion of the image, with the location of the stack indicated by the circle.
b) CTMF scores for the same AVIRIS C image.

Fig. 12. a) A true color composite of a 2011 AVIRIS C image. NewMadrid power plant is in
the center of the image, with the location of the stack indicated by the circle. b) CTMF
scores for the same AVIRIS C image.
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undersampling. Lower altitude will provide higher spatial resolution
and improved ability to map carbon dioxide plumes (e.g. Fig. 13). As a
pushbroom instrument, AVIRIS NG will eliminate the slew effect that
caused the CTMF to detect carbon dioxide anomalies at edges between
bright and dark surfaces. AVIRIS NG will also have an improved 5 nm
spectral resolution,whichmay better resolve carbon dioxide absorption
features in the SWIR. Most importantly, AVIRIS NG will have a higher
signal-to-noise ratio, resulting in SWIR NEdL approximately one third
that of AVIRIS C. This will provide improved sensitivity to low residual
radiance values, increasing true positive detection rates (Fig. 10) and
allowing detection of lower carbon dioxide anomalies (Fig. 9).

The proposed spaceborne HyspIRI VSWIR sensor will have a similar
sensor response function and spectral resolution as AVIRIS C.With a 19-
day repeat period and global mapping capabilities, HyspIRI VSWIR data
may be useful for detection of carbon dioxide anomalies. The tradeoff
for HyspIRI VSWIR is a 60 m spatial resolution, which is considerably
coarser than the spatial resolution of the Mount Storm AVIRIS C image
(Fig. 11). VSWIR data will also contain amuch greater diversity in back-
ground reflectance, in terms of bothmagnitude and spectral shape. This
variabilitywillmake robust detection of carbon dioxide anomaliesmore
difficult, and surfaces that could result in false positive anomalies due to
their spectral shape should be investigated.

Spinetti et al. (2008) applied a continuum interpolated band ratio
(CIBR) to AVIRIS C data to retrieve carbon dioxide concentrations
from a plume produced by the Pu'u'O'o volcanic eruption in Hawai'i.
MODTRANwas used to simulate radiance spectra with varying column
carbon dioxide concentration, water vapor concentration, and aerosol
optical depth. Calibration curves for a CIBR centered over a 2011 nm
carbon dioxide absorption maximum were derived from the MODTRAN
generated spectra, and the curve coefficients were used to invert CIBR
values from the AVIRIS C image to produce carbon dioxide concentration.
Concentrations ranging from 40 to 350 ppm above background were
reported. Column concentrations in this range should be detectable in
AVIRIS C data based on our results. Our tests indicate that the Spinetti
et al. (2008) CIBR is not as effective for detection of carbon dioxide
plumes over spectrally heterogeneous backgrounds. The Spinetti et al.
(2008) CIBR was applied to the four power plant images, and no
plume-like anomalies were found (e.g. Fig. 15). CTMF uses a complete
target spectrum, and is thus less sensitive to variable background
reflectance and noise. The CIBR approach uses only one carbon
dioxide absorption band and two reference bands, reducing the
sensitivity of the resulting index to absorption anomalies. CTMF is
also able to accommodate variable background reflectance through
clustering. The dependence of both residual radiance and NEdL on
surface reflectance highlights the importance of detection methods
that can accommodate spectrally- and spatially-variable reflectance. For
spectrally- and spatially-homogeneous surfaces, index-based approaches
for detection and concentration retrieval (e.g. Bradley et al., 2011; Spinetti
et al., 2008) may still be appropriate.

Detection of carbon dioxide plumes in AVIRIS images is a first step
towards retrieval of carbon dioxide concentrations within plumes. Sever-
al additional advances are required before concentration retrieval can be
attempted. Radiative transfer modeling must take into account specific



Fig. 13. a) A true color composite of a 2011 AVIRIS C image.Moss Landing power plant is in
the center left portion of the image, with the location of four stacks indicated by the circle.
b) CTMF scores for the same AVIRIS C image.
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solar, view, and plume geometries, and resolve one-way and two-way
absorption if necessary. Background surface reflectance will also need to
be taken into account, both for calculating residual radiance andmatching
residual radiance values using radiative transfer modeling. While
this study examines minimum carbon dioxide anomalies required
for detection of plumes, additional work is needed to determine
measurement precision across the expected range of carbon dioxide
concentrations. A combination of plume dispersion modeling and
sampling of plume vertical profiles may assist in validating plume
concentrations retrieved from imaging spectrometer data. Unlike
coarser spatial resolution instruments, airborne imaging spectrometers
should be able to resolve plume structure for comparisonwithmodeled
plume dispersion.
Fig. 14. a) A true color composite of a 2011 AVIRIS C image. JackWatson power plant is in
the center of the image, with the location of the stack indicated by the circle. b) CTMF
scores for the same AVIRIS C image.
6. Conclusions

Sensitivity to carbon dioxide anomalies was greatest for high reflec-
tance, low water vapor, low solar zenith angle, low sensor height, and
low aerosol optical depth. For the scenarios tested in this paper, 0–
500 m carbon dioxide anomalies as low as 100 ppm (5.6 ppm column
anomaly) above background for AVIRIS C and 25 ppm (1.4 ppmcolumn
anomaly) above background for AVIRIS NG produced residual radiance
values that exceeded sensor NEdL. Minimum anomalies needed for ac-
curate detection of plumes will depend on the expressed magnitude
and spectral shape of the anomaly in imaging spectrometer data. Due
to high spectral and spatial variability, NEdL and background surface
reflectance are particularly important for determining sensitivity to
carbon dioxide anomalies. Carbon dioxide anomalies will have reduced
detectability when signal-to-noise ratio is low and over dark surfaces.
Detection will be aided by high signal-to-noise and bright, spectrally
flat, and homogeneous surfaces. Spectral and spatial variation in reflec-
tance will likely further increase the minimum anomaly needed for
detection. Development of concentration retrieval algorithms will need
to account for both background reflectance and solar-plume-view
geometry.



Fig. 15. Spinetti et al. (2008) CIBR values for the 2011 AVIRIS C image acquired over the
Moss Landing Power Plant. The true color composite and CTMF scores for the same area
are shown in Fig. 12. Lower CIBR values (brighter tones) indicate increased carbon dioxide
absorption.
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With improvements in detection and concentration retrieval algo-
rithms, imaging spectrometer data may provide a valuable means for
measurement of point source carbon dioxide emissions and scaling to
global satellite measurements. By design, current and planned satellite
missions dedicated to global mapping have much higher concentration
retrieval precision thanwill be possible with a general purpose imaging
spectrometer. For example, science requirements for OCO-2 specify a
column concentration accuracy of 1 ppm (Crisp et al., 2004), well below
the anomaly detection threshold for AVIRIS NG. However, airborne imag-
ing spectrometers do offer complementary abilities including high spatial
resolution, sensitivity to multiple trace gases (Dennison, Thorpe, Roberts,
& Green, 2013; Thorpe et al., 2013), and the ability to target specific sites
or areas. The combination of coarse-scale satellite data and fine-scale
imaging spectrometer data could reduce uncertainty in anthropogenic
greenhouse gas emissions and improve understanding of the global
carbon budget.
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