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Comparing endmember selection techniques for accurate mapping of plant species
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Building representative spectral libraries and quantitatively selecting a subset of spectra for mapping plant
species and land cover/land use within remotely sensed imagery remain challenging for accurate classifica-
tion. Multiple Endmember Spectral Mixture Analysis (MESMA) can be used for both classification and model-
ing fractional composition, and has been applied to map multiple biogeophysical variables. Our major
objectives in this research were to 1) test a sampling design for building independent and representative
training and validation spectral libraries; 2) compare endmember selection by a combination of two
established techniques (count-based selection (CoB) and endmember average root mean square error
(EAR)) with a recently introduced one (iterative endmember selection (IES)); and 3) develop and test a hy-
brid method, which combines the strengths of the previous two methods. We applied CoB/EAR, IES, and the
new hybrid technique to mapping plant species and cover types in the Santa Ynez Mountains and Santa
Barbara urban area, California, USA, using Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data.
For all endmember selection techniques, the number of selected endmembers varied across 25 random train-
ing samples. IES was consistently more accurate than CoB/EAR, but resulted in spectral libraries more than
twice as large and failed to model rare species. The hybrid endmember selection technique resulted in the
highest overall accuracy and kappa values and proved to be least sensitive to the random sampling protocols,
but also produced the largest spectral libraries. A modified hybrid method, in which the number of
endmembers selected was limited, produced the second highest accuracies, combining the strengths of the
more parsimonious endmember selection by CoB/EAR with improved endmember selection by IES. Both
IES and the hybrid methods selected endmembers that successfully classified a wide range of plant species
and cover types, indicating their usefulness for these applications.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Spectral mixture analysis (SMA) and its variants are powerful al-
gorithms which determine the relative proportions of pure or
‘endmember’ spectra within a mixed spectrum (Adams et al., 1993;
Settle & Drake, 1993). These methods have been used with imagery
from a range of sources with varying spatial, spectral and radiometric
resolutions over an extensive number of natural and urban ecosys-
tems (e.g. Elmore et al., 2000; Lu & Weng, 2004; Roberts et al.,
1993, 2006; Small, 2001). A critical component for successfully apply-
ing SMA is selecting appropriate endmembers (Dennison & Roberts,
2003a; Somers et al., 2011; Tompkins et al., 1997).

Endmember spectra most often represent a target class or cover
type believed to be present in the data to be unmixed. Potential
endmember spectra can be collected from reference materials in a
laboratory setting (e.g. Roberts et al., 1993), extracted from imagery

(Bateson et al., 2000; Dennison & Roberts, 2003a), measured in the
field (Herold et al., 2004; Roberts et al., 2004) or simulated with radi-
ative transfer modeling (e.g. Dennison et al., 2006; Eckmann et al.,
2008; Painter et al., 1998; Sonnentag et al., 2007). Incorporating
endmember variability into SMA is particularly challenging, since
spectra belonging to a single class can vary through space and time.
Spectral variability is present both within endmember classes and be-
tween classes. Selecting endmember sets which adequately represent
intra- and inter-class variability is important for accurately mapping
sub-pixel cover fractions and for identifying components of a scene.
Several variations of SMA have been developed that incorporate or sup-
press endmember variability in the modeling process (e.g., MESMA,
AutoMCU, Stable Zone Unmixing, Sparse Unmixing, Bayesian Spectral
Unmixing, and others (see Somers et al., 2011). Each of these techniques
assumes an endmember library that captures endmember variability—
the spectral variability of endmember classes.

While capturing endmember variability is important, it is also de-
sirable to select the smallest optimal subset of available endmember
spectra for many applications of SMA. Using a smaller, representative
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set of endmembers can eliminate redundancy and increase computa-
tional efficiency in modeling. Fewer endmembers used in modeling
leads to more straightforward interpretation of model results and re-
duces the extent of combinatorial iterations when increasing model
complexity (i.e., more than 2 endmembers in a pixel). Moreover,
endmember selection can help identify relevant endmembers for
areas that lack extensive reference data.

Multiple techniques have been developed to select a reduced set
of endmembers that also capture endmember variability. Selection
of endmember spectra collected from one source or multiple sources
can use extremes in the data (Boardman et al., 1995), constraints
based on field or photographic estimates of sub-pixel fractions
(Roberts et al., 1997), minimization of modeling error through appli-
cation to a spectral library (Dennison and Roberts, 2003a), minimiza-
tion of modeling error through creation of virtual endmembers
(Tompkins et al., 1997), or optimization of modeling accuracy
(Schaaf et al., 2011).

While endmember extraction techniques (locating spectra which
represent pure endmember classes) have been extensively compared
in the literature (Martinez et al., 2006; Plaza et al., 2004; Veganzones
& Grana, 2008), few studies have compared different endmember se-
lection techniques (selecting a subset of endmember spectra for use
in analysis) to determine their relative strengths and weaknesses.
Quantitative comparisons between endmember selection techniques
can provide a clearer picture of when certain techniques are more ap-
propriate and can stimulate the design of improved selection
methods. Our objective was to quantitatively compare endmember
selection techniques originally developed for Multiple Endmember
Spectral Mixture Analysis (MESMA) and to test a newly developed
hybrid method. However, it is important to realize these techniques
could be applied to many other SMA algorithms that seek to incorpo-
rate endmember variability. Additionally, the creation of indepen-
dent, robust training and validation libraries has been largely
ignored in previous studies. Here, we sought to address these issues
by answering the following research questions:

1. What are the differences in the number and identity of endmembers
selected using different selection techniques?

2. How do the selected endmember libraries impact classification
performance as evaluated using an independent data set?

3. Can hybridizing endmember selection techniques improve classifi-
cation performance?

4. How sensitive is each selection technique to a stratified-random
sampling design?

2. Background

2.1. Spectral mixture analysis

SMA decomposes measured reflectance or radiance from several
materials within the instantaneous field of view of an instrument
(pixel) as a mixture of a fixed set of endmembers (Adams et al.,
1993). Mixing is often assumed to be linear, allowing a pixel spec-
trum to be modeled as the sum of endmembers multiplied by their
fractional contribution to a best-fit mixed spectrum. Linear SMA
uses the equation:

ρ′
λ ¼

XN

i¼1

f i � ρiλ þ ελ ð1Þ

where ρ′
λ is reflectance at wavelength λ, ρiλ is the spectral reflectance

of endmember i, and fi is the fractional cover of endmember i. N is the
total number of endmembers in the model, and ελ is the model

residual error. Model fit is assessed using root mean square error
(RMSE):

RMSE ¼

XM

b¼1

ελð Þ2

M

0
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1=2

ð2Þ

where b is band number and M is the total number of bands.

2.2. Incorporating endmember variability

A major advantage of using SMA with spectroscopic data is that it
utilizes the entire spectral response rather than a small number of
bands and allows for variations in both composition and illumination
in an image (Dennison & Roberts, 2003a). SMA also provides better
estimates of fractional cover than many commonly used vegetation
indices (Elmore et al., 2000; Riano et al., 2002). However, SMA has
some shortcomings, including the assumption that spectral mixing
within a pixel is linear. Several studies have determined that multiple
scattering can cause non-linear mixing, which may be significant
(Borel & Gerstl, 1994; Huete, 1986; Ray & Murray, 1996; Roberts et
al., 1993). Additionally, simple SMA, which uses the same set of
endmembers for an entire image, cannot account for spectral variabil-
ity introduced by multiple types of vegetation or soils, and cannot ac-
count for within-class spectral variability (Roberts et al., 1998;
Somers et al., 2011).

Numerous variants of SMA have been developed to address the
issue of endmember variability. Multiple Endmember Spectral Mix-
ture Analysis (MESMA) was developed by Roberts et al. (1998) to
allow the number and type of endmembers to vary on a per-pixel
basis. Other variants of SMA designed to address endmember vari-
ability include fuzzy un-mixing techniques such as Automated
Monte Carlo Unmixing (Asner & Lobell, 2000), endmember bundles
(Bateson & Curtiss, 1996), and Bayesian Spectral Mixture Analysis
(BSMA) (Song, 2005). Somers et al. (2011) provide an extensive
review of these techniques, along with others which incorporate
spectral feature selection (e.g., PCA-based SMA, Stable Zone
Unmixing), spectral weighting, spectral transformations (e.g., nor-
malized SMA, Derivative Spectral Unmixing) and spectral modeling
(e.g., MODTRAN-generated endmembers, Soil Modeling Mixture
Analysis). While some of these approaches have been successfully ap-
plied over a range of imagery and ecosystems, MESMA remains the
most widely used SMA technique for dealing with endmember vari-
ability (Somers et al., 2011).

2.3. Multiple Endmember Spectral Mixture Analysis

In practice, MESMA iteratively computes linear models using dif-
ferent sets of endmembers, and the model with the lowest root
mean square error (RMSE) is selected for each individual pixel. Two
endmember MESMA (one shade endmember and one non-shade
endmember) accounts for variability in reflectance, and can be used
as a classification algorithm where the non-shade endmembers are
assigned to specific classes (e.g. Dennison & Roberts, 2003a, 2003b).
MESMA using three or more endmembers can be used to estimate
fractional cover of the non-shade endmembers (e.g. Franke et al.,
2009).

The flexibility of MESMA has permitted its application to mapping
a wide variety of vegetated and non-vegetated land cover. In natural
ecosystems, MESMA has been used to discriminate natural land cover
classes, separate soils from vegetation, assess fire fuel distribution,
and map snow grain size (Jia et al., 2006; Linn et al., 2010; Okin et
al., 2001; Painter et al., 1998, 2003). Urban land cover has also been
mapped with MESMA. Examples include applications in Brazil
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(Powell & Roberts, 2010; Powell et al., 2007), Los Angeles County
(Rashed et al., 2003), Phoenix, Arizona (Myint & Okin, 2009) and
Bonn, Germany (Franke et al., 2009).

The two-endmember case of MESMA has also been successfully
used to map plant species and functional types in various ecosystems.
In the chaparral shrublands of California, species-level maps have
been created with accuracies up to 89% (Dennison & Roberts, 2003a,
2003b). Roberts et al. (1999) used MESMA to map major species in
the Canadian boreal forest, and Plourde et al. (2007) quantified tree
species abundance in a temperate deciduous forest. In the Wasatch
Mountain Range of Utah, Schaaf et al. (2011) mapped four classes of
plant functional type at several spatial resolutions with 78–88% over-
all accuracy. In Australian eucalyptus forest, Youngentob et al. (2011)
were able to discriminate two Eucalyptus subgenera using HyMap
data with 83% accuracy. In salt marshes and wetlands, MESMA has
been used to map native and invasive species (Li et al., 2005; Rosso
et al., 2005; Underwood et al., 2006). The results of these studies
demonstrate that MESMA is capable of mapping both the composi-
tion of complex urban environments, from simple pervious vs. imper-
vious classifications to detailed maps of building materials and tree
species, and vegetation patterns within natural ecosystems to the
species level.

2.4. Endmember selection methods

Multiple approaches for selecting representative endmembers
from an available endmember library have been developed for
MESMA. These approaches balance the selection of a reduced set of
endmember spectra while still capturing endmember variability.
Roberts et al. (2003) proposed a count-based (CoB) approach to
endmember selection. For a given class, CoB selects the endmembers
that modeled the largest number of spectra within each class. This
method can be altered to account for both number of spectra modeled
within a class (inCoB) and number of spectra modeled that belong to
other classes (outCoB). Whether or not a spectrum is considered to be
‘successfully modeled’ by an endmember is determined by an RMSE
fit threshold. Dennison and Roberts (2003a) developed Endmember
Average RMSE (EAR) to select endmembers for MESMA. EAR uses
each spectrum within a class to model all other spectra in the class
using linear SMA. EAR is calculated as:

EARAi
¼

Xn

j¼1

RMSEAi ;Aj

n−1
ð3Þ

where A is a single class, Ai is the spectrum being tested as an
endmember, and Aj is a modeled spectrum. n is the total number of
spectra in class A, and the term “n−1” accounts for the spectrum
modeling itself. EAR values for each spectrum in the class are com-
pared, and the spectrum with the minimum EAR value is then select-
ed as an endmember for that class. Dennison et al. (2004) introduced
Minimum Average Spectral Angle (MASA), which functions similarly
to EAR but uses spectral angle (Kruse et al., 1993) in place of RMSE.
CoB, EAR, and MASA are relatively simple approaches to selecting
endmembers for MESMA, but they only account for intra-class spec-
tral variability and do not account for inter-class spectral variability
or the resulting interactions between selected endmembers. These
techniques also require some degree of subjectivity in selecting the
single “best” set of endmembers for MESMA (Schaaf et al., 2011).

Schaaf et al. (2011) proposed a new method for selecting
endmembers for MESMA that does take into account interactions be-
tween endmembers across multiple classes. Iterative Endmember
Selection (IES) uses an iterative process to select representative
endmembers based on their ability to accurately classify an entire
spectral library, rather than individual classes. The training spectral li-
brary is composed of all potential endmembers from each class. This

is particularly well-suited for cases where MESMA is applied as a clas-
sifier, since high classification accuracy is a primary goal. IES uses
two-endmember linear SMA to classify the spectral library, similar
to EAR, MASA, and CoB. An RMSE threshold is used to determine
which endmember models which spectra within the training library.
Accuracy for classifying the library is based on Cohen's kappa across
all classes, which accounts for agreement by chance (Cohen, 1960)
and is superior to overall accuracy when class representation is not
uniform within a dataset (Congalton, 1991).

IES begins with a comparison of all possible pairs of endmembers
to find the two endmembers that result in the highest kappa value for
classifying the training library. All spectra remaining in the library are
tested to determine which third endmember, in combination with
the previously selected two, increases kappa the most. This
endmember is then added to the selected set. Once an endmember
has been added to the selected set, all endmembers within the set
are subtracted from the set to determine whether kappa can be in-
creased by removing an endmember. Addition to and subtraction
from the selected set continues iteratively as long as kappa increases.
The final endmember library is determined when kappa no longer in-
creases, although the endmember addition process can be arbitrarily
ended once a specified number of endmembers has been reached.
The selected set of endmembers is optimized for the training library,
and an independent accuracy assessment library should be used to
confirm that the selected set of endmembers can produce an accurate
classification. Unlike EAR, MASA, and CoB, IES is entirely automated.
However, in the process of maximizing kappa, IES can produce very
large endmember libraries. These methods of endmember selection
have not been compared, so potential tradeoffs, including endmember
library size and classification accuracy, are unknown. Furthermore, it
may be beneficial to hybridize methods in order to retain their individ-
ual advantages while reducing disadvantages.

3. Data and methods

3.1. Study site

Our study region is located in the Santa Ynez Mountain Range and
coastal area of Santa Barbara County, California, USA (approximately
34.5° N 119.5° W) (Fig. 1). The region includes the urban areas of
Santa Barbara and Goleta, agricultural lands (mainly orchards) and nat-
ural vegetation communities including chaparral, coastal sage scrub,
oak woodland, and grassland. Elevation ranges from sea level up to ap-
proximately 1400 m on several peaks. The climate is Mediterranean-
type, characterized by warm, dry summers and cool, moist winters,
with the first rains arriving in October or November. Average annual
rainfall measured at downtown Santa Barbara is 472 mm, and mean
monthly temperature varies between 11 and 21 C throughout the
year. As is typical of vegetation in Mediterranean-type climates, plant
biodiversity is high (Cowling et al., 1996), with several community
types present. Grasslands are of mixed species composition, dominated
by annual non-native grasses and forbs. Oak woodlands favor broadleaf
species, Quercus agrifolia (California coast live oak) being dominant.
Umbellularia californica (California bay laurel), Platanus racemosa (syca-
more), and other species (e.g., Salix spp.) dominate riparian zones and
canyon drainages. Coastal sage scrub is composed mainly of Artemisia
californica (California sagebrush) and Salvia spp. (sage).Major chaparral
species include Adenostoma fasciculatum (chamise), Arctostaphylos
glauca and glandulosa (mazanita), several Ceanothus species, and
Quercus dumosa (scrub oak).

3.2. Image and reference data

3.2.1. Image data
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data were

acquired over the study area on August 6, 2004 at approximately 19:08
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UTC (solar zenith 22.1°; solar azimuth 141.2°) (Fig. 1). The AVIRIS sen-
sor collects spectral radiance data over 224 bands from 370 to 2500 nm
with 10 nm sampling (Green et al., 1998). The sensor was flown aboard
the ER-2 platform at approximately 16 km altitude, yielding an image
swath of ~11 km with a ground instantaneous field of view of 16 m.
Preliminary data processing and orthorectification was done by the
NASA Jet Propulsion Laboratory (Boardman, 1999). The image was
corrected to reflectance using amodified version of theMODTRAN radi-
ative transfer model (Berk et al., 2003; Green et al., 1993; Roberts et al.,
1997), and a reference spectrum from a ground target (sand) was used
to further correct image reflectance following Clark et al. (2002). The
image was orthorectified using a 1 m Digital Orthophoto Quarter-
Quadrangle and triangulation with nearest neighbor resampling.
Bands with strong water vapor absorption and poor signal-to-noise
were removed, leaving a subset of 186 bands.

3.2.2. Reference data
Reference data on the spatial distribution of dominant species and

land cover types were collected both in the field and using aerial imag-
ery. During two field campaigns (2003 and 2009), we used a composi-
tion estimation method adapted from Meentemeyer and Moody
(2000), where patches of dominant plant species and their relative
compositionwere collected using a high-power spotting scope from re-
mote vantage points. Patches having greater than 75% single species
composition were recorded and digitized on the AVIRIS flight line. Sub-
sequently, a 1 m Digital Orthophoto Quarter-Quadrangle was used to
digitize urban, agricultural, golf course and orchard cover polygons.
Dominant classes and their abbreviations are listed in Table 1.

3.3. Spectral library development

All reference polygons were merged into a single geospatial layer,
and hierarchical metadata for each polygon, including perviousness,
cover type, functional type, and species, were recorded. Broad classes
were used to assign functional type based on lifeform (e.g., tree,
shrub, etc.), leaf duration (i.e., evergreen vs. deciduous) and leaf type
(i.e., broadleaf vs. needleleaf). Spectral library creation and processing
was all done using code developed with the ENVI/IDL (ITT Visual Infor-
mation Solutions) image processing software package. The spectra
within all reference polygonswere extracted to amaster spectral library
linked to metadata for each spectrum (Roberts et al., 2007).

The spectral library was partitioned into training and validation
pairs using random sampling within each class. With the goal of in-
cluding spectra from each polygon in the training library, spectra
were randomly selected from the polygons until one of two
pre-defined sampling limits was met for all polygons within the
class. A proportion limit ensured that an adequate number of spectra
were reserved for validation from each polygon (a concern for small
polygons). A sampling absolute limit set the maximum number of
spectra selected from a polygon to offset the impact of polygon size
on the training sample (a concern for large polygons). Multiple pro-
portional and absolute limits were tested, and a proportional limit
of 50% and an absolute limit of 10 spectra were empirically found to
produce the most balanced training libraries while still preserving
an acceptable number of spectra for validation. Fig. 2 compares train-
ing library class proportion with and without the absolute limit.
While the sampling procedure did not create completely balanced
class representation, the dominance of the largest classes with in
the library was reduced by adding the absolute limit (Fig. 2).

The training/validation partitioning process was iterated 25 times,
creating 25 unique training/validation library pairs to determine the
sensitivity of the endmember selection results to the random selec-
tion of training data. We chose 25 iterations to test the sampling de-
sign as a conservative upper end estimate and this was supported by
our findings (see Results). In each iteration, different spectra may
have been selected for the training sample, but the total number

Fig. 1. The study region (outlined in black) and true color composite image of the AVIRIS data acquired. The boxes on the image denote the three subregions discussed in the results
section.

Table 1
Dominant classes mapped and corresponding abbreviations used.

Dominant class Abbreviation Dominant class Abbreviation

Adenostoma fasiculatum ADFA Young orchard ORCHARD
Mixed agriculture AG Mature orchard ORCHARD_LS
Artemisia californica ARCA Platanus racemosa PLRA
Arctostaphylos glauca/glandulosa ARGL Quercus agrifolia QUAG
Burn scar BURN Quercus dumosa QUDU
Ceanothus cuneatus CECU Riparian RIPARIAN
Ceanothus megacarpus CEME Rock ROCK
Ceanothus spinosus CESP Soil SOIL
Senesced Brassica nigra dBRNI Umbellularia

californica
UMCA

Senesced annual grasses dGRASS Urban URBAN
Golf course GC Yucca whipplei YUWH
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and class distribution of these spectra remained the same based on
the sampling limits.

3.4. Endmember selection

3.4.1. CoB/EAR selection
Endmember selection based on EAR, MASA, and CoB are aimed at

selecting endmembers which best represent individual classes. In our
work, we selected endmembers using CoB, with the minimum EAR
value used as a tiebreaker as in Roberts et al. (2012). The
within-class CoB value of an endmember is the number of spectra
uniquely modeled by that endmember, as defined by an RMSE con-
straint. Within a class, the endmember that modeled the largest num-
ber of class spectra was assigned the highest CoB value. The
endmember with the next highest CoB value must then model the
largest unique set of spectra not modeled by the highest CoB
endmember. For each individual class, all endmembers with
non-zero CoB values (indicating that they modeled unique spectra
from the training library that were not modeled by other spectra)
were selected. When ties between more than one endmember oc-
curred, indicating that endmembers modeled the same number of
spectra (but not necessarily the same spectra), they were broken by
selecting the endmember with the minimum EAR value.

3.4.2. Iterative Endmember Selection (IES)
IES aims to select endmembers which maximize the accuracy of a

two-endmember MESMA training library classification (Schaaf et al.,
2011). In the IES procedure, spectra are iteratively added and subtracted
from the endmember set until the highest kappa value is achieved. Max-
imizing overall kappa may reduce accuracy in individual classes. For ex-
ample, no endmembers would be selected for a class if the addition of a
class endmember results in lower overall accuracy. IES tends to select
large endmember libraries as kappa is incrementally improved. Because
greater accuracies may be achieved due solely to the larger number of
endmembers selected by IES, we also built a set of endmember libraries
using IES in which the total number of endmembers was limited to
match the number of spectra in the CoB/EAR library for the same itera-
tion. These libraries are denoted as ‘IES_nlim’.

3.4.3. Hybrid IES–CoB/EAR selection
To see if the strengths of CoB/EAR and IES could be combined to

create improved endmember libraries, we also designed a hybrid

selection process. For iterations where endmembers were not select-
ed for some classes using IES, IES was forced to include endmembers
selected by CoB/EAR for those classes. For each iteration, these
endmembers were injected into the IES process after the first 10
endmembers had been selected. This was done to allow the IES algo-
rithm to begin the kappa-optimization process and then adapt the
best initial set of endmembers selected to include the forced
endmembers. A set of size-limited (based on the number of
endmembers in each CoB/EAR library) libraries were also created
with this hybrid approach, denoted ‘IES–CoB/EAR_nlim’.

3.5. Multiple Endmember Spectral Mixture Analysis and statistics

For each of the 25 iterations, the endmember library from each se-
lection technique was used in two-endmember MESMA to model the
validation library. Kappa, overall accuracy, user's and producer's accura-
cy, and an error matrix were calculated for each MESMA run. Distribu-
tions (across iterations) of kappa, overall accuracy, and user's and
producer's accuracy (by class) were tested for normality using a
Lilliefors test (Lilliefors, 1969). The null hypothesis of the Lilliefors test
states that the data are normally distributed. This hypothesis was not
rejected for the kappa and overall accuracy values, and thus a
one-way repeated measures ANOVA (Girden, 1992) was used to test
for significant differences across endmember selection techniques in
kappa and overall accuracy. Because the producer's and user's accura-
cies for several classes failed the Lilliefors test for normality, we chose
to use Friedman's test (Friedman, 1937). The Friendman's test does
not assume a normal distribution and uses ranks to analyze differences
across endmember selection techniques for the producer's and user's
accuracies. Both the ANOVA and Friedman's tests only indicate if signif-
icant variance in the variable of interest (i.e., accuracy metric) occurs
among endmember selection techniques, but do not indicate which
pairs of methods are significantly different from each other. Thus, we
applied the Tukey-Kramer method (Hochberg & Tamhane, 1987) to all
pairs of selection techniques to determine which were significantly dif-
ferent for each metric.

To visualize the differences between endmember selection tech-
niques, the set of endmembers from the iteration with the highest
overall accuracy was applied to the AVIRIS data to produce classifica-
tion maps. Endmember fractions were restricted to fall between −
0.05 and 1.05, and the maximum allowable RMSE was set at 2.5%
(Dennison & Roberts, 2003a). Three sub-regions of the flight line

Fig. 2. Training data class proportions with 50% limit (left) and 50% or 10 spectra limit (right). Each “wedge” represents a different class (see Table 1). A greater balance in the num-
ber of spectra within each class is illustrated by more equality in the size of “wedges” in the pie diagram on the right.
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were selected for comparing the mapping performance and agree-
ment among endmember selection techniques (Fig. 1).

4. Results

4.1. Training and validation libraries with stratified random sampling

Two factors controlled the number of spectra from each class
within the training spectral libraries: the number of polygons per
class and the size of the polygons in a class. Training sample sizes
ranged from 7 to 309 spectra, representing from 2.4 to 50% of the
total number of spectra within each class. Classes with only a few,
small polygons contributed roughly 50% of their spectra to the train-
ing library. Examples include dBRNI, PLRA and YUWH. By contrast,
classes with only a few, large polygons (i.e., many spectra available
for selection) had only a small percentage of their potential spectra
chosen for the training library due to the absolute limit of 10 spectra
per polygon. These classes included BURN, GC and ORCHARD.

Intermediate class sampling percentages (~20 to 30%) resulted for
classes with intermediate sized polygons (average between 30 and
40 pixels). Classes with many, intermediate sized polygons made up
the highest percentage of the final training library. Examples include
ADFA, CEME, Orchard_LS and QUAG.

The validation libraries consisted of all spectra not selected as
training spectra for each iteration, and thus, no attempt was made
to balance the number of spectra across classes. This is representative
of most real world mapping scenarios in which species and cover
types are not found in equal abundance on the landscape. The num-
ber of spectra in the validation libraries ranged from 8 (senesced
BRNI and PLRA) to 4369 (GC) (50 to 97.6% of total class spectra).
The classes with the largest and/or most polygons made up the larg-
est proportion of the validation library.

4.2. Size and composition of endmember libraries

The size of endmember libraries varied across selection tech-
niques and iterations (Fig. 3). CoB/EAR yielded the smallest library
sizes, around 52 endmembers for each iteration, and library size did
not vary much across sampling iterations (standard deviation=2).
The endmember libraries selected via IES were, on average, over
twice as large (mean=117) and library size varied by 20% across it-
erations. Libraries selected using the hybrid technique (IES–CoB/
EAR) were even larger (mean=218) and more variable in size. The
standard deviation of the hybrid selection technique across sampling
iterations was nearly equal to the mean size of the CoB/EAR-selected
libraries (51).

The composition and number of endmembers per class varied across
techniques and sampling iterations (Table 2). Using the CoB/EAR tech-
nique, endmembers were selected for all 22 classes from each training
sample. The mean number of endmembers per class ranged between
1 (e.g., AG, CECU, ROCK) and 5 (e.g., GC, ORCHARD_LS) with very low
standard deviation values among sampling iterations (b1). Because
CoB/EAR selection is designed to select the most representative
endmemberswithin a class, thenumber of endmembers chosen for par-
tially indicates the level of spectral variability in that class. Golf course,
young orchard, soil and urban classes had the largest number of
endmembers. While training sample size may partially explain the
higher number of selected endmembers, these classes could be

Fig. 3. The distribution of the # of endmembers selected for each method. The horizon-
tal central line denotes the median number of endmembers, the box edges mark the
25th and 75th percentiles, and the whiskers extend to the most extreme values not
considered outliers.

Table 2
Summary statistics for the number of endmembers selected by each method. Numbers in parentheses indicate the number of iterations in which at least one endmember for the
class was selected (if not 25).

Dominant class CoB/EAR IES IES–CoB/EAR IES_nlim IES–CoB/EAR_nlim

mean std mean std mean std mean std mean std

Overall 52 2 117 24 218 51 52 2 52 2
ADFA 3 0.2 11 5.4 20 6.5 4 1.4 4 1.0
AG 1 0.0 1 (9) 0.3 2 (24) 1.0 1 (7) 0.0 1 (19) 0.3
ARCA 1 0.0 1 0.4 2 (24) 0.9 1 (11) 0.3 1 (5) 0.0
ARGL 3 0.4 3 (23) 1.8 15 6.2 2 (19) 0.8 3 0.9
BURN 2 0.5 3 0.6 3 0.6 2 0.6 2 0.4
CECU 1 0.0 0 0.0 2 0.7 0 0.0 1 0.0
CEME 3 0.4 6 2.9 19 9.3 3 1.0 4 1.3
CESP 3 0.5 5 (24) 2.1 13 6.0 2 (21) 0.6 2 0.9
dBRNI 1 0.0 1 (8) 0.5 2 (23) 0.8 1 (1) 0.0 1 (17) 0.0
dGRASS 3 0.5 8 2.4 12 3.0 4 1.0 3 1.1
GC 5 0.8 14 4.4 26 5.2 7 2.2 7 0.9
ORCHARD 3 0.6 12 3.8 18 5.9 5 0.9 4 0.9
ORCHARD_LS 5 0.7 10 3.2 15 4.0 5 0.9 5 0.9
QUAG 3 0.4 9 4.1 26 9.6 3 1.1 5 1.3
QUDU 2 0.6 4 (23) 1.6 6 2.5 2 (22) 0.7 1 (22) 0.4
RIPARIAN 1 0.3 4 (24) 1.6 5 2.4 2 (23) 0.6 1 (24) 0.3
ROCK 1 0.0 1 0.2 1 0.0 1 0.0 1 0.0
SOIL 4 0.6 10 2.1 11 2.5 5 1.4 4 0.8
PLRA 1 0.5 1 (12) 0.4 2 (23) 1.1 1 (6) 0.0 1 (14) 0.5
UMCA 1 0.2 3 (23) 1.3 5 2.2 1 (13) 0.5 1 (12) 0.3
URBAN 4 0.8 8 1.9 8 2.0 5 1.5 3 0.8
YUWH 2 0.5 4 2.5 4 (24) 2.3 2 (21) 0.8 1 (9) 0.3
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expected to have higher spectral variability as well. For example, golf
courses (GC) represent mixed turfgrass in a range of conditions from
fully senesced to highly irrigated and fertilized, and themature orchard
(ORCHARD_LS) class includes several different tree species and large
variations in percent canopy cover. Classes with fewer endmember
spectra selected were those that are fairly homogenous (e.g., ROCK) or
those represented by a low number of small reference polygons. Exam-
ples include UMCA, ARCA, PLRA and CECU. This may indicate a larger
reference sample is needed to adequately characterize the variability
of these classes. Overall, the standard deviations of total library size
and the number of endmembers per class across sampling iterations
for CoB/EARselection were low, suggesting random training samples
for each class were representative.

Endmember libraries selected with IES contained a higher num-
ber of endmembers per class (Table 2). The mean number of
endmembers per class (averaged over the number of libraries in
which the class was included) ranged from 1 (e.g., AG, dBRNI,
ROCK) to 14 (GC). The standard deviation of endmembers selected
per class across sampling iterations ranged from 1 to more than 5
(ADFA). Classes with a high average of endmembers (10+) includ-
ed GC, ORCHARD_LS, ADFA, ORCHARD, and SOIL. Perhaps most im-
portantly, the IES technique did not select endmembers for all classes in
every sampling iteration. No endmembers were ever selected for CECU,
and endmembers for AG, dBRNI and PLRA were selected in less than
half the iterations. Other classeswhichwere occasionally left out included
ARGL, CESP, QUDU, RIPARIAN and UMCA. The reason IES does not select
endmembers for all classes is due to spectral confusion. In trying to max-
imize kappa (cross-class discrimination), the algorithmwill not select an
endmember that reduces kappa (by increasing confusion among classes).

In order to address the missing classes in the IES libraries, we cre-
ated and applied the IES–CoB/EAR hybrid method, which allows the
IES algorithm to select the best set of 10 endmembers, and then in-
jects the endmembers selected by CoB/EAR for the missing classes.
The IES algorithm then continues to select endmembers to maximize
kappa with all classes present in the endmember library. Because IES
alone does not select endmembers for frequently confused classes,
the hybrid technique results in more endmembers selected overall
to correct for this confusion. A marked increase (>100%) in the aver-
age number of class endmembers selected when using the hybrid
method was observed for QUAG, CEME, CESP and ARGL, indicating
that these classes may be frequently confused with the missing clas-
ses (Table 2). The average number of endmembers selected for spec-
trally unique classes or classes with low spectral variability, such as
BURN and ROCK, were similar to the numbers from CoB/EAR and
IES. Notably, several classes were missing from the hybrid-selected li-
braries for a small number of sampling iterations (Table 2). These
classes were likely left out of the selection process because of in-
creased confusion with the forced endmember classes, which de-
creases kappa values. This demonstrates that although the hybrid
method does better at including all classes than IES alone, cases can
still arise in which no endmembers are selected for a class.

When IES and IES–CoB/EARwere limited to the same total number
of endmembers as selected via CoB/EAR, similar patterns in the num-
ber of endmembers per class were observed (Table 2). Similar to IES,
no CECU endmembers were selected by IES_nlim. The number of
sampling iterations in which endmembers were selected decreased
(compared to IES) for 10 classes, including some classes for which
IES had always selected endmembers (i.e., ARCA and YUWH). Limit-
ing the total number of endmembers also decreased the range of
the class means and standard deviations for the hybrid method
(IES–CoB/EAR_nlim). These results demonstrate that limiting the
total number of endmembers to match that of libraries selected via
CoB/EAR strongly impacts the composition of the library selected by
IES or IES–CoB/EAR. In the case of IES, endmembers for the missing
classes may have been selected if the process was allowed to contin-
ue. For IES–CoB/EAR, the classes with no endmembers selected were

likely those most frequently confused with other classes, and because
of the limit, the algorithm could not select enough endmembers to
correct for this confusion.

4.3. Two-endmember MESMA classifications

4.3.1. Overall class separation and accuracy
The distributions of kappa values and overall accuracy across sam-

pling iterations for each method are presented in the Figs. 4 and 5.
CoB/EAR-selected libraries performed the worst of all the selection
techniques with an average kappa value of 0.57 and overall accuracy
of 62.4%. IES-selected libraries performed better, on average, with an
average kappa of 0.69 and overall accuracy of 72.5%. The hybrid selec-
tion method yielded libraries that performed the best (average
kappa=0.77 and average overall accuracy=79.9%). Average kappa
and overall accuracy values dropped for libraries selected using
sizelimited IES (0.66; 69.9%) or IES–CoB/EAR (0.71; 75.3%) . Still,
both ‘n_lim’ techniques outperformed CoB/EAR. According to the
one-way, repeated measures ANOVA, both overall accuracy and
kappa values differed significantly across all five techniques (α=
0.05), and the Tukey–Kramer comparison confirmed these differ-
ences were significant between each pair of techniques (α=0.05).

The variation in kappa and overall accuracy across sampling itera-
tions illustrated a technique's sensitivity to the random sampling de-
sign. The most variable were IES and IES_nlim, followed by CoB/EAR.
Both the full and size-limited hybrid selection methods showed the
lowest variation across sampling iterations. These results indicate
the hybrid methods are not very sensitive to random sampling,
whereas the IES methods are fairly sensitive to sampling.

To test whether higher overall accuracy is a product of spectral li-
brary size, we plotted overall accuracy against library size (Fig. 6).
This shows overall accuracy and library size are only weakly correlat-
ed for each selection technique. For example, for the CoB/EAR and
size-limited libraries, significant differences in overall accuracy exist
despite the same number of endmembers in each sampling iteration.
Accuracy does increase with increasing endmembers for IES and IES–
CoB/EAR, but the relationship is not linear. Accuracies for IES are
widely distributed across differences in library size. For the hybrid
method, accuracies do not vary greatly despite the wide range in li-
brary size.

Fig. 4. The distributions of the validation kappa coefficients for each selection tech-
nique. The central horizontal line denotes the median value, the box edges mark the
25th and 75th percentiles, and the whiskers extend to the most extreme values not
considered outliers. The notches signify 95% confidence intervals on the median.

145K.L. Roth et al. / Remote Sensing of Environment 127 (2012) 139–152



Author's personal copy

4.3.2. Class accuracies
We compared class producer's and user's accuracies across sam-

pling iterations for each endmember selection technique. Figs. 7 and
8 summarize the mean producer's and user's accuracies over 25 sam-
pling iterations for each endmember selection technique. Friedman's
Test verified that significant differences in producer's accuracy
existed among the five endmember selection methods for all domi-
nant classes (α=0.05) except ROCK. Significant differences in the
mean user's accuracies also existed among the methods (α=0.05)
for all classes except BURN, which had amean user's accuracy of near-
ly 100% across all methods.

All five techniques performed well in selecting endmembers to
classify BURN, dGRASS, ORCHARD_LS, ROCK, SOIL and URBAN (mean
producer's and user's accuracies≥70%). Classes for which all selection
techniques performed poorly included CESP, CECU, PLRA, UMCA and
YUWH (mean producer's and user's accuracies below 50%). A

combination of between-class confusion and small sample size was
the likely cause for the low producer's accuracies for these classes.
For AG and dBRNI, mean producer's accuracies were high when
endmembers were selected with CoB/EAR, hybrid or size-limited hy-
brid techniques, but mean user's accuracies were very low for all
techniques.

CoB/EAR-selected endmembers yielded the highest producer's accu-
racies for 4 classes (AG, CECU, dBRNI, ROCK), as did IES-selected
endmembers (ADFA, dGRASS, SOIL, YUWH). Endmembers selected via
the IES–CoB/EAR hybrid technique had the highestmean producer's ac-
curacy for the remaining 14 classes. CoB/EAR stood out among selection
methods for highmean producer's accuracy of dBRNI (82%), but in gen-
eral had lower mean user's accuracies than other selection methods
across classes. IES had noticeably higher mean user's accuracy for
ARCA. The hybridmethod yieldedmarkedly highermean producer's ac-
curacies for GC, QUDU, CESP, and UMCA, though these values were low
overall with the exception of GC (81%). For mean user's accuracies, the
hybrid method clearly outperformed all other methods for AG, CECU,
dBRNI and QUDU, though again, these values were low overall with
the exception of QUDU (64%).

When both IES-selected and IES–CoB/EAR-selected library size was
limited, the mean producer's accuracies dropped for some classes and
remained stable for others. For IES, the limited libraries showed a signif-
icant decrease in mean producer's accuracy for ARCA (−30.7%), BURN
(−2%) and SOIL (−5.1%). The impactwasmore severe between the hy-
brid and limited hybrid classifications, withmean producer's accuracies
decreasing by 3.1% (BURN) to 49% (ARCA) for 10 classes. The mean
user's accuracies between the IES libraries and the size limited versions
decreased significantly for ARCA and UMCA, and as with the producer's
accuracies, limiting the endmember library size for the hybrid method
resulted in significant decreases for 11 classes. The largest decrease
was for ARCA (65.9%) and the smallest for ORCHARD_LS (2.7%).

4.3.3. Image classification
For each endmember selection technique, the set of endmembers

with the highest overall accuracy was used to classify the 2004 AVIRIS
scene. All methods successfully modeled greater than 98% of the
image (percentage of pixels modeled with an RMSEb2.5%). Overall
map agreement between pairs of endmember selection techniques
ranged from 50 to 60%. All five methods agreed on class for 27.9% of
the total image and for over 50% of the reference pixels for BURN,
dGRASS, GC, ORCHARD, SOIL and URBAN. The most common case
(31% of image) was class agreement among three techniques. Areas
where substantial disagreement occurred were still common with
18.7% of the image showing agreement between only two methods.
Classes with low agreement among methods included CESP, QUDU,
PLRA and UMCA. None of these classes were mapped very accurately
with endmembers from any of the techniques, which may be a result
of poor training data (rare classes) or suggests that MESMA is not an
effective technique for mapping these species. Still, only 0.84% of the
image had no class agreement between the five selection methods.

Within the classification images, we examined three subregions
(outlined in Fig. 1). Subregion 1 is composed mainly of senesced
grasslands grading up slope into sage scrub and chaparral and in-
cludes a large portion of the 2004 Gaviota Fire burn scar (Fig. 9).
Agreement among selection techniques was high for both the burn
scar and senesced grasses, but was weaker in the bands of mixed
sage scrub and chaparral that stretch east–west and in riparian
areas. Despite the lower agreement in these areas, the species select-
ed on a broader scale are correct (i.e., mostly Ceanothus and Artemisia
in the sage scrub/chaparral zones and Platanus, Umbellularia and
Quercus in the riparian zones). Man-made features, such as the fire
station and roads were correctly mapped as urban. CoB/EAR incor-
rectly mapped golf courses in several riparian areas and orchards
were mapped along many riparian zones in all maps.

Fig. 5. The distributions of the overall accuracy for each selection technique. The cen-
tral horizontal line denotes the median value, the box edges mark the 25th and 75th
percentiles, and the whiskers extend to the most extreme values not considered out-
liers. The notches signify 95% confidence intervals on the median.

Fig. 6. Endmember library size vs. overall accuracy for all sampling iterations and all
five selection methods.
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The second subregion (Fig. 10) covers major portions of the urban
areas of Santa Barbara and Goleta and extends slightly into the foot-
hills (oak and chaparral). Again, man-made features (i.e., roadways
and golf courses) were mapped well using all methods; however,
golf courses appear to be overmapped in the hybrid and n-limited
methods. Orchards were highly overmapped by all methods. All
methods mapped the foothills as a mixture of CEME, ADFA, and

QUAG, though both IES and IES_nlim incorporated more ARGL into
this region. Overall, the methods showed high agreement in urban
and senesced grass areas, and low agreement in riparian zones.

The third subregion covers a section of chaparral, oak woodland
and riparian areas on the south-facing side of the Santa Ynez range
up to the ridgeline and across to north-facing slopes (Fig. 11).
Again, orchards were highly overmapped by all methods and across

Fig. 7. Mean producer's accuracies for each class using endmembers selected with each technique. The length of the line emanating from the center of each polygon denotes accu-
racy while the direction of the line indicates the technique.

Fig. 8. Mean user's accuracy for all methods by class.
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the entire subregion. Agreement among maps was highest on the
south-facing slopes at lower elevations. This area is mainly composed
of Ceanothus spp. and Quercus and Umbellularia (along drainages).
Moving up in elevation, Adenostoma and Artcostaphylos spp. become
more prevalent (seen in all maps). The areas of lowest agreement
among maps occurred on the north-facing slopes just over the ridge-
line. These areas are composed of both mixed chaparral and oak
woodland (well-represented in the hybrid and n-limited maps). Of
note, IES successfully mapped the shift in dominance from Ceanothus
megacarpus to C. cuneatus that takes place from the south to north
side of the range.

5. Discussion

5.1. Developing a protocol for building robust spectral libraries

The main motivations for selecting endmembers from a sample
are to reduce the labor and time necessary for implementing a selec-
tion technique and to retain some data for validation.

Our results support the use of a class and polygon-stratified ran-
dom sampling technique to create independent training and valida-
tion libraries. CoB/EAR selection resulted in consistent library size

across sampling iterations (Fig. 3). On the other hand, both IES and
IES–CoB/EAR library sizes varied greatly. Un-even class sample sizes
appeared to impact endmember selection. The number of training
spectra and the mean number of endmembers selected for a class
were significantly positively correlated (α=0.01) for all selection
methods. Ideally, the number of endmember spectra selected for a
class will vary based solely on the spectral variability within that
class. While it is true that a larger sample size is more likely to capture
more of the spectral variability of a class, our findings suggest the
number of endmembers selected per class is partly an artifact of the
original training sample size. An in-depth examination of the spectral
variability of both the class-level endmembers and training spectra
could further inform this finding, but was deemed beyond the scope
of this study.

A class and polygon-stratified random sampling also appeared to
impact library performance for some selection techniques. Lower
standard deviations of kappa and accuracy indicated some selection
techniques were less sensitive to changes in the training libraries
resulting from the random sampling process (Figs. 4 and 5). Library
performance by IES and its size-limited version were fairly sensitive
to the random sampling. The opposite was true of the hybrid and
size-limited hybrid libraries, which had much tighter kappa and

Fig. 9. Classification maps of subregion 1 (a–e) and class agreement map among selection methods (f). (a) CoB/EAR; (b) IES; (c) IES–CoB/EAR; (d) IES_nlim; (e) IES–CoB/EAR_nlim.
In the class agreement image (f), lighter tone indicates greater agreement.
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overall accuracy distributions. One potential explanation for the
higher variability in IES results could be over-fitting to the training li-
brary, resulting in lower kappa values when the endmember library
was applied to the validation data. However, a plot of training
kappa values against validation kappa values does not support this
hypothesis (Fig. 12). IES values fall very close to the 1:1 line, and in
most cases, validation kappa values are higher than those achieved
within the training library. On the other hand, over-fitting does
seem to have occurred for the hybrid method. Despite achieving
high training kappa values for most sampling iterations, validation
kappa values never exceed the highest training values.

Another way of examining each technique's sensitivity to the sam-
pling method is illustrated in Fig. 13. Here we see when the maximum
overall accuracy for endmembers selected by each technique was
achieved. Because the samples are randomly drawn, the exact

position of the maximum is not informative, and there is no guaran-
tee that a global maximum was actually found in the 25 iterations
we analyzed. However, it is useful to visualize the number of random
samples that were necessary to achieve a stable accuracy. High over-
all accuracy values were reached in only a few sampling iterations for
the hybrid and size-limited hybrid methods. Accuracy stabilized after
5 to 10 iterations for the other three methods.

5.2. Comparing endmember selection techniques

Clear tradeoffs exist among the endmember selectionmethods test-
ed here. While it has been demonstrated that CoB/EAR is an effective
method for selecting endmembers to map fractional cover of green

Fig. 10. Classification maps of subregion 2 (a–e) and class agreement map among se-
lection methods (f). (a) CoB/EAR; (b) IES; (c) IES–CoB/EAR; (d) IES_nlim; (e) IES–
CoB/EAR_nlim. See Fig. 9 for classification legend. In the class agreement image (f),
lighter tone indicates greater agreement.

Fig. 11. Classification maps of subregion 3 (a–e) and class agreement map among se-
lection methods (f). (a) CoB/EAR; (b) IES; (c) IES–CoB/EAR; (d) IES_nlim; (e) IES–
CoB/EAR_nlim. See Fig. 9 for classification legend. In the class agreement image (f),
lighter tone indicates greater agreement.
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and non-photosynthetic vegetation and soils (Roberts et al., 2012), in
this study it produced the least accurate libraries for classification of
plant species and land cover. It is also moderately sensitive to the ran-
dom sampling process. Still, it produces consistent, small library sizes,
which are an advantage computationally, especially when moving to
more complex models (i.e., 3 and 4 endmember models). The selection
process for CoB/EAR is currently manual, but could be automated. IES
and the hybrid selection techniques are both automated and yield
more accurate, but significantly larger libraries. Run time for library se-
lection in these techniques is a concern. Selecting the first pair of
endmembers is the most time-consuming step in the IES algorithm
due to comparison of all possible pairs of endmembers. More computa-
tionally efficient methods could be substituted for this first step. Subse-
quent steps required approximately 30 s for addition of an endmember
and 1–2 s for subtraction of an endmember. IES is also very sensitive to
the random sampling and does not select endmembers for all classes. To
address the missing classes, we implemented a hybrid technique. This
technique yielded the most accurate libraries and was the least sensitive
to random sampling. Because smaller libraries and shorter selection run
times are more desirable, we limited the size of the IES and hybrid-
selected libraries to match those from CoB/EAR. The size-limited hybrid

method offers the best compromise of library size, accuracy and sensitiv-
ity to sampling.

Though the hybrid method yielded the best results, it is only use-
able in cases where an IES library has missing classes. Recall in the hy-
brid method that IES is first run, and then CoB/EAR is used to select
endmembers for missing classes. In libraries with no small classes
(i.e., many reference pixels for each class), IES is likely to select at
least one endmember per class, and thus, the hybrid method as ana-
lyzed here would not be applied. It may be possible to gain the bene-
fits of the hybrid method in cases where IES selects endmembers for
all classes by using CoB/EAR to first select one endmember for each
class, and then running IES as in the previously used hybrid method.
We ran this modified hybrid technique for one sampling iteration,
and the resulting library produced the same overall accuracy as the
full hybrid technique, with a similar final library size. When we limit-
ed the library size as with the other methods, the overall accuracy
dropped about 10%. This was still higher than the accuracies of the
CoB/EAR, IES and IES_nlim-selected libraries for this sampling itera-
tion, but slightly lower than the size-limited hybrid library. These re-
sults show that this size-limited CoB/EAR-seeded hybrid method may
yield libraries which are smaller, more complete, less sensitive to ran-
dom sampling, reasonably more accurate and more quickly selected
than libraries created with the other selection methods. Still, a full
sensitivity analysis would be necessary to confirm this.

Within individual classes, endmember performance varied. For the
most spectrally distinct classes, areas of burn scar, senesced annual
grasses, rock, soil and urban, endmembers chosen by each selection
method performed well. The only class of vegetation with high
producer's and user's accuracy across all techniques was mature or-
chard. Classes with the lowest producer's accuracies were those for
which very little reference data existed. In general, CoB/EAR achieved
higher producer's accuracies than the other methods for only three
small classes: senesced BRNI, CECU and mixed agriculture. The other
methods frequently did not select endmembers for these classes, main-
ly because they are easily confusedwith other spectrally similar classes.
Despite the higher producer's accuracies from CoB/EAR-selected
endmembers, these classes still had low user's accuracies (reflecting
the confusion). Within the image, the endmembers from the tested se-
lection techniques had high levels of agreement. Patterns of disagree-
ment and class confusion illustrated the difficulty of separating similar
cover types with differing uses. For example, golf courses are composed
of irrigated green grass and senesced grass. However, senesced grass is a
class on its own. Another class, riparian, could be composed of amixture
of several other species-specific classes, including QUAG, PLRA and
UMCA. Spectral similarity between classes is a challenge faced by all
classification methods, including 2-endmember MESMA. Methods
which can be used to address this include spectral feature analysis
(e.g., band subsetting or feature selection by PCA). The resulting spectra
can be input to the endmember selection techniques used here. In this
study, we only analyzed endmember selection for classification with
a two endmember mixing model. The performance of each selec-
tion technique for more complex models (i.e., three and four-
endmembers) needs to be explored in future research. Because spectral
unmixing with MESMA can be quite computationally intensive, the
large libraries yielded by the full IES or the hybrid methods would
have to be further subset. The size limited versions of these techniques
are one option for doing this, but other approaches may yield subsets
better suited for mapping fractional cover. Furthermore, these selection
techniques could be used with libraries developed from other
endmember extraction techniques, such as VCA (Nascimento & Dias,
2005) or N-Finder (Winter, 1999).

6. Conclusions

Endmember selection is critical for successfully applying MESMA
and other SMA techniques for mapping species, cover types and

Fig. 12. Training library kappa values vs. validation kappa values for IES and hybrid
endmember selection techniques.

Fig. 13. Maximum overall accuracy over all iterations for each selection method.
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fractions. Quantitative selection methods, such as EAR, CoB, MASA
and now IES, enable scientists to select a set of endmembers based
on specific quantitative criteria (e.g., best fit, maximizing kappa).
However, the endmembers selected using each technique will vary
in both number and identity, directly impacting modeling perfor-
mance, including both endmember library size and accuracy. We
quantitatively compared two existing endmember selection tech-
niques, CoB/EAR & IES, and designed and tested a hybrid IES–CoB/
EAR selection technique. Our study also implemented a class and
polygon-stratified random sampling technique for partitioning po-
tential endmember spectra into training and validation libraries.

CoB/EAR-selected libraries achieved the lowest classification accu-
racies of all the techniques. Accuracies for IES-selected libraries were
higher, but highly sensitive to random sampling, and library size was
large. Furthermore, IES frequently did not select endmembers for rare
classes, underrepresented classes, and/or classes that may increase
confusion and reduce kappa. The hybrid selection method achieved
the highest accuracies and appeared insensitive to random sampling,
but produced the largest libraries. When IES and hybrid library size
was limited, the hybrid technique still out-performed the other selec-
tion methods, though with slightly lower accuracies than the full hy-
brid. Additionally, there is a need for sampling protocols which yield
robust training and validation spectral libraries to allow for indepen-
dent performance assessment.

The choice of endmember selection technique will depend on
end-user priorities regarding the tradeoffs between classification
accuracy, library size, and computation time. If high accuracies are de-
sired, and run time and model complexity are not limiting factors, the
hybrid selection technique yields the best endmember libraries. The
size-limited hybrid technique represents a good compromise if small-
er libraries are desired. In future research, we will aim to increase the
computational efficiency of the IES algorithm and further explore the
potential of novel hybrid endmember selection techniques.
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