
Remote Sensing of Environment 124 (2012) 780–792

Contents lists available at SciVerse ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
Evaluating the effects of spatial resolution on hyperspectral fire detection and
temperature retrieval

D. Scott Matheson, Philip E. Dennison ⁎
Department of Geography and Center for Natural and Technological Hazards, 260 S Central Campus Dr, Room 270, Salt Lake City, UT 84112, University of Utah, United States
⁎ Corresponding author. Tel.: +1 801 585 1805; fax:
E-mail address: dennison@geog.utah.edu (P.E. Denn

0034-4257/$ – see front matter © 2012 Elsevier Inc. All
doi:10.1016/j.rse.2012.06.026
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 6 July 2011
Received in revised form 26 June 2012
Accepted 27 June 2012
Available online xxxx

Keywords:
Imaging spectrometer
Wildfire
Multiple endmember spectral mixture
analysis (MESMA)
Hyperspectral fire detection index (HFDI)
AVIRIS
HyspIRI
Hyperspectral data covering a wavelength range of 1.2–2.5 μm can be used to detect fires andmodel fire tem-
perature and background land cover. Previous work has used hyperspectral data acquired from airborne plat-
forms, limiting spatial resolution to finer than 20 m. The Hyperspectral InfraRed Imager (HyspIRI), a
proposed hyperspectral/thermal infrared mission, will provide hyperspectral data over a spectral range of
0.35–2.5 μm at a spatial resolution of 60 m. This study uses airborne hyperspectral data to investigate
changes in modeled fire temperature and area as spatial resolution is varied from 5 m to coarser than
60 m. Four images containing active fires were acquired by the Airborne Visible Infrared Imaging Spectrom-
eter (AVIRIS), with spatial resolutions ranging from ~5 to ~20 m. Gaussian and aggregation resampling
methods were compared for one scene containing fire, and both resampling methods were found to produce
similar radiance values. As spatial resolution coarsened, the area flagged as having fire by the hyperspectral
fire detection index (HFDI) increased. Fire temperature modeled using a multiple endmember spectral
mixing model decreased at coarser spatial resolutions, while the modeled fire fractional area increased.
Coarser spatial resolution hyperspectral data, including data collected by HyspIRI, are likely to provide in-
creased fire area and lower temperatures when compared against simultaneously acquired higher spatial res-
olution data. Saturation in shortwave infrared (SWIR) bands was found in all four images, and increasing
SWIR saturation thresholds could lead to improvements in fire characterization.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Wildfire is a globally important process, affecting a wide variety of
ecosystems and often endangering human life and settlement. The
impacts of wildfires add to growing concerns regarding atmospheric
pollutants, the carbon cycle and global climate change. Remote sens-
ing has appropriately become an essential tool for examining and
evaluating the effects of wildfires on the environment due to its abil-
ity to map fires and fire impacts over large areas (Lentile et al., 2006).
Measurement of reflected and emitted shortwave electromagnetic ra-
diation at high spectral resolutions can provide valuable information
on fuels (Dennison et al., 2003; Varga & Asner, 2008), active fires
(Dennison & Matheson, 2011; Dennison et al., 2006) and the impacts
of fire on vegetation and soils (Kokaly et al., 2007; Lewis et al., 2007).
Although remotely sensed information represents a snapshot in time,
repeat acquisitions can allow detection of change over time, such as
the regeneration of vegetation in a burned area (Riaño et al., 2002).

Hyperspectral sensors utilize a large number of contiguous bands,
each with a narrow wavelength range (typically ≤10 nm). Previous
work using Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
+1 801 581 8219.
ison).

rights reserved.
data has demonstrated that hyperspectral data can be used to detect
fire (Dennison & Roberts, 2009) and model fire temperature
(Dennison & Matheson, 2011; Dennison et al., 2006). Yet AVIRIS, like
all airborne sensors, faces issues of varying spatial resolutions and has
limited spatial and temporal coverage. The National Research Council
Decadal Survey on NASA Earth Science Applications recommended
the development of a hyperspectral/thermal infrared satellite mission
(National Research Council, 2007). The proposed Hyperspectral Infra-
Red Imager (HyspIRI) would carry a visible-shortwave infrared
(VSWIR) hyperspectral sensor with AVIRIS-like spectral range (0.38–
2.5 μm) and resolution (10 nm), but data would be acquired at a spatial
resolution of 60.0 m. Fire detection and temperature modeling algo-
rithms that have been developed for higher spatial resolution AVIRIS
data have not been tested at coarser spatial resolutions. Spectral mixing
of fire emitted radiance may change modeled fire temperature and
area as spatial resolution is altered.

By resampling AVIRIS images to coarser spatial resolutions and ap-
plying fire detection and temperature modeling algorithms, the im-
pacts of spatial resolution on retrieved fire parameters can be
simulated. This study has three main objectives: (1) assess whether
simple averaging of adjacent pixels (aggregation) can be used as a
substitute for a less flexible, but more realistic Gaussian resampling
approach; (2) assess the performance of fire detection and tempera-
ture modeling algorithms applied to images resampled to coarser
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spatial resolutions; and (3) find a maximum shortwave infrared
(SWIR) emitted radiance for 60.0 m spatial resolution data. By ad-
dressing each of these objectives, the abilities of HyspIRI VSWIR
data for characterizing fire can be estimated.

2. Background

Hyperspectral sensors measure radiance reflected from or emitted
by a surface. Cooler temperature objects (i.e., temperatures up to
500 K) emit most of their radiance in the thermal infrared
(8–12 μm) and middle infrared (3–5 μm) regions of the electromag-
netic spectrum. Hotter temperature objects (e.g., smoldering and
flaming combustion above temperatures of 500 K) emit more of
their radiance in the SWIR (1.4–2.5 μm). Planck's equation specifies
emitted blackbody radiance at a specific wavelength and tempera-
ture. If radiance is known and blackbody emissivity is assumed, the
radiative temperature of the object can be estimated by inverting
Planck's equation.

Temperature modeling for wildfires is complicated by the fact that
pixels can contain mixed radiance that includes multiple combusting
and non-combusting areas. The effective temperature and subpixel
area of a fire within a pixel can be modeled using a spectral mixing
model, which models pixel radiance as a combination of endmember
radiances multiplied by their fractional area. Endmembers are spec-
trally pure signatures of a given land cover type (or radiance emitted
at a specific fire temperature, in the case of wildfires), gathered from
either field-measured spectra, relatively pure pixels in the image, or
modeled radiance that accounts for atmospheric effects through radi-
ative transfer modeling (Eckmann et al., 2008). The general equation
for spectral mixing is:

Lλ ¼
XN

i¼1

f iLiλ þ ελ ð1Þ

where Lλ is the total mixed spectral radiance for the pixel, Liλ is the ra-
diance of endmember i at wavelength λ, fi is the fraction of
endmember i, N is the number of endmembers, and ελ is the residual
error. In the case of modeling fire in SWIR wavelengths, the fraction
and radiance terms can represent reflected solar radiance or emitted
radiance from a fire. The first spectral mixing model applied to tem-
perature retrieval of wildfires was developed by Dozier (1981) for
the Advanced Very High Resolution Radiometer (AVHRR). This meth-
od uses a two endmember model which employs two broadband
AVHRR channels at 4 μm and 11 μm to spectrally discriminate be-
tween fire and nonfire (cool background) endmembers. The method
uses the following equation:

Lλ ¼ f fβ λ; Tf

� �
þ f bβ λ; Tbð Þ ð2Þ

where ff is the fire fractional area, fb is the background fractional area,
Tf is the fire temperature, Tb is the background temperature, and β is
Planck's equation. Giglio and Kendall (2001) note that the method is
based on the following assumptions: all objects and background emit
as blackbodies, a hot object has a single, uniform temperature, atmo-
spheric effects are minimal, and that nearby pixels may be used to es-
timate radiance for nonfire portions of a fire pixel.

2.1. Fire detection in hyperspectral data

Hyperspectral fire detection indices based on three spectral fea-
tures have been proposed. Vodacek et al. (2002) and Amici et al.
(2011) examined fire detection based on near infrared bands that
capture potassium emission found in burning vegetation. Dennison
(2006) introduced a carbon dioxide absorption index using a combi-
nation of three bands to indicate reduced carbon dioxide absorption
caused by the limited path length of emitted radiance. Dennison
and Roberts (2009) used kappa matrices to compare all potential
paired combinations of AVIRIS bands, and termed the most accurate
pair the Hyperspectral Fire Detection Index (HFDI):

HFDI ¼
L2:43μm−L2:06μm

� �

L2:43μm þ L2:06μm
� � : ð3Þ

HFDI is based on both trace gas absorption and differences in the
spectral shapes of reflected solar radiance and fire emitted radiance
caused by Plank's equation. The value increases as the emitted radi-
ance contribution to total radiance increases. Dennison and Roberts
(2009) evaluated the performance of HFDI against the potassium
emission index (Vodacek et al., 2002) and the carbon dioxide index
(Dennison, 2006) on AVIRIS scenes of the 2007 Zaca Fire and the
2008 Indians Fire in California. They found that HFDI outperformed
the other indices, with less sensitivity to smoke than the potassium
emission index and less background noise than the carbon dioxide
index. However, simulations did show that HFDI has decreased sensi-
tivity to fire at modeled temperatures below 750 K and above 1400 K.

2.2. Hyperspectral fire temperature modeling

Modeling of fire temperature using hyperspectral data has built
upon the mixing model approach of Dozier (1981). Green (1996)
used observable spectral differences between emitted radiance and
reflected solar radiance to model fire temperature. Dennison et al.
(2006) improved upon the Green (1996) methods by applying multi-
ple endmember spectral mixture analysis (MESMA; Roberts et al.,
1998) to modeling fire temperatures. This method uses a spectral li-
brary of endmembers, and establishes the best fit combination of
endmembers for each image spectrum. Dennison et al. (2006) used
MESMA to compare and select the best fit combination of a reflected
solar radiance endmember (from a spectral library of selected image
endmembers), an emitted radiance endmember (from a spectral li-
brary of modeled emitted radiance endmembers for temperatures
ranging from 500 to 1500 K), and a shade (no measured radiance)
endmember. While the method was computationally intensive and
produced some errors due to smoke and sensor saturation in the
SWIR, it effectively combined temperature modeling and fire frac-
tional area estimation with background land cover classification.
Dennison and Matheson (2011) improved upon the Dennison et al.
(2006) fire temperature algorithm by using HFDI for fire detection,
as well as separate spectral libraries of background endmembers for
smoke, nonsmoke, and fire pixels. The algorithm was applied to
both AVIRIS data and coarser spatial resolution data from the
MODIS/ASTER Airborne Simulator (MASTER), but differences in
modeled temperature due to spatial resolution were not examined.

2.3. Spatial rescaling

A primary limitation on the ability to characterize land cover or
model temperature in remotely sensed imagery is the spatial resolu-
tion of the imagery itself. Coarser spatial resolutions can result in a
loss of spatial and spectral information. Multiple studies have exam-
ined the impact of spatial resolution on mapping of vegetation. Bian
(1997) showed that variability in the values of a Landsat TM
reflectance/absorptance biomass index decreased with coarsening
spatial resolution. Walsh et al. (1997) also demonstrated that bio-
mass variation was scale dependent, noting a smoothing of NDVI
values at coarser resolutions. Nelson et al. (2009) coarsened Landsat
TM and ETM+ imagery to facilitate forest boundary detection, but
found that different thresholds must be set depending on the spatial
resolution to avoid under- and over-detection of a boundary.
Rahman et al. (2003) used spatial upscaling (coarsening of spatial



Fig. 1. AVIRIS scenes containing the 2003 Simi Fire (left) and 2009 Station Fire (right).
The online figure shows false color composites based on bands centered at approxi-
mately 1.7 μm (red), 1.1 μm (green), and 0.66 μm (blue). The Simi Fire image includes
a white box that denotes a spatial subset used for Figs. 4–5 and 8. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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resolution) to determine the best spatial resolution for studying prop-
erties of grassland and chaparral using AVIRIS data. Schaaf et al.
(2011) combined spatial scaling and MESMA to map vegetation in
the Wasatch Mountain Range, Utah, USA, across multiple spatial res-
olutions of resampled AVIRIS data.

Relatively few studies have examinedmultiscale approaches to tem-
perature retrieval. Anderson et al. (2007) used data with differing spa-
tial scales acquired from airborne and spaceborne sensors to produce
a land-atmosphere transfer scheme to compare changes in land surface
temperature at high temporal and spatial resolutions. Finer spatial res-
olution data from Landsat Enhanced Thematic Mapper+ (ETM+) and
the Advanced Thermal Emission and Reflection Radiometer (ASTER)
data have been frequently used to assess fire detection or retrieval of
fire properties from coarser spatial resolution MODIS or GOES data
(Csiszar & Schroeder, 2008; Csiszar et al., 2006; Eckmann et al., 2008,
2009, 2010; Kushida, 2010; Morisette et al., 2005a, 2005b; Schroeder
et al., 2008). To date, no studies have examined the impact of spatial
scaling on hyperspectral fire detection and temperature retrieval. Spa-
tial scaling analysis using hyperspectral data may provide valuable in-
formation for the development of wildfire applications for future
coarser spatial resolution hyperspectral sensors like HyspIRI.

3. Methods

3.1. Image data

AVIRIS has 224 contiguous spectral bands, and each band has an
approximate 10 nm bandwidth. The AVIRIS sensor has an instanta-
neous field of view (IFOV) of 1 mrad, which produces spatial resolu-
tions ranging from approximately 4 m to 20 m, depending on the
height of the platform above the Earth's surface. Each of the four
AVIRIS scenes used in this research was acquired from one of two air-
borne platforms: an ER-2 used for high altitude missions, or a Twin
Otter that flies at lower altitudes and acquires finer spatial resolution
images. All AVIRIS data were delivered as radiometrically calibrated
products, with geometric correction and geographic referencing pro-
vided by onboard global positioning system and inertial data
(Boardman, 1999). For the geometric correction process, the output
spatial resolution was specified to be equal to the calculated ground
IFOV based on reported platform and terrain height. The four AVIRIS
fire scenes are shown in Figs. 1 and 2.

The Simi Fire burned a total of 438 km2 from its start on 25 Octo-
ber 2003 to 5 November 2003. The AVIRIS sensor onboard a Twin
Otter platform collected data over the Simi Fire in the Santa Susana
Mountains north of Los Angeles, California, USA on 27 October 2003
(Table 1). The resulting geometrically corrected AVIRIS scene had a
spatial resolution of 5.0 m.

The Zaca Fire burned nearly 1000 km2 in Santa Barbara County,
California from 4 July 2007 to 2 September 2007, making it one of
the largest and most expensive fires in California history (California
Department of Forestry & Fire Protection, 2007). The AVIRIS sensor
onboard a Twin Otter platform acquired data over an active portion
of the fire on 12 August 2007 (Table 1). The resulting geometrically
corrected AVIRIS scene had a spatial resolution of 4.7 m.

In June 2008, the Indians Fire burned approximately 300 km2 of
the Santa Lucia Mountains along the central coast of California.
AVIRIS data were acquired from an ER-2 platform on 11 June 2008
(Table 1). The geometrically corrected AVIRIS scene for the Indians
Fire had a spatial resolution of 19.5 m.

The 2009 Station Fire burned 650 km2 from 16 August to 16 Octo-
ber 2009 in the San Gabriel Mountains in Los Angeles County, Califor-
nia. On 31 August 2009, data were collected for the fire area by AVIRIS
onboard an ER-2 platform. The majority of the active fire was covered
in four flight lines, with a varying spatial resolution ranging between
approximately 10 and 14 m. The imagery from “run 10” was selected
for this study because it contained a large portion of the actively
burning fire and was minimally covered by a large pyrocumulus
cloud present over other portions of the active fire. The geometrically
corrected AVIRIS scene had a spatial resolution of 13.2 m.

The center wavelengths and full-width half-maxima (FWHM) of
AVIRIS bands change over time as the sensor is upgraded, so bands
were subset independently for each AVIRIS scene. Spectra from
each scene were visually examined to determine bands containing
water vapor absorption or scattering from smoke. Bands with wave-
lengths shorter than 1.2 μm contained degradation from smoke
scattering (Dennison et al., 2006), and bands centered near atmo-
spheric water vapor absorption features were rejected. A total of
54 NIR and SWIR bands were used for modeling the Zaca, Indians
and Station Fire scenes, and 55 bands were used for modeling the
Simi Fire scene.

Gaussian resampling of 5.0 m AVIRIS data using a 60.0 m FWHM
should closely approximate the expected point spread function of
the HyspIRI VSWIR sensor (Robert Green, JPL, personal communica-
tion). However, Gaussian resampling can obscure spatial scaling ef-
fects, since the resampled spectrum is unevenly drawn from a larger



Fig. 2. AVIRIS scenes containing the 2007 Zaca Fire (left) and 2008 Indians Fire
(right). The online figure shows false color composites based on bands centered
at approximately 1.7 μm (red), 1.1 μm (green), and 0.66 μm (blue). (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 1
Characteristics of the four original AVIRIS images and their coarsened spatial resolu-
tions. The asterisk indicates that two resampled images were generated at this spatial
resolution to compare aggregation and Gaussian resampling methods.

Fire Simi Zaca Indians Station

Platform Twin Otter Twin Otter ER-2 ER-2
Scene date 27-Oct-2003 12-Aug-2007 11-Jun-2008 31-Aug-2009
Latitude 34.33° 34.62° 36.07° 34.28°
Longitude −118.65° −119.78° −121.38° −118.11°
Mean scene time
(UTC)

21:05 21:52 20:31 18:34

Solar zenith angle 52.5° 31.3° 14.07° 31.3°
Mean ground elev.
(m)

650 710 776 1078

Mean sensor
elev. (km)

5.6 5.6 20.1 14.3

Atmospheric water
vapor
concentration
(atm–cm)

864 898 493 1069

Original
resolution (m)

5.0 4.7 19.5 13.2

Resampled
resolutions (m)

10.0, 20.0,
40.0, 60.0*

9.4, 18.8,
37.6, 61.1

39.0, 58.5 26.4, 52.8,
66.0
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area than the target spatial resolution. Pixel aggregation, which av-
erages radiance from a square of pixels to create one new coarser
resolution pixel, facilitates direct comparison between multiple spa-
tial resolutions and is simpler to implement. The Simi Fire image,
which had the best combination of high spatial resolution (5.0 m)
and widest range of fire behavior, was used to compare the two
resampling methods. Gaussian resampling used a 24 by 24 pixel
kernel with a FWHM of 12 pixels (60.0 m). Aggregation resampling
used averaged blocks of 12 by 12 pixels to create each 60.0 m pixel.
For both types of resampling, a saturation mask was used during the
resampling to prevent saturated spectra from being averaged with
nonsaturated spectra of other nearby pixels. The saturation mask
assigned null values to bands with saturation, thus keeping the res-
ampled pixels from being spectrally distorted. However, saturation
masking may have reduced area modeled at high fire temperatures,
since pixels containing hot fires are more likely to occur adjacent to
saturated pixels.

Radiance values compared across multiple wavelengths demon-
strated that the Gaussian and aggregation resampling methods pro-
duced similar radiance values (Fig. 3). Saturation masking resulted
in the exclusion of more Gaussian resampled pixels than aggregation
resampled pixels, since the Gaussian resampling drew from a larger
area (24 by 24 pixels vs. 12 by 12 pixels). When saturated bands
were excluded, the radiance produced by the two resampling
methods was very strongly correlated with a slope close to one
(Fig. 3). Based on the similarity in resampled radiance, aggregation
was used for further analysis of all four AVIRIS scenes.

The four original resolution AVIRIS images were resampled by
doubling the resampling factor (Table 1). To achieve the final resolu-
tion closest to 60.0 m, the original resolution images for each fire
were resampled by varying factors once doubling the resolution
would far exceed the target 60.0 m. For the Simi Fire data, the 5.0 m
resolution data were resampled by a factor of 12, producing an
image with 60.0 m spatial resolution. The Zaca Fire data were res-
ampled by a factor of 13 from a resolution of 4.7 m to 61.1 m. The
19.5 m resolution Indians Fire data were resampled by a factor of
three, producing an image with a resolution of 58.5 m. The 13.2 m
Station Fire data were resampled by a factor of five, producing a
66.0 m image. The same saturation masking technique described
above was used for all resampled images.

3.2. Modeling

Fire detection and temperature modeling closely followed the
methods described in Dennison and Matheson (2011). HFDI was
used to flag pixels likely to contain fire (Dennison & Roberts, 2009).
The index produces values within the range of −1 to 1, with high
positive values indicating a greater likelihood of fire in a pixel. The
threshold for fire detection is dependent on solar zenith angle and at-
mospheric water vapor concentration (Dennison & Roberts, 2009), so
an appropriate threshold must be selected by the user. HFDI was cal-
culated for each AVIRIS image and at each spatial resolution using the
bands with center wavelengths closest to 2.06 and 2.43 μm. The fol-
lowing threshold values were empirically selected for the finest reso-
lution fire scenes: 0.00 (Simi), −0.15 (Zaca), 0.00 (Indians), and
−0.10 (Station). The threshold for each scene was applied to all spa-
tial resolutions as a controlled variable to uniformly assess the effects
of changing spatial resolution on fire detection and temperature
modeling. Total area of fire detection was directly compared between
all spatial resolutions using the Lee–Sallee shape index (Lee & Sallee,
1970). This index is generated by dividing the intersecting area of fire
detection in two images by the union of the area of fire detection in
both images. Values range from 0 to 1, where 0 indicates no agree-
ment and 1 indicates total agreement.

Pixels with HFDI values below the fire detection threshold were
modeled using a two-endmember linear spectral mixing model to
map background land cover. This model has the form:

Lλ ¼ f bLλb þ f sLλs þ ελ ð4Þ

where Lλb is the radiance of the background endmember at that
wavelength, Lλs is the radiance of the shade endmember accounting
for atmospheric scattering, and fb and fs are the fractions of each
endmember (which sum to 1). The sum of the residual errors for all
wavelengths was used to calculate root mean square error (RMSE).
All unsaturated pixels with HFDI values exceeding the indicated
thresholds were modeled with a three-endmember linear spectral
mixing model to retrieve fire temperature:

Lλsensor ¼ f Ef LλEf þ f bLλb þ f sLλs þ ελ ð5Þ
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Fig. 3. Scatterplots comparing radiance values (in μW cm−2 sr−1 nm−1) at four wavelengths for 60.0 m pixels resampled from the Simi Fire scene. X-axis values were calculated
using aggregation resampling, and y-axis values were calculated using Gaussian resampling.
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where LλEf is the radiance of the emitted radiance endmember and fEf
is its associated fraction.

The emitted radiance and shade endmembers were modeled
using the radiative transfer model MODTRAN 5.2 (Berk et al.,
1989), while the background endmembers were selected from
each of the four finest spatial resolution AVIRIS images. The same
sets of endmembers were applied to all spatial resolutions of each
fire scene to isolate the effects of changing spatial resolution on
fire temperature modeling.

To create the emitted radiance spectral libraries, a total of 101
blackbody endmembers were modeled for each fire scene for temper-
atures ranging from 500 to 1500 K at 10 K intervals. Temperatures
lower than 500 K were not used because Dennison et al. (2006) and
Dennison and Roberts (2009) observed that the limited radiance
that did exist in the SWIR for these cooler fire temperatures was
unreliable for fire detection and temperature modeling. A mid-
latitude summer atmospheric model was used for all MODTRAN
simulations, with image visibility for all images set to 23 km. This
was an overestimate of the visibility within the smoky portions of
the scenes, but lowering visibility did not substantially change
modeled radiance at wavelengths used for modeling. ACORN (ImSpec
LLC) reflectance retrieval software was used to produce an average
atmospheric water vapor concentration in areas near the fires within
each scene (Table 1). These water vapor concentrations were used as
inputs in MODTRAN to create the emitted radiance spectra. Output
MODTRAN radiance spectra were convolved to AVIRIS bands using
band centers and FWHM before being added to an endmember library
for each fire. Like the emitted radiance endmembers, the shade
endmembers were modeled for each fire scene using MODTRAN. This
endmember contains only modeled atmospheric scattering, without
emitted or reflected radiance (Eckmann et al., 2008). Each of the gen-
erated shade endmembers was convolved to AVIRIS band centers
and FWHM.

Background radiance endmembers were used to account for
reflected solar radiance. Following the methodology described in
Dennison and Matheson (2011), separate libraries were generated
for smoky and nonsmoky portions of each scene to avoid mis-
classification due to scattering by smoke. A smoke mask was gen-
erated for the original spatial resolution of each fire scene using a
maximum likelihood classification. The masks were spatially res-
ampled to the coarser resolutions by averaging and rounding the
averaged mask values to either zero or one for smoke or non-
smoke classification. The background endmembers were selected
from image spectra representing six land cover classes from each
original, finest spatial resolution image. All of the scenes were ac-
quired over mountainous areas in either central or southern Cali-
fornia, areas which share some broad vegetation characteristics.
For example, dense and sparse stands of chaparral shrubland are
common in the region, taller stands of oak forest are located in ri-
parian areas and north-facing slopes, and grasses are found in dis-
turbed areas (Dennison et al., 2006). Other non-vegetated land
cover types used for background modeling included soil and rock
(grouped into the same class) and ash. In the Indians Fire scene,
a second class of ash was created to prevent over-modeling of
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grass in the smoke portion of the image (Dennison & Matheson,
2011).

An iterative endmember selection algorithm (Schaaf et al., 2011)
was used to find the reduced set of background endmembers that
was still able to accurately classify the selected background spectra.
Kappa coefficient (Cohen, 1960) was used to assess the accuracy of
background spectrum classification. The iterative endmember selec-
tion algorithm was run until the kappa coefficient reached a mini-
mum of 0.895, or until the improvement in kappa gained by
adding additional endmembers reached a threshold of 0.0025. The
final selected endmembers were then assigned to the three
categories: 1) smoke, 2) nonsmoke, and 3) fire. The fire category
endmembers used for modeling fire-flagged pixels included soil/rock
and ash endmembers from smoky portions of the image, which were
also included in the library to be used to model smoke-flagged pixels.

Each radiance image, paired with a smoke mask and an HFDI mask,
was modeled using MESMA. If a pixel had an HFDI value higher than
the HFDI threshold, it was modeled with three endmembers: an emit-
ted radiance endmember, a shade endmember, and a background
endmember from the fire library. If a pixel had an HFDI value lower
than the threshold, it was modeled with two endmembers: a shade
b 

e 

g 

d 

a 

Fig. 4. A subset of the Simi Fire radiance image at 5.0 m (a) and modeled temperatures at s
resampled (f), and 60.0 m Gaussian resampled (g). The arrow indicates a hotspot that part
endmember, and a background endmember from the smoke library if
the smoke mask flagged that pixel, or a background endmember
from the nonsmoke library if no smoke was present.
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trum. Saturated bands were removed from modeling using the satu-
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have two or more nonsaturated bands for modeling. Endmember
fractions were constrained to between 0 and 1. The model that pro-
duced the lowest RMSE was assigned to each pixel.
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were summed by fire fractional area to calculate the total area
modeled at each temperature at each spatial resolution. The
Kolmogorov–Smirnov (K–S) statistic, a nonparametric test (Massey,
1951), was used to compare the histograms of area modeled at each
temperature across the range of spatial resolutions. A p-value thresh-
old of 0.05 was used, with values lower than the threshold indicating
a failure to reject a null hypothesis of no difference between two
temperature-area distributions.
K

f 

c 

patial resolutions of 5.0 m (b), 10.0 m (c), 20.0 m (d), 40.0 m (e), 60.0 m aggregation
ially disappears due to saturation masking.
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4. Results

Modeled temperature (Fig. 4) and fire fractional area (Fig. 5) are
shown for the Simi Fire, including the 60.0 m resolution images
comparing the two resampling methods (Figs. 4f–g and 5f–g). In
these figures, the fire is moving from left to right, with the higher
temperature fire front extending from top to bottom on the right
side of the image. Fig. 4 illustrates similar trends in the spatial dis-
tribution of temperatures across all spatial resolutions. The majority
of the fire was modeled with temperatures between 700 and
1000 K, with the hottest temperatures modeled for pixels along
the fire front. Higher temperatures were modeled along the fire
front at finer spatial resolutions (green hues in Fig. 4), but as the
resolution coarsened the modeled temperature in these same areas
decreased. Saturation masking also reduced the area modeled with
high temperatures as spatial resolution coarsened. For example,
there is a large hotspot along the fire front (indicated by the
arrow in Fig. 4b) where the modeled area decreases while the
masked saturated area increases due to aggregation. Small areas of
elevated temperature were mapped ahead of the fire front due to
scattering of emitted radiance coming from the hot-burning fire
front (Dennison & Matheson, 2011).
d e 

g 

b a 

Fig. 5. A subset of the Simi Fire radiance image at 5.0 m (a) and modeled fire fractional are
gation resampled (f), and 60.0 m Gaussian resampled (g).
The 60.0 m Gaussian resampled image (Fig. 4g) contains several
additional pixels modeled with fire temperature compared to the
60.0 m pixel aggregation resampled image (Fig 4f). Most of these ad-
ditional pixels in the Gaussian resampled image were modeled with
low fire temperatures. Notably, the Gaussian resampled image had
fewer modeled pixels along the fire front due to the saturation mas-
king procedure. For a given band, if any pixel with the 24 by 24 ker-
nel area was saturated, then that band was assigned a null value for
the resampled pixel. This resulted in a larger number of pixels
where all useable bands were saturated — the Gaussian resampled
image had 169 pixels masked as saturated, more than double the ag-
gregation resampled image's 64 pixels.

Similarly, spatial distributions of fire fractional area appeared to
remain largely consistent across multiple spatial resolutions (Fig. 5).
In general, the highest fire fractional areas were modeled along the
fire front. Again, larger saturated areas were left unmodeled at coars-
er resolutions. As spatial resolution coarsened to 60.0 m, fire fraction-
al area increased behind the fire front. The additional pixels modeled
in the Gaussian resampled image possessed low fire fractions
(Fig. 5g).

Images for the other three fires (not shown) displayed similar pat-
terns as spatial resolution was coarsened. The highest temperatures
f 

c 

a at spatial resolutions of 5.0 m (b), 10.0 m (c), 20.0 m (d), 40.0 m (e), 60.0 m aggre-



Table 3
Total HFDI-flagged area and modeled fire area for all spatial resolutions of each fire
scene.

Resolution Total HFDI-flagged
area (km2)

Total modeled fire
area (km2)

Simi
5.0 m 3.379 0.204
10.0 m 3.500 0.230
20.0 m 3.776 0.306
40.0 m 4.267 0.444
60.0 m aggregation 4.849 0.572
60.0 m Gaussian 6.538 0.867

Zaca
4.7 m 0.170 0.033
9.4 m 0.169 0.038
18.8 m 0.173 0.047
37.6 m 0.181 0.053
61.1 m 0.194 0.055

Indians
19.5 m 9.719 1.360
39.0 m 10.182 1.641
58.5 m 10.606 1.957

Station
13.2 m 20.066 1.669
26.4 m 20.298 1.865
52.8 m 20.555 2.233
66.0 m 20.534 2.474
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and fire fractions were found along fire fronts, although fire front
modeled temperature decreased with coarsening spatial resolution.
With coarsening spatial resolution, fire fractional area increased in
lower temperature areas behind the fire fronts. These observations
agree with the broad trends captured by the mean modeled temper-
ature and fractional area for each fire scene (Table 2). As spatial reso-
lution coarsened, mean temperature decreased and fire fractional
area increased for all four fires.

By multiplying the dimensions of each pixel by its fire fractional
area, total area modeled was calculated and compared with
HFDI-flagged area for each fire scene (Table 3). HFDI flagged far
more area for fire, since area was assessed based on entire pixels,
not accounting for fire fractional area. In all cases, coarsening spatial
resolution resulted in increased area. The trend for the Zaca, Indians
and Station Fires was that the coarsest spatial resolution modeled ap-
proximately 1.5 times the original resolution's total modeled fire area.
However, the Simi Fire aggregation resampled 60.0 m data modeled
nearly three times the total fire area of the 5.0 m data. Both HFDI
and the modeled area were much higher for Gaussian resampling
compared to aggregation resampling, likely due to the introduction
of low amounts of emitted radiance to a larger number of pixels
through the larger Gaussian resampling kernel.

Spatial agreement in HFDI-flagged area between different spatial
resolutions, as assessed by the Lee–Sallee index, was consistently
highest for the comparison of the finest resolution and the first res-
ampled resolution (Table 4). Agreement was higher for closer spatial
resolutions (e.g., 10.0 m and 20.0 m), and decreased for more widely
separated spatial resolutions (e.g., 10.0 m and 60.0 m). Table 4 also
shows a pattern of decreasing Lee–Sallee values between sequential
resolutions as spatial resolution coarsened (e.g., values along the di-
agonal for each fire). Overall agreement was best between the 4.7 m
and 9.4 m resolutions of the Zaca Fire, with a Lee–Sallee value of
0.887. The Station Fire produced the poorest agreement, with a Lee–
Sallee value of 0.567 between the 13.2 m and 66.0 m[resolutions.
The aggregation and Gaussian resampled Simi Fire images produced
a Lee–Sallee value of 0.682, indicating moderate agreement.

The histograms of total area modeled at each temperature were
plotted on a logarithmic scale to highlight differences across a wide
Table 2
Summary of mean modeled temperature and fractional area for all spatial resolutions
of each fire scene.

Simi 5.0 m 10.0 m 20.0 m 40.0 m Aggregation
60.0 m

Gaussian
60.0 m

Mean
modeled
temp (K)

812 809 803 790 780 758

Mean
fraction

0.073 0.079 0.099 0.134 0.168 0.251

Zaca 4.7 m 9.4 m 18.8 m 37.6 m 61.1 m
Mean
modeled
temp (K)

696 689 676 669 663

Mean
fraction

0.239 0.273 0.327 0.382 0.408

Indians 19.5 m 39.0 m 58.5 m
Mean
modeled
temp (K)

779 773 765

Mean
fraction

0.169 0.192 0.219

Station 13.2 m 26.4 m 52.8 m 66.0 m
Mean
modeled
temp (K)

845 834 809 804

Mean
fraction

0.131 0.145 0.176 0.187
range of modeled area (Fig. 6). All histograms exhibited the broad
trend of decreasing area with increasing fire temperature, regardless
of spatial resolution. Area modeled between 500 K and approximate-
ly 850 K increased with coarsening resolution for the Simi Fire
(Fig. 6a). This trend reverses from 850 K to approximately 1150 K,
with finer spatial resolutions exhibiting higher modeled area. Only
the three finest resolutions had modeled area for temperatures
above 1400 K. The temperature with the largest modeled area de-
creased with coarsening spatial resolution: 860 K for 5.0 m, 840 K
for 10.0 m, 800 K for both 20.0 m, 740 for 40.0 m, and 700 K for
60.0 m.

By plotting the total area modeled at each temperature for the two
60.0 m resampled images of the Simi Fire (Fig. 7), differences be-
tween the two resampling methods became clearer. Gaussian
resampling resulted in more modeled area for temperatures between
500 and 700 K. Both resampling methods produced the largest
modeled area in this range; 670 K for Gaussian resampling and
700 K for aggregate resampling. The Gaussian resampled image had
at maximum temperature of 1230 K, while the aggregation res-
ampled image had an outlying maximum temperature of 1350 K.
Table 4
Lee–Sallee shape index results comparing HFDI-flagged area for all spatial resolutions
of the Simi, Zaca, Indians, and Station Fires.

Simi 10.0 m 20.0 m 40.0 m 60.0 m
5.0 m 0.813 0.716 0.621 0.666
10.0 m 0.775 0.662 0.585
20.0 m 0.731 0.641
40.0 m 0.676

Zaca 9.4 m 18.8 m 37.6 m 61.1 m
4.7 m 0.887 0.816 0.726 0.610
9.4 m 0.857 0.746 0.622
18.8 m 0.768 0.635
37.6 m 0.678

Indians 39.0 m 58.5 m
19.5 m 0.790 0.726
39.0 m 0.771

Station 26.4 m 52.8 m 66.0 m
13.2 m 0.818 0.732 0.567
26.4 m 0.788 0.746
52.8 m 0.789
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Histograms for the five resolutions of the Zaca Fire scene (Fig. 6b)
demonstrated similar patterns to those of the Simi Fire, albeit on a
smaller scale, since the fire captured in the scene was much smaller.
For the range of temperatures from 500 K to approximately 900 K,
greater area was typically modeled for coarser resolutions. Modeled
area dropped considerably for temperatures beyond 900 K for all spa-
tial resolutions, with the two finest resolutions dominating the area
modeled above 1000 K. There was a very small area modeled at
1500 K for the 4.7 m data (0.11 m2). The highest temperatures
modeled for the coarser resolutions were 1050 K for the 61.1 m
data, and only 990 K for the 52.8 m data.

For the Indians Fire scene (Fig. 6c), the peak area modeled for all
three resolutions was at 780 K. Coarser spatial resolutions had
higher modeled area below 820 K. At higher temperatures, trends
between spatial resolution and modeled area are less evident. The
highest modeled temperatures were 1500 K for 19.5 m, and
1340 K for both 39.9 m and 58.5 m. Total area modeled at each
temperature produced similar histograms for the Station Fire
(Fig. 6d). With the exception of the temperature range 510–680 K,
area modeled for temperatures below 1050 K remained relatively
consistent across all spatial resolutions. The largest area for all reso-
lutions – except for 66.0 m at 500 K – was modeled in the same
mid-temperature range: at 870 K for 13.2 m, 860 K for 26.4 m,
and 850 K for 52.8 m data. All spatial resolutions produced reduced
modeled area for 510–540 K, while the 52.8 m data modeled no



Table 5
Kolmogorov–Smirnov statistics for comparisons of area modeled at each temperature
for all spatial resolutions of the Simi, Indians, Zaca, and Station Fires. Shaded values
have corresponding statistically significant p-values, indicating that the distributions
are significantly different.

Simi 5.0 m 10.0 m 20.0 m 40.0 m

10.0 m 0.09

20.0 m 0.20 0.15 Indians 19.5 m 39.0 m

40.0 m 0.34 0.29 0.16 39.0 m 0.23

60.0 m 0.37 0.32 0.17 0.08 58.5 m 0.29 0.07

Zaca 4.7 m 9.4 m 18.8 m 37.6 m
9.4 m 0.17 Station 13.2 m 26.4 m 52.8 m

18.8 m 0.28 0.11 26.4 m 0.12

37.6 m 0.38 0.21 0.12 52.8 m 0.27 0.16

61.1 m 0.56 0.40 0.29 0.19 66.0 m 0.27 0.16 0.06
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area within this temperature range. For hotter temperatures, more
area was generally modeled for the finer spatial resolutions, a
trend similar to the Indians and Simi Fires.

The results from the Kolmogorov–Smirnov nonparametric tests
between the temperature-area distributions at each spatial resolution
Table 6
Mean RMSE values (in μW cm−2 sr−1 nm−1) for pixels modeled with specific temperature

520 K 710 K

Spatial resolution Pixels Mean RMSE Pixels Mean

5.0 m 787 0.0397 1767 0.027
10.0 m 191 0.0360 503 0.023
20.0 m 49 0.0352 143 0.019
40.0 m 11 0.0248 45 0.016
60.0 m 5 0.0190 9 0.011

530 K 700 K

Pixels Mean RMSE Pixels Mean

60.0 m aggregation 9 0.0476 34 0.012
60.0 m Gaussian 8 0.0274 41 0.010

520 K 730 K

Pixels Mean RMSE Pixels

4.7 m 783 0.1175 85
9.4 m 193 0.1201 21
18.8 m 53 0.1157 4
37.6 m 12 0.1005 1
61.1 m 4 0.1182 1

530 K 720 K

Pixels Mean RMSE Pixels Mean RMS

19.5 m 121 0.0721 727 0.0691
39.0 m 25 0.0611 176 0.0596
58.5 m 15 0.0951 87 0.0475

Statio

550 K 720 K

Pixels Mean RMSE Pixels Mean RMS

13.2 m 2652 0.1433 232 0.0471
26.4 m 742 0.1405 58 0.0342
52.8 m 212 0.1404 10 0.0262
66.0 m 129 0.1434 10 0.0278
(Figs. 6 and 7) are summarized in Table 5. For all of the fires, the dis-
tributions from the finest resolution data and from the coarsest reso-
lution data were statistically different. In general, the images display a
trend where each resolution's distribution could not be considered
statistically different from that of the next finest or coarsest resolu-
tion. The Kolmogorov–Smirnov test comparing the two resampling
methods produced a D-statistic of 0.099 and a p-value of 0.683, indi-
cating moderate correlation between the histogram distributions.

Mean RMSE values were assessed for pixels modeled at selected
temperatures across all spatial resolutions of each fire scene
(Table 6). Reference temperatures were selected based on a sufficient
number of pixels modeled across all spatial resolutions, with target
temperatures of 500, 700, 900, and 1100 K. The Zaca Fire did not
have a sufficient number of pixels modeled at any temperature near
1100 K, so only three temperatures were examined for the Zaca Fire.
Where the coarsening factor was doubled from the previous resolu-
tion, the number of pixels modeled at each temperature decreased ap-
proximately by a factor of four as spatial resolution coarsened. Higher
modeled temperatures produced higher RMSE values due to increased
radiance, but mean RMSE values tended to decrease as spatial resolu-
tion coarsened. Examination of residual spectra showed that residuals
were largest near atmospheric water vapor absorption features, simi-
lar to trends observed by Dennison and Matheson (2011).
s at all resolutions of each fire scene.

Simi

910 K 1100 K

RMSE Pixels Mean RMSE Pixels Mean RMSE

0 2721 0.1269 262 0.1796
7 733 0.1151 64 0.1328
4 174 0.0890 13 0.0897
9 40 0.0471 6 0.0471
7 20 0.0439 1 0.0259

Simi 60 m comparison

920 K 1150 K

RMSE Pixels Mean RMSE Pixels Mean RMSE

4 8 0.0253 2 0.0821
1 13 0.0152 1 0.0011

Zaca

860 K

Mean RMSE Pixels Mean RMSE

0.0539 144 0.1521
0.0418 28 0.1589
0.0199 5 0.1625
0.0103 1 0.1728
0.0123 1 0.1732

Indians

960 K 1140 K

E Pixels Mean RMSE Pixels Mean RMSE

306 0.0481 7 0.3065
74 0.0367 1 0.2253
28 0.0340 1 0.1550

n

960 K 1140 K

E Pixels Mean RMSE Pixels Mean RMSE

2171 0.1177 727 0.0685
524 0.1173 170 0.0632
121 0.0262 28 0.0557
92 0.0863 19 0.0557
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Fig. 8. A subset of the Simi Fire radiance image at 5.0 m (a) and background endmembers mapped at spatial resolutions of 5.0 m (b), 10.0 m (c), 20.0 m (d), 40.0 m (e),
60.0 m pixel aggregation resampled (f), and 60.0 m Gaussian resampled (g).
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Background endmembers were modeled similarly across all spa-
tial resolutions of all four fire scenes. An example is shown for the
subset of the Simi Fire, including the 60.0 m images comparing the
two resampling methods (Fig. 8). Qualitatively, classifications across
all spatial resolutions match up very well with land cover as it ap-
pears in the radiance images, although spatial detail was lost with
coarsening spatial resolution. The saturated area (in red) grew larger
as spatial resolution coarsened. More pixels were saturated in the
Gaussian resampled image than in the aggregation resampled
image. Minor differences in the background classification occurred
because of the difference in resampling methods. These differences
consisted mostly of conflicts between soil/rock and ash, grass and
soil/rock, and between the three vegetation classes. Due to the lack
of in situ data for the areas within each AVIRIS scene, classification ac-
curacies were not assessed for land cover types surrounding the fires.

5. Discussion

Coarsening spatial resolution did have an effect on modeled fire
temperature and area, although the broad distributions of tempera-
ture and total fractional area remained similar. Coarser resolutions
produced larger areas of low fire temperature with lower modeling
error. During spatial resampling, the radiance spectra of many smaller
pixels (e.g., 4, 16, 64, and 256 for Simi, or 4, 16, 64 and 169 for Zaca)
were averaged into those of a single larger pixel. Smaller pixels with
higher radiance values resulting from hotter fire temperatures were
averaged with more numerous lower radiance values from cooler
fires and non-fire background reflected radiance, resulting in de-
creased area modeled at high temperatures and increased area
modeled at low temperatures.

One of the limitations of temperature modeling is the assumption
of single temperature blackbody emission, even though fire is spatial-
ly and temporally dynamic and highly variable across the smallest of
distances. The emitted radiance measured within a single pixel can
come frommultiple combusting fuel elements, even at very high spa-
tial resolutions. Furthermore, spectral radiance increases nonlinearly
with temperature, so modeled temperatures within a pixel will be
much more strongly impacted by hotter than by cooler objects.
Thus, modeled temperature is an effective temperature based on the
shape of emitted radiance and should not be directly equated with
the kinetic temperature of the fire. Decreases in RMSE with coarsen-
ing spatial resolution indicate that fire emission may more closely
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resemble blackbody emission when radiance is averaged over larger
areas. Collection of in situ data in concert with high resolution hyper-
spectral data could improve understanding of both the spatial distri-
bution of emitted radiance and correlations between modeled
temperature and temperature measured on the ground.

Saturation of the AVIRIS instrument had a major impact on model-
ing, especially at coarser spatial resolutions where large numbers of
SWIR bands were frequently masked. While the saturation mask en-
sured that saturated bands in high radiance pixels were excluded
from modeling, it also resulted in a loss of valid information when
the same bands were discarded from adjacent nonsaturated pixels in-
cluded in resampling. AVIRIS saturation thresholds in the SWIR
ranged from approximately 5 μW cm−2 sr−1 nm−1 in the Simi Fire
scene to approximately 8 μW cm−2 sr−1 nm−1 in the Station Fire
scene. To find a potential maximum SWIR radiance value at the spa-
tial resolution of HyspIRI, modeled temperature and fractional area
from the Simi Fire 60.0 m Gaussian-resampled data were used to cal-
culate synthetic blackbody emission spectra for saturated bands. The
pixel with the highest theoretical emitted radiance possessed a tem-
perature of 890 K and a fire fractional area of 0.989. Peak radiance
for a blackbody with these characteristics occurs in the SWIR at
150.8 μW cm−2 sr−1 nm−1 when accounting for the modeled atmo-
spheric conditions for the Simi Fire AVIRIS scene. An ideal SWIR satu-
ration threshold for HyspIRI VSWIR would be at least higher than this
radiance value, although practical considerations for measuring
reflected solar radiance likely require a much lower saturation
threshold. It should be noted that this threshold was calculated
from unsaturated bands. A higher threshold might have resulted if
data from spectra completely saturated throughout the SWIR could
have been analyzed, although these hot spots would also likely have
low fractional areas within a 60 m pixel.

Spectral averaging with spatial resampling also had an effect on
background endmember modeling. Variability of land cover was re-
duced in coarser resolution images when compared to finer resolu-
tions. The broad land cover characteristics did remain consistent
across all spatial resolutions, and confusion between widely different
land cover types (e.g., oak forest vs. soil/rock) was rare, even at the
coarsest spatial resolutions. Classification accuracies were not
assessed due to the lack of in situ data for the areas within each
AVIRIS scene. Additionally, this study did not examine the use of
endmembers retrieved from coarser spatial resolutions in the
MESMA modeling. Schaaf et al. (2011) found that selection of
endmembers for MESMA from finer spatial resolution images
resulted in higher classification accuracies in coarser resolution im-
ages. Lower accuracy may therefore be expected when modeling
with endmembers selected from resolutions closer to 60 m, but this
remains to be tested, since no pre-fire in situ reference data existed
for the scenes used in this study.

6. Conclusions

This study examined the performance of HFDI fire detection and
MESMA temperature modeling across multiple spatial resolutions
for four AVIRIS scenes containing actively burning wildfires. A satura-
tion mask was used to ensure that saturated bands would not distort
radiance values in the spatially aggregated data. Spatial aggregation
was compared to a more realistic Gaussian point spread function at
60.0 m resolution. The two resampling techniques were found to pro-
duce similar radiance values, although Gaussian resampling resulted
in additional fire area modeled at lower temperatures. Modeling re-
sults supported the viability of hyperspectral fire detection and effec-
tive temperature modeling using data with HyspIRI-like spatial
resolutions. Temperature distributions were similar across a wide
range of spatial resolutions. However, coarser spatial resolution
hyperspectral data, such as those collected by the future HyspIRI
VSWIR sensor, may be expected to model more fire area at lower
temperatures when compared against simultaneously acquired
higher spatial resolution data. Adjustments to saturation thresholds
in SWIR bands could provide additional unsaturated bands for more
effective retrieval of fire properties.

The proposed HyspIRI mission promises vastly superior spatial
and temporal coverage compared to AVIRIS, providing global cover-
age multiple times per year. Temporal analysis could allow linking
of retrieved fire properties with impacts on soil and post-fire vegeta-
tion succession, thus improving understanding of fire-ecosystem pro-
cesses. Data from the HyspIRI multispectral thermal infrared imager
(TIR) will be acquired simultaneously with VSWIR data at 60 m spa-
tial resolution. The TIR sensor will include a 4 μm band that is spec-
trally similar to those currently used to produce MODIS fire
detection and fire radiative power products. HyspIRI's hyperspectral
VSWIR and multispectral TIR sensors should provide a powerful com-
bination for measurement of fire radiative properties.
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