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The vast and persistent Deepwater Horizon (DWH) spill challenged response capabilities, which required ac-
curate, quantitative oil assessment at synoptic and operational scales. Although experienced observers are a
spill response's mainstay, few trained observers and confounding factors including weather, oil emulsifica-
tion, and scene illumination geometry present challenges. DWH spill and impact monitoring was aided by ex-
tensive airborne and spaceborne passive and active remote sensing.
Oil slick thickness and oil-to-water emulsion ratios are key spill response parameters for containment/cleanup
and were derived quantitatively for thick (>0.1 mm) slicks from AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) data using a spectral library approach based on the shape and depth of near infrared spectral
absorption features. MODIS (Moderate Resolution Imaging Spectroradiometer) satellite, visible-spectrum
broadband data of surface-slick modulation of sunglint reflection allowed extrapolation to the total slick.
A multispectral expert system used a neural network approach to provide Rapid Response thickness class
maps.
Airborne and satellite synthetic aperture radar (SAR) provides synoptic data under all-sky conditions;
however, SAR generally cannot discriminate thick (>100 μm) oil slicks from thin sheens (to 0.1 μm). The
UAVSAR's (Uninhabited Aerial Vehicle SAR) significantly greater signal-to-noise ratio and finer spatial
resolution allowed successful pattern discrimination related to a combination of oil slick thickness, fractional
surface coverage, and emulsification.
In situ burning and smoke plumes were studied with AVIRIS and corroborated spaceborne CALIPSO (Cloud
Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations of combustion aerosols. CALIPSO
and bathymetry lidar data documented shallow subsurface oil, although ancillary data were required for
confirmation.
Airborne hyperspectral, thermal infrared data have nighttime and overcast collection advantages and were
collected as well as MODIS thermal data. However, interpretation challenges and a lack of Rapid Response
Products prevented significant use. Rapid Response Products were key to response utilization—data needs
are time critical; thus, a high technological readiness level is critical to operational use of remote sensing
products. DWH's experience demonstrated that development and operationalization of new spill response
remote sensing tools must precede the next major oil spill.
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1. Introduction

1.1. Overview

Marine petroleum affects the environment, economy, and quality
of life for coastal inhabitants leading to concerns that include resource
exploration, recovery, transportation, and resultant oil spill contin-
gency planning, mitigation, and remediation (Jensen et al., 1990).
Traditionally, remote sensing has played a secondary support role
in oil spill response and monitoring. However, recent technological

advancements and sensor availability have enabled a more important
role for remote sensing. During the Deepwater Horizon (DWH) spill,
several remote sensing technologies rapidly moved up the technologi-
cal readiness scale (Ramirez-Marquez & Sauser, 2009), propelled by
the spill's scale and urgency.

In this review, we summarize and discuss the role of remote sensing
technologies used in the DWH response with varying degrees of effec-
tiveness. This paper has five sections: 1) oil spill processes relevant
to oil spill response and remote sensing interpretation, 2) passive oil-
spectroscopy and remote sensing, 3) active oil remote sensing, 4) remote
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sensing oil spill impacts, and 5) a final discussion. Each section presents
background, available remote sensing tools, and their DWH application,
with discussion of both airborne and orbital sensors.

1.2. Background: oil slick science

1.2.1. Marine oil sources
Annually, on average 1,300,000 t of oil entered the oceans during

the 1990s with tanker vessel spills accounting for 100,000 t, run-off
140,000 t, and pipeline leaks just 12,000 t (NRC, 2003). Aside from nat-
ural seeps, which contribute an estimated 600,000 t or ~45% of total
emissions, other important sources include vessel operational dis-
charges (NRC, 2003). Oil spills impacting coastal waters are occurrence
with a cumulative total of 447 U.S. oil and chemical spills reported from
1992 to 1999, with 50 between Oct. 1998 and Oct. 1999 (NRC, 2003).
Tanker spills generally have decreased in volume with only 100 t
spilled in 2009, whereas, at least 138,000 t were spilled each year in
the 1970s. Large spills like the Prestige in 2002 (63,000 t) still occur.
In contrast, spills resulting from sabotage and pipeline ruptures are in-
creasing due in part to aging pipeline networks and infrastructure
expanding into ever deeper waters (Jernelöv, 2010).

Although natural seeps are estimated as the largest marine oil
source, few fluxes have been measured. Annually, North American
seeps emit an estimated 160,000 t of oil with California seeps contrib-
uting 20,000 t of oil, ~12% of the North American total emissions
(NRC, 2003). Where oil spills occur in natural seepage areas, such as
the northern Gulf of Mexico, previously generated, remote-sensing
derived maps of seepage-occurrence (Garcia-Pineda et al., 2010) can
aid in discriminating natural from anthropogenic oil slicks. In general,
natural seep oil emissions are highly distinct from most oil spills and
involve persistent and widely dispersed oil emissions that generally
result in very thin sheens (MacDonald et al., 2002).

1.2.2. Oil slick processes
Experienced observers can discriminate oil from biogenic slicks and

estimate the amount of oil in the slick based on spatial patterns andhow
they change with time. These spatial patterns can be key for validation
of oil slick maps derived from remote sensing data. Oil slick processes
on day to week timescales—a typical oil spill response—(Fig. 1) include
wind and wave advection, compression from waves and currents (into
wind rows or narrow slicks), spreading and surface diffusion, sedimen-
tation and dissolution into the water column, emulsification, evapora-
tion, and photochemical and biological degradation (NRC, 2003).
Weathering describes non-advective processes that alter the oil's chem-
ical and physical characteristics.

Volatilization causes physical and chemical evolution of sheens
and thin oil slicks on hour to day timescales (Leifer et al., 2006)
with the process evolving even more slowly for thicker slicks, partic-
ularly if the upper surface develops a waxy crust (Ross & Buist, 1995).
In the presence of turbulence from winds, wave breaking, or human
activities, oil forms emulsions–oil/water mixtures with significantly
higher viscosity and distinct physical properties (ASCE, 1996). Where
fresh oil surfaces among weathered oil, the two oils tend not to mix,
leading to small-scale heterogeneity (Leifer et al., 2006).

Many oil spill processes depend upon, currents, meteorology, sea
state, and oil properties, like viscosity and slick thickness (ASCE,
1996; Reed et al., 1999). Currents and winds advect oil in a weighted
vector sum direction (Leifer et al., 2006). For example, wind creates
turbulence that increases emulsification, while dissolution is affected
bywater-side turbulence fromwind stress, waves, andwave breaking.
Wave breaking also naturally disperses oil into the water column
(Farmer & Li, 1994).

Although several slick processes suggest that oil slicks should dis-
sipate, in reality, slicks tend to accumulate at current shears due to
Langmuir cells (Lehr & Simecek-Beatty, 2000) and bathymetric effects
or in current convergence zones. Typical wind-driven oil patterns are
asymmetric (Lehr et al., 1984) due to Fay gravitational and surface-
tension driven spreading (Fay, 1971). Spreading is where an oil slick ex-
pands to maximize its surface area. In the upwind direction, spreading
opposes thewind, while the two are synergistic in the downwind direc-
tion, leading to the asymmetry. Spreading is countered by inertia and
viscosity. Weathering increases viscosity, decreasing spreading (Reed
et al., 1999). Also affecting the asymmetry is the wind stress change
as thewind passes fromoil-freewaters to the oil slick. Oil slicks dampen
capillary and short gravity waves, lessening surface roughness (Brekke
& Solberg, 2005). This alters the wind profile, decreasing wind-ocean
momentum transfer, causing oil slicks to “bunch up.”

1.2.3. Oil spill response
In an oil spill's early phases, information on the spill's location often

is acquired from a few, often-conflicting observations, typically made
from airborne platforms. These observations can suffer from numerous
false positives, particularly given the paucity of trained observers. Thus,
first observations frequently are from untrained individuals and in-
creasingly from remote sensing, although both yield false positives
(Fingas & Brown, 1997). Such incoming data can obscure the oil spill's
true location and size (HAZMAT, 1996). Yet, initial response decisions
and resource allocation must be made on the available information.

Initial resource allocation needs to consider likely spill size and re-
source deployment times and thus, the oil's future location and size
when resources will arrive on-scene, i.e., spill modeling and prediction.

Fig. 1. Schematic of important early oil slick processes on time-scales up to a few days for a subsurface hydrocarbon spill. Oil image from AVIRIS image of the Deepwater Horizon spill.
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Moreover, predicting a spill's impact, and thus the best response strategy
(Reed et al., 1999), requires understanding the fate of themany oil com-
ponents with different toxicities. This requires understanding the pro-
cesses affecting slick chemical evolution (Riazi & Al-Enezi, 1999) and
processes affecting its advection, dispersion, and transformation, as
well as the sensitivity of the likely impacted coastal habitats (Jensen
et al., 1990). Despite the significant impact of marine oil spills, many as-
pects remain poorly understood, in part due to difficulties in obtaining
planned release permits, leading to a scarcity of high quality field data.

Oil spill response must address the key question: Howmuch oil has
been released? Secondary, critically important questions are: Where is
the oil? What type of oil was spilled? When (and how) was the oil re-
leased? What types of ecosystems are threatened? Answers are essen-
tial for resource allocation. As oil drifts ever closer to ecologically
sensitive habitats, public concern rises rapidly, particularly if the public
perceives weak organizational capacity and decision making (Albaigés
et al., 2006). Moreover, oil's tendency to spread and volatilize means
some response techniques lose efficacy with time (Nordvik, 1995).

In a typical tanker oil spill, the ship's manifest indicates the type of
oil and maximum potential oil spill volume from the hull and/or fuel
tanks minus consumption during transport. Field observations on
how oil is leaking from the vessel, i.e., which fuel compartments
may be breached, can refine worst case release estimates downward.
Although most tanker oil spills release the oil at once, oil and gas well
blowout spills, like the DWH and Ixtoc I, are far more challenging due
to continuous fresh oil release and the lack of a defined, upper-bound
release estimate. Persistent releases can threaten a more extensive
coastline as currents and winds shift.

Oil type is important because lighter crudes rapidly lose much of
their volume due to evaporation (Fingas, 1996), reducing the volume
requiring mitigation, but presenting a sinking risk (Michel & Galt,
1995), for which few mitigation technologies are available. In addi-
tion, many light, petroleum polycyclic aromatic hydrocarbons are
hazardous to health (Boström et al., 2002), increasing inhalation
health risks to response workers and coastal human populations.

The oil spill location in relationship to ecologically sensitive areas
is important, described by an Environmental Sensitivity Index (Jensen
et al., 1990), which is used for contingency planning and response
decisions. Typical wind and current patterns may place greater risk
for more distant than more proximal areas, with the caveat that
ecological impact depends on the oil's composition when it reaches
fisheries and coastal ecosystems.

1.2.4. Oil slick remote sensing for oil spill response
Airborne and satellite remote sensing can aid oil spill response, yet

face significant challenges. Passive approaches detect naturally occurring
reflected and/or emitted electromagnetic radiation. Active approaches
include light detection and ranging (lidar) and radar. Reviews by
Fingas and Brown (1997, 2002) identifiedmany promising remote sens-
ing technologies and sensors, but generally found limited spill response
applicability beyond simple visual observations that confirm known
spill features. In part this is due to generally inadequate coverage, false
positives, and a lack of quantitative slick mapping capabilities.

Still, satellites can play a role in oil spill response by providing pre-
liminary spill assessment for remote locations and synoptic scale
data. This role was enabled significantly by the International Charter
on Space and Major Disasters Agreement, which requires that all sig-
natory countries' space assets be provided during events such as
major oil spills (www.disasterscharter.org, 2000). Severe limitations
can arise from overpass frequency and timing and clear daytime sky re-
quirements for passive reflective sensors (Fingas & Brown, 1997). Also
of significant concern is the trade-off between coarser spatial resolution
and wide swath sensors, such as MODIS (~1 km pixels), with limited
swath but finer spatial resolution sensors, such as the panchromatic
Quickbird (b1 m pixels). Oil slicks exhibit significant small-scale, i.e.,
sub-pixel, heterogeneity that can lead to slick-estimation biases for

coarse resolution sensors. Alternatively, much of the slick may be
missed during infrequent narrow swath data acquisitions at finer spa-
tial resolutions. Nested data collection can address these competing
needs where the fine-scale sensor provides sub-pixel information for
the synoptic view sensor; however, this requires sensor coordination.

Because oil slicks evolve on daily to hourly time-scales, swath
mapping between subsequent multi-day overpasses can be ineffec-
tive. Generally, the primary satellite contribution is oil identification
from radar or visual imagery prior to the arrival of on-scene investiga-
tors or outside of expected areas, (Topouzelis et al., 2007). However,
frequent false positives limit utility. Consideration of ancillary data
can aid spill identification and classification by experienced analysts
(Ivanov & Zatyagalova, 2008). Neural network approaches can discrim-
inate slick-like features from other dark, non-slick features, providing
guidance on potential oil slicks for further investigation (Topouzelis
et al., 2007). The need for confidence level classification protocols
for radar-based detection has been noted; however, there is a need for
contextual information, including assessment of analysis techniques,
contrast, geographic location, winds and other meteorological data
(Ferraro et al., 2010). These evaluations are critical to satellite utility in
allocating airborne resources or indicating further satellite data analysis.

A practical reality is that acceptance of a new spill response tech-
nology requires that the technology has a proven reliability track
record with well-understood physical mechanism(s), and significantly
improved information relative to accepted approaches. Also critical
are Rapid Response Products, where analyzed data are available in a
readily usable form on the order of tens of minutes to hours after acqui-
sition, allowing timely response decisions. Oil spills are highly dynamic
and information ages rapidly, losing most utility in less than a day.

1.3. Oil slick remote sensing of the DWH

The DWH release's persistence and magnitude with an estimated
upper limit release of 1.3×109L oil and gas–oil equivalent (Joye et
al., 2011) provided a unique opportunity for field application and in-
tegration into the response of new sensor technologies. Moreover, the
slick's vast extent (order 104 km2) precluded traditional approaches
from providing a synoptic spill overview, a critical need that remote
sensing partially addressed.

Airborne human observations met the primary DWH response for
thick oil identification, (Section 2.1.1). These were supplemented by
an expert system using multispectral imaging, which provided maps
of oil thickness classes (Section 2.2.1) and hyperspectral visible to
short wave infrared (SWIR) data, which were analyzed to make quan-
tified thickness maps for the response (Section 2.2.2). The former al-
ready was operational at the beginning of the DWH spill. Limited
airborne spatial and temporal coveragewas extended and supplemented
by satellite passive visible data (Section 2.2.3). Satellite thermal
(Section 2.2.4) and airborne hyperspectral thermal data (Section 2.3.4)
were collected but lacked Rapid Response Products to enable integration
into the response. Airborne multispectral thermal imaging data aided
thick oil identification (Section 2.3.4).

Active approaches include airborne and spaceborne SAR
(Section 3.1.2) with several satellite SAR sensors offering Rapid
Response Products. Post-spill analysis of spaceborne and airborne lidar
data (Section 3.2.3) demonstrated remote sensing of near-surface
submerged oil. Post-spill remote sensing data can support ecosystem
recovery through hyperspectral vegetation maps and airborne SAR
ecosystem oiling maps to monitor impacts (Section 4.1). Hyperspectral
remote sensing and lidar data provided information on in situ burning
and smoke (Sections 4.1.2 and 4.1.3) and demonstrated a remote
sensing capability for monitoring in situ burning, although ancillary
datawere critical to interpretation for these applications. Thermal spec-
trometry provided a measure of air quality information (Section 4.2.2).
Approaches such as laser-induced fluorescence (Section 3.1.3.2), which
applies to thin sheens, saw little DWH application.
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2. Passive remote sensing of oil slicks

2.1. Background: oil slick spectroscopy

2.1.1. Visible appearance of oil slicks
In an oil spill's initial phases, its trajectory, location, and magni-

tude are known poorly with experienced observers and remote sens-
ing instruments unlikely to be on site. Weather and orbital positions
and remoteness may delay satellite observations and the arrival on-
scene of experienced observers. Thus, initial reports often are
conflicting with uncertain accuracy. This is because many common
marine phenomena, including “ice, internal waves, kelp beds, natural
organics, pollen, plankton blooms, cloud shadows, jellyfish, algae,
and guano washing off rocks have all been reported as oil by untrained
observers” (HAZMAT, 1996), as well as wind shadows, weed beds,
and oceanic fronts (Fingas & Brown, 2011). Thin sheens are particularly
susceptible to misidentification, as they appear similar to non-oil bio-
logical slicks. In fact, the sea surface's upper 1 mm is well described as
a gelatinous biofilm (Cunliffe & Murrell, 2009).

To aid in standardizing reporting, the visual appearance of con-
firmed oil slicks with respect to slick thickness is defined by Oil
Slick Thickness Codes (Table 1); Codes 1 to 3 are for oil slick appear-
ances governed by optical effects, with Codes 4 and 5 based on true
color (ASTM, 1996; Bonn Agreement, 2004). The thinnest slicks or
sheens (Code 1) have a silvery-gray appearance due to increased re-
flectance relative to seawater. Rainbow slicks (Code 2) have oil thick-
ness near to, or a few integer multiples of the wavelength of light.
Metallic slicks (Code 3) have oil color but sky reflection is dominant.
Differences between the Bonn and ASTM (American Society of Test
Materials) codes result from not specifying how slick appearance var-
ies with petroleum type, and viewing and solar angles (Lehr, 2010;
Taft et al., 1995)

Slicks thicker than 50 μm (Codes 4 and 5) exhibit the oil's true
color and thus are dominated by absorption, not sky reflectance or
thin film optical processes. Because most oil is in thick slicks, ~90%
according to Hollinger and Mennella (1973), the Thickness Codes
provide little guidance for volume assessment of the thicker oil slick
portions, which are most suitable for mitigation. Unfortunately, slick

Table 1
Oil appearance and thickness.
From Bonn Agreement (2004, 2009).

Code Description/appearance Bonn, layer thickness (μm) ASTM, layer thickness (μm) Bonn, liters per km2

1 Sheen (silvery/gray) 0.04 to 0.30 0.1–0.3 40 to 300
2 Rainbow 0.30 to 5.0 0.3–0.5 300 to 5000
3 Metallic 5.0 to 50 ~3 5000 to 50,000
4 Discontinuous true oil color 50 to 200 >50 50,000 to 200,000
5 Continuous true oil color 200 to >200 200,000 to >200,000

Fig. 2. Sample Deepwater Horizon spill aerial photos on 23 June 2010 of A Sheen and thin slick. B. Fresh surfaced oil in thin slick. C. Distant slick. D. Same as C, but closer, showing
wake bunch-up and sheen coverage asymmetry. E. Dispersant application. F. Possible weak Langmuir slick organization and cloud shadows. Platform (P1) identified in E and F to aid
orientation. Images courtesy of Ben Holt.
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appearance in the visible spectrum varies with several factors of
which thickness is not necessarily dominant (Clark et al., 2010).

For this review, we apply an operational (spill response) definition
with slicks thinner than 10–50 μm termed “sheens,” while slicks
thicker than 200 μm are termed “slicks.” Some oil spill mitigation
strategies are ineffective against thin oil (e.g., in situ burning; skim-
mers). Moreover, sheens are usually too thin to emulsify, while
thick, crude oil slicks readily form stable and meta-stable oil–water
emulsions. Note that these definitions are approximate and depend
on the oil type, spill observation approach, and response approach.

Oil slick assessment must consider sea state and sea state history,
which can affect oil slick appearance. For example, oil sheens alter the
sea surface appearance; however, unoiled sea surface usually appears
slicked for light winds. Also, higher winds prior to observations can
lead to temporary subsurface oil suspension. Even in calm seas, sub-
surface floating oil droplets can be obscured by surface slicks, from
surface observers (Leifer, 2010, unpub observations).

2.1.2. Visible spectrum oil slick assessment
Discriminating oil slicks from similar, non-oil marine phenomena

strongly relies on interpretation of oil spatial patterns and appearance
consistent with oil spill weathering and advection, i.e., the many

processes of oil weathering and transport (ASCE, 1996), particularly
slick convergence processes like Langmuir circulation (Lehr & Simecek-
Beatty, 2000) (Fig. 2F), fronts (Fig. 2A) (Klemas & Polis, 1977),
bathymetric-induced current shear, and eddies. Also, response efforts
such as dispersants may alter an oil slick's appearance by dispersing it
subsurface (Fig. 2E), and boat wakes can thicken slicks dramatically
and emulsify oil (Fig. 2D).

Sheens (Codes 1–3) contain negligible recoverable oil but can also
arise from biogenic sources, and can be confused for thicker oil (Codes
4–5) at low viewing angles or under cloudy skies. At very low wind
speeds (b2 m s−1), the sea surface often is covered with sheens
(Fig. 3A), largely from non-petroleum sources. Natural non-oil sheens
typically disperse at slightly greater winds, which are associated with
capillary wave formation (Donelan & Pierson, 1987), while, oil sheens
generally aremore persistent and tend to “bunch up” into thicker slicks.

A key, but not definitive, spatial pattern oil indicator (Fig. 3C, D) is a
point source connected to a streak-like pattern. Crude oil emulsification
is a rapid process, thus outside of freshly released or surfaced crude oil
(Fig. 2B), most spilled oil is found as stable or quasi-stable oil–water
emulsions that significantly alter the oil's visible appearance. The slick's
visible spectrum appearance depends strongly on the oil to water ratio
and entrained air, and weakly on the emulsion thickness (Clark et al.,

Fig. 3. Deepwater Horizon aerial photos of (A,C,E) false positives and (B,D,F) similar looking oil slicks. Images courtesy of Debra Simecek-Beatty.
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2010). Often, weathered oil emulsions appear similar to algae, sargas-
sum, and other organic materials, whichmay accumulate along conver-
gence zones (Fig. 3A, C, E). Spilled oil and non-oil organic materials
often can be intermixed. However, unlike non-petroleumhydrocarbons
(Fig. 3C), thick oil generally is surrounded by sheen (Fig. 3B), unless the
oil is heavilyweathered (Fig. 3D). Furthermore, the sheen often is asym-
metric with respect towind direction (Fig. 2D), if there iswind (Fig. 3B).
Brown algal blooms (Fig. 3E) and dark brown oil (Fig. 3F) can appear
similar, but their patterns differ in the presence of waves. Note that
the subtle wind-driven sheens in Fig. 3F are distinct from Langmuir
rows in Fig. 3E, with different color variations across the brown patches
in evidence.

2.1.3. Visible spectrum oil slick appearance: underlying spectroscopy
Thin sheen oil optical behavior is governed by light transmission

and reflection through the slick. This light includes downwelling
solar radiation and upwelling reflected light and scattered light
from the underlying water and oil. Oil identification is by contrast
with seawater; and thus is most successful where sub-surface up-
welling radiance is higher relative to specular sky radiance seawater
reflection, in the range of 480–570 nm (Byfield & Boxall, 1999).
These reflectances and transmittances have strong wavelength and
angular dependencies with greater contrast for less oblique observa-
tions and shorter wavelengths (Otremba & Piskozub, 2004). Thick-
ness makes a difference for thinner slicks. Wettle et al. (2009)
found a steeper fall off in crude oil reflectance (greater absorption)
towards blue for spectra spanning 470 to 800 nm, with increasing
slick thicknesses from 10 to 133 μm. Because the goal was comparison
with the 4-band, Quickbird satellite and the airborne hyperspectral
HyMAP sensor, Wettle et al. (2009) did not investigate angular de-
pendencies. Remote sensing instruments for oil spill response on air-
borne and satellite platforms, including acronym definitions are
described in Tables 2 and 3, respectively.

2.1.4. Near infrared oil slick appearance: underlying spectroscopy
Petroleum hydrocarbon spectral features in the near infrared

(NIR) are dominated by a carbon–hydrogen bond, C\H, stretch and
also symmetric axial and angular deformations, with a mid-infrared
(MIR) fundamental near 3300 nm. The first NIR overtones are near
1720–1730 and 1750–1760 nm, with a combination band near
2370 nm, and second overtones near 1190–1210 nm for some oils
(Clark, 1999; Lammoglia & Filho, 2011). These features can identify
hydrocarbons. For example, Hörig et al. (2001) identified spectral dif-
ferences in spectral features centered at 1730 and 2310 nm in HyMap
data that distinguished between oil-contaminated and uncontaminated
sand. Similar spectral features were found for a plastic tarp but not veg-
etation. Kühn et al. (2004) created a hydrocarbon index using radiances
at 1705, 1729, and 1741 nm from the same HyMAP data and found
improved detection. There are features at 1390 and 1410 nm due to a
first oxygen–hydrogen bond, O\H, overtone that could be diagnostic
(Clark, 1999).

In reflectance, light at different wavelengths penetrates an absorb-
ing layer to different depths due to varying absorption and scattering
(Clark, 1999). This enables different wavelengths to probe an oil or
oil-emulsion layer to different depths (Fig. 5), and can cause a slope
or skew in an absorption feature, termed “shoulder-ness,” see sche-
matic in Fig. 4A–D. Furthermore, the continuum—i.e., the spectrum
outside the feature, is shaped by nearby water absorptions, which
are affected strongly by the oil to water emulsion ratio. For oil slicks
thinner than a lower thickness limit, light for wavelengths spanning
the IR absorption feature penetrates the oil film and is absorbed by
the underlying water. This absorption occurs approximately uniform-
ly with wavelength with negligible scattering (Fig. 4B) leading to no
layer thickness change on the reflectance spectra of the absorption
feature. For oil slicks thicker than an upper thickness limit, light with
wavelengths spanning the feature is absorbed and scattered by theTa
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Table 3
Summary of oil spill remote sensing relevant spaceborne sensors.

Instrument
(satellite)

Bands
(# bands)

Band range
(nm)

Resolution
(km)

Swath
(km)

RevisitA

(days)
Rapid
response

Link Acronym Comment

LandSat 5,
LandSat 7

Vis, NIR, TIR
(8 bands)

450–
12,500 nm

0.030–
0.120

185 16 No http://landsat.gsfc.nasa.gov/about/
http://landsat.usgs.gov/

Land Satellite LandSat 7 had Scan Line Corrector
failure

LandSat TM Vis, NIR, TIR
(7 bands)

450–
12,500

0.03, 0.120 185 1–3/16 No http://landsat.gsfc.nasa.gov/about/tm.html
http://landsat.usgs.gov/

Land Satellite Thematic Mapper Rapid revisit is for of-nadir

MODIS
(Terra,
Aqua)

Vis, MIR, TIR
(36 bands)

405–
14,385

0.25, 0.5,
1.0

2330 1–2 Yes http://modis.gsfc.nasa.gov/ Moderate Resolution Imaging Spectroradiometer 120 m in TIR band

ASTER
(Terra)

VNIR, NIR, TIR
(14 bands)

520–
11,650

0.015/0.03/
0.09

60 4–16 No http://asterweb.jpl.nasa.gov/ Advanced Spaceborne Thermal Emission and
Reflection Radiometer

MISR (Terra) Vis, NIR
(4 bands)

446.4–
866.4

0.275–1.1 360 2–9 No http://www-misr.jpl.nasa.gov/ Multiangle Imaging SpectroRadiometer 9 different, simultaneous along
track viewing angles

MERIS
(ENVISAT)

Vis–NIR
(15 bands)

412.5–900 2.36×0.30–
1.04×1.2

1150 3 http://miravi.eo.esa.int/en/
http://www.esa.int/esaEO/SEMWYN2VQUD_index_0_m.html

Medium Resolution Imaging Spectrometer Bands can be reprogrammed

HICO Vis–NIR
(90 bands)

390–1040 0.95 43 – No http://www.nasa.gov/mission_pages/station/research/
experiments/HREP-HICO.html

Hyperspectral Imager for the Coastal Ocean International Space Station

Quickbird Vis–NIR
(4 bands)

450–900 .00061/
0.0024

16.4 1–3.5 Yes http://www.digitalglobe.com
http://www.satimagingcorp.com/satellite-sensors/quickbird.html

– Panchromatic has higher
resolution

AVHRR/3
(POES)

Vis, MIR, TIR
(6 bands)

580–
12,500

1.09 2440 0.5 No http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html
http://www.class.ngdc.noaa.gov/data_available/avhrr/index.htm

Advanced Very High Resolution Radiometer
(Polar-orbiting Operational Environmental Satellites)

RadarSat1 C-band 5.3 GHz 0.008–0.1 50–500 24 Yes http://www.asc-csa.gc.ca/eng/satellites/radarsat1/ Radar Satellite-1
RadarSat2 C-band 5.405 GHz 0.001–

0.100
20–1000 12 Yes http://www.asc-csa.gc.ca/eng/satellites/Radarsat2/

http://gs.mdacorporation.com/SatelliteData/Radarsat2/Features.aspx
Radar Satellite-2 Left and right look halves revisit

time
ASAR
(ENVISAT)

C-band 5.331 GHz 0.010–1.0 10–
1000

35 Yes http://envisat.esa.int/instruments/asar/ Advanced Synthetic Aperture Radar
(ENVIronmental SATellite)

Provides continuity with ERS-2

ERS-SAR
(ERS-2)

C-band 5.330 GHz 0.006–
0.030

5–100 3/35/
168

Yes http://earth.esa.int/ers/ European Resource-Sensing—Synthetic Aperture
Radar

Orbital adjustment with different
repeat cycles Mission ended 5
Sept.,2011

Cosmo
SkyMed2

X-band 9.6 GHz 0.001–0.1 10–200 0.5–
1.25

Yes http://www.telespazio.it/cosmo.html Constellation of Small Satellites for Mediterranean
basin Observation

A constellation of 4 satellites,
steerable

PALSAR
(ALOS)

L-band 1.270 GHz 0.007–0.1 20/40/
70–350

46/2 No http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm Phased Array-type L-band Synthetic Aperture Radar
(Advanced Land Observing Satellite)

Multiple resolution modes, fast
revisit by targeting. 20 km is
experimental mode.

TerraSAR-X X-band 9.6 GHz 0.001–
0.018

5–150 2.5 Yes http://www.infoterra.de/terrasar-x-satellite Terra Synthetic Aperture Radar Xband Has twin, TanDEM-X satellite

CALIOP
(CALIPSO)

Vis, NIR
(2 bands)

532, 1064 0.1 – 16 No http://www-calipso.larc.nasa.gov/ Cloud Aerosol Lidar with Orthogonal Polarization
(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation)

Vertical resolution is (0.03–
0.60 km)

SCIAMACHY
(ENVISAT)

UV, Vis, NIR
(15 bands)

240–2380 30x60–
32x215

1000,
32×215,
1000

3 No http://envisat.esa.int/instruments/sciamachy/ Scanning Imaging Absorption Spectrometer for
Atmospheric CHartographY (ENVIronmental
SATellite)

1000 km for limb mode

ASMR-E
(Aqua)

Microwave
(12 bands)

6.925–
89 GHz

6×4–
74×43

1445 1 No http://wwwghcc.msfc.nasa.gov/AMSR/ Advanced Microwave Scanning Radiometer—Earth
Observing Satellite

Ceased operation 4 Oct. 2011

Vis—Visible spectrum, NIR—Near infrared, UV—Ultraviolet, TIR—Thermal infrared. A repeat day is maximum.
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oil without reaching the underlying seawater and again there is no ad-
ditional layer thickness effect and no additional change in the reflec-
tance spectra of the absorption feature. For slicks in between these
two thickness limits, longerwavelength light in the absorption feature
penetrates less than shorter wave-length light but the oil absorption
coefficient is higher, leading to increased absorption at longer wave-
lengths (Fig. 4D, wavelength c) and a skew in the shape of the absorp-
tion feature.

Clark et al. (2010) showed that the overall NIR (700–2500 nm) re-
flectance spectrum “continuum” changes with oil thickness (Fig. 4E)
and with the oil to water emulsion ratio (Fig. 5A,B). The latter arises
because clear water is extremely absorbing in the NIR, and thus the
spectral sensitivity to emulsification also is strongly sensitive to
slick thickness. Although emulsion thickness has a small effect on vis-
ible reflectance spectra, air bubble entrainment, and the oil to water
emulsion ratio affect the visible reflectance spectrum (Fig. 5).

Another factor affecting scattering in oil is the relative proportion of
large branched and aromatic structure hydrocarbons, including asphal-
tenes, to linear aliphatic structure components that produce the noted
absorption features. Laboratory studies of different oil types showed
spectral variations related to oil viscosity/density including diagnostic
spectral changes related to weathering and the loss of the lighter linear

fraction. This suggests a potential for remote sensing identification of oil
type, at least for freshly spilled oil (Lammoglia & Filho, 2011).

2.1.5. Thermal infrared oil slick appearance (emissivity)
Thermal InfraRed (TIR, 7000–14,000 nm) oil slick remote sensing

has focused on discriminating oil from seawater by identification ther-
mal contrast spatial patterns. TIR oil slick detectionworks by identifying
a thermal contrast between the emissivity of the oil slickwith the back-
ground, oil-free water emissivity and complements daytime visible
spectrum reflectance by being viable at night. The thermal contrast
arises due to the different emissivities ofwater versus oil, which depend
on slick thickness (Salisbury et al., 1993). The contrast also arises from
the oil's lower heat capacity, lower albedo in the visible, and different
thermal conductivities.

These thermal attributes manifest as an Apparent Thermal Iner-
tia (ATI) or temperature change resistance, defined ATI=(1−a) /
(Tday−Tnight), where a is albedo, normalized by the day, Tday, to
night, Tnight, temperature difference. An oil slick's ATI is distinct
from seawater's (Asanuma et al., 1986). During daytime, oil slicks thicker
than 150 μm appear warmer than surrounding water while thinner, de-
tectable slicks appear cooler. This reverses at nighttime (Tseng & Chiu,
1994) with a 50–150 μm transition (Fingas & Brown, 1997). Thinner

Fig. 5. A. Deepwater Horizon oil:water emulsion laboratory spectra for a range of oil to water ratios for thick oil. B. Spectra of a 60:40 oil-to-water ratio emulsion over a range of
thicknesses.
From Clark et al. (2010b).

Fig. 4. A–D. Illustration of light scattering in oil on water. Arrow length indicates amount of scattering intensity. See text for description. E. Laboratory spectra of two different thick-
nesses of the same emulsions from a Deepwater Horizon oil sample. Spectra were recorded for samples in a quartz-glass window cell over a water substrate contained in a glass jar
painted flat black on the inside. Black lines illustrate continuum endpoints.
From Clark et al. (2010b).

193I. Leifer et al. / Remote Sensing of Environment 124 (2012) 185–209



Author's personal copy

slicks appear cooler due to the decreased emissivity of the thin oil layer
relative towater (Tseng& Chiu, 1994), although themechanism remains
unclear (Fingas & Brown, 2011). Thick slicks (>500 μm) appear warmer
during daytime because they are effective solar radiation absorbers,
but appear cooler at nighttime as they lose heat more rapidly than the
surrounding water (Tseng & Chiu, 1994).

Generally, oil sheens thinner than ~20 μm (Table 1, Codes 1–3) are
not detected in TIR data (Fingas & Brown, 1997), presumably because
such sheens affect sea surface temperature or emissivity (through
capillary wave suppression) below sensor detection limits. Still, thin
oil sheens (1–5 μm thick) were detected based on very small thermal
contrasts for a sufficiently sensitive thermal imager (Noise Equivalent
Delta Temperature of 0.05 °C) although significant noise could prevent
slick identification (Grierson, 1998). For thin sheens, there is an appar-
ent relationship between thickness and emissivity. As a result, under
some conditions, slick TIR imagery contains far more detailed informa-
tion on the slick structure and the location of thicker oil than visible im-
agery (Fingas & Brown, 2011).

Very thick slicks can exhibit temperatures highly different from
surrounding water. In AVHRR satellite data for a 1991 Persian Gulf oil
spill, daytime temperature elevations of 2–4 °C were observed. In a
March 1994 PersianGulf oil spill, daytimehotspotswere 2–3 °Cwarmer
and nighttime coolspots ~2 °C cooler than surroundingwaters (Tseng &
Chiu, 1994).

Oil exhibits potentially diagnostic C\H vibrational TIR emissivity
features, that could reduce false positives from non-oil processes
affecting sea surface temperature. These include out-of-plane double
C\H deformation features at 6800 and 7400 nm and a broader C\H
deformation feature at 13,300 nm (Byfield, 1998), although water
vapor affects the 6800 nm feature (Salisbury et al., 1993). There also is
a strong alkane feature at 9700 nm (Clark et al., 2009), which appears
in heavy fuel oil (Byfield, 1998). These features vary with oil type,
with lab spectra suggesting an aromatic stretch feature at 6080 nm
can distinguish Brent from Gulfax crudes, while sulfur adds a signature
at 14,200 nm (Byfield, 1998). Also, increasing emulsion levels led
to a decrease in the strength of the 6800 and 7400 nm features
(Lammoglia & Filho, 2011), suggesting potential for TIR oil slick thick-
ness remote sensing as for NIR features (Section 2.1.4).

2.2. Passive oil slick remote sensing

2.2.1. Multispectral (visible and thermal) expert system
Expert systems can augment the limited availability of experienced

observers by providing rapid image analysis for oil spill thickness esti-
mation. An effective approach uses a neural network trained on a
range of images of oil of different thicknesses, oil-free water, sunglint,

and typical sea surface features. A fuzzy logic classification algorithm
produces a geo-referenced map of oil thickness classes (Svejkovsky,
2009; Svejkovsky et al., 2009). Note that significant sunglint, or surface
layer reflection inherently reduces oil slick detection of any thickness.

A four VNIR channel, multispectral expert systemwas developed by
Ocean Imaging Corp. and mapped oil thickness classes during several
at-sea oil spills off the California coast and for the DWH spill. Although
crude oil reflectance spectra from300 to 1000 nmare sensitive to thick-
ness for oil slicks thinner than 150–200 μm, they are insensitive to
thickness for thicker oils (Clark et al., 2010). To address slicks thicker
than 2 mm, the system incorporates a TIR camera. Both lab and at-sea
tests showed that oil sheens, which are detectable in the visible wave-
length range, generally are not discernable in TIR images; however,
thicker films appeared either cooler orwarmer (at progressively thicker
accumulations) than the surrounding water (Svejkovsky, 2009;
Svejkovsky et al., 2009), in agreement with Salisbury et al. (1993).
Operational daytime use during several California oil spills (Fig. 6)
consistently showed that the thickest oil features were cooler than the
surrounding water surface, suggesting maximum oil film thicknesses
less than the ~50–100 μm transition from cooler to warmer emis-
sivity for typical mid-latitude daytime, clear-sky, low to-moderate
wind conditions (Svejkovsky, 2009).

2.2.2. Quantitative oil slick imaging spectroscopy
Thick Gulf of Mexico's oil emulsions were mapped in Hurricane

Katrina impacted areas using AVIRIS NIR oil spectral signatures
(Swayze et al., 2007), demonstrating a potential to map quantitatively
oil-to-water ratios in thick emulsions. DWHAVIRIS data were corrected
for the solar spectrum, atmospheric gas absorptions, and aerosol scat-
tering features using ACORN (Atmospheric COrrection Now, http://
www.imspec.com) radiative transfer calculations and vegetation-free
calibration spectra of a dry beach/airport tarmac, measured by a porta-
ble ASD spectrometer. The Tetracorder spectral identification and spe-
cialized DaVinci command-line software (Clark et al., 2003) then
mapped oil slick volume (Clark et al., 2010) in each AVIRIS pixel by
identifying the best fit to an oil-to-water emulsion and oil thickness
spectral library. This resulted in maps of oil slick thickness, oil-to-
water ratio, sub-pixel spatial coverage, and ultimately slick oil volume.
Using oil hydrocarbon spectral absorption features allowed positive oil
detection, greatly reducing false positives.

2.2.3. Satellite visible oil slick remote sensing
Multispectral instruments likeMODIS aboard the sun-synchronous

Terra and Aqua satellites aided DWH spill response due to its synop-
tic view (2330 km), rapid revisit time (twice daily), and near real-
time Rapid Response Products. The European Space Agency's MERIS

Fig. 6. A. Multispectral visible and B, Thermal IR (TIR) images, and C, multiple flight line oil thickness classification distribution estimation for oil slick in the Santa Barbara Channel,
California with Ocean Imaging Corp.'s aerial oil mapping system. Red square shows boom-towing vessels and a thick oil patch. White square shows location of images A and B.
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instrument also provides true color Rapid Response Products, but less
frequently (3 day). MODIS and MERIS visible spectrum oil identifica-
tion primarily is based on sunglint (Fig. 10); thus, solar geometry
and the wave field are important. Specifically, slick detection is from
modification of the wave field slopes and thus, sunglint (Adamo et
al., 2009) and because slicked surfaces have higher reflectance than
pure water. The latter suggest other processes could be important
(Swayze et al., 2007). For example, Adamo et al. (2009) found better
slick discrimination for longer wavelengths with greater sunglint sen-
sitivity for MERIS than MODIS for the Mediterranean Sea. The MISR
sensor provides views with 0.275–1.1 km pixel resolution at nine dif-
ferent along-track viewing angles. Using off-nadir viewing in the red
band improved oil slick detection compared to MODIS in Lake Mara-
caibo, Venezuela, where the viewing angle (26° forward) matched
most closely the specular reflection angle (Chust & Sagarminaga,
2007). This arises because oil slick contrast varies with viewing geom-
etry (Otremba & Piskozub, 2004).

The Landsat 5 TM and Landsat 7 ETM+ have 0.015–0.12 km pixel
resolutions, providing significantly higher spatial resolutions, but a
narrower swath width (185 km) and a relatively infrequent revisit
schedule (16-days). Also, a failed scan-line corrector has impacted
ETM+ data since 2003. Landsat data have been used to map oil slicks,
although the coarser temporal sampling makes it unsuitable for slick

monitoring (Bentz & Pellon de Miranda, 2001). Still, Landsat data
could aid extrapolating airborne slick data to larger scales in certain
situations.

2.2.4. Satellite thermal infrared oil slick remote sensing
TIR oil slick analysis has significant challenges absent ancillary infor-

mation, because sea surface temperature anomalies arise for many
reasons, including upwelling flows, convergence zones, river outflow,
different water masses, and wind history. Oil seepage slick identifica-
tion was attempted from ATI analysis of two day (ASTER) and two
night (MODIS) TIR scenes offshore coastal China. The analysis results
were unclear because other factors affect sea surface temperature (Cai
et al., 2011), showing the need for larger data sets. Also, ATI requires
day/night slick comparison, although slick advection can change pat-
terns on sub-daily timescales.

2.3. Oil slick passive remote sensing of DWH

2.3.1. Airborne oil slick remote sensing data collection
A NASA-led, multiagency-university effort including USGS, NOAA,

Univ. of Calif., Santa Barbara, Desert Res. Inst., Univ. of Calif., Santa
Cruz, and Univ. of Calif., Davis, was mobilized to acquire AVIRIS data
for DWH using a NASA Lockheed ER-2 starting 6 May, and then on a

Fig. 7. DWH airborne remote sensing coverage in 2010 by A, AVIRIS, B and C, SEBASS, D, HSRL lidar, E, UAVSAR, F and G, CHARTS lidar concurrent with CASI (inset shows Gulf-wide
data) for 2009 and 2010, see legend, H, ASPECT. I and J. Spaceborne HICO coverage. See Tables 2 and 3 for Acronyms.
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lower altitude DeHavilland Twin Otter in July. AVIRIS collects radi-
ance from 380 to 2500 nm in 224 channels with ~10-nm bandwidth
(Green et al., 1998). AVIRIS data collection focused on: 1) oil slick
imaging spectroscopy in support of the oil spill response, 2) to con-
firm potential oil slicks from satellite or model predictions using the
ER-2 capabilities, and 3) coastal imagery analysis to understand the
spill's ecosystem impacts. The latter involved successful collection of
coastline data prior to the arrival of oil and repeat acquisitions after
oil inundation. A total of 4 billion pixels covering over 400,000 km2

were collected over 41 flight days (Fig. 7A). Same day, quick-look
Google Earth RGB images were provided to NOAA and the incident
command to aid response decisions and next-day flight plans
(Bradley et al., 2011).

Hyperspectral TIR data (7600–13,500 nm) were collected by the
SEBASS sensor onboard a Twin Otter in 128 bands (Hackwell et al.,
1996). 145 flight lines were flown over 8 flight days (20–27 May
2010) covering ~700 km2 with pixel sizes ranging from 1 to 5 m
(Fig. 7B, C). Whenever feasible, SEBASS and AVIRIS flight lines were
coordinated. TIR and MIR multispectral data were collected by the
ASPECT sensor suite (Shen & Lewis, 2011), which records in 8 TIR
and 8 MIR bands at 1.1-m resolution, during 75 separate flight days
(Fig. 7H).

Hyperspectral 36-band data was collected by a CASI-1500, imaging
spectrometer, as part of the integrated airborne Compact Hydrographic
Airborne Rapid Total Survey (CHARTS) sensor suite, at 1-m spatial
resolution in the 380 to 1050 nm range, contemporaneous with the
CHARTS lidar. Prior to and following the DWH oil spill, ~2800 km2 of
concurrent hyperspectral, lidar, and aerial imagery were collected
over impacted areas in southeast LA and along the northern Gulf of
Mexico as well as coastal mapping in 2009 (Fig. 7F, G).

Spaceborne hyperspectral data were collected by HICO from the
International Space Station. HICO measures in 102 bands from 380
to 1080 nm at 90-m resolution (Lucke et al., 2011), although data

quality is low for wavelengths longer than 800 nm (Sonia Gallegos,
Naval Res. Lab., Pers. Comm., 2011). HICO imaged 200,000 km2 during
the DWH, including acquisitions (Fig. 7I, J) at far higher spatial and
spectral resolutions than other spaceborne multispectral imagery.
HICO and CASI DWH data analyses are in progress.

2.3.2. Multispectral oil slick thickness classification of DWH
The Ocean Imaging Corp.'s expert system collected data almost

daily for the DWH spill, generally in areas surrounding the DWH
well. One important consideration for aerial mapping is spatial cover-
age, which can be limited by low platform altitude and a narrow field
of view. Producing a continuous map of the entire oil spill often
necessitates mosaicing of images from multiple overlapping flight
lines (Fig. 8A), during which time the spill may have evolved.

Sunglint reduces the expert system's ability to discriminate thick
from thin oil, thus data generally were acquired for sufficiently low
solar elevation (early and late daytime), significantly limiting acquisi-
tion time. Although, thismay not be limiting during a small ormoderate
spills, they were very limiting over a very large release like the DWH
spill. Therefore, specific spill areas were targeted in support of specific
recovery operations, such as the DWH spill source area (Fig. 8). Note
the good agreement between MODIS images from two days prior and
post the 29 May 2010 data acquisition and how small a fraction of the
spill could be surveyed.

The thermal channel greatly aided thick oil classification due to
the high thermal contrasts observed. Large oil features often were
observed with apparent temperatures up to 5 °C warmer than the
surrounding ocean surface, indicating much thicker oil slicks. Surface
observations reported oil more than ~2 cm thick (Gregg Swayze,
2010, unpublished observations). Thermal contrasts were larger
than observations of the Gulf War oil spill (Tseng & Chiu, 1994),
most likely from the vastly finer airborne spatial resolution compared
to the AVHRR.

Fig. 8. A. Oil distribution and thickness map from expert system over the Deepwater Horizon spill source region on 29 May 2010. Imaging flight lines were offset purposefully to
increase the mapping coverage area during the time available in a single flight mission. Length scale and data key on panel. B. MODIS satellite imagery for 27 May 2010 with super-
imposed oil thickness map. Inset MODIS satellite image for 30 May 2010 with superimposed oil thickness map. Yellow bar is 10 km. Oil thickness maps courtesy of Ocean Imaging
Corp. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2.3.3. Hyperspectral quantitative oil slick mapping of the DWH
Oil thickness and oil to water emulsion ratios were derived from

oil absorption features in the NIR with each absorption feature prob-
ing different oil slick thicknesses. A RGB mapping of the absorption
features depths allowed qualitative visualization of spatial patterns
related to thickness (Fig. 9B). The resultant map captured the spatial
asymmetry (bunching up) from wind stress and oil spreading
(Fig. 9B). The derived oil-to-water emulsion map (Fig. 9D) indicated
that most thick oil slicks were heavily emulsified (weathered) except
for large patches a few kilometers downcurrent from the incident
site. A consistent data interpretation is that fresh oil was surfacing
several kilometers distant from the incident site at this time in a

relatively compact footprint (100s of meters) Downcurrent direction
was from current data at the DWH site (NOAA, 2010a). This explana-
tion is also consistent with ASPECT observations of a persistent
methanol plume within a few kilometers of the DWH well (discussed
in Section 4.1.4) and airborne atmospheric samples that showed a
similar size-scale plume of volatiles from the vicinity of the spill site
(Ryerson et al., 2011; Tom Ryerson, NOAA, Pers. Comm., 2011).

2.3.4. Airborne thermal infrared oil slick mapping of the DWH
For broadband TIR systems, high spatial resolution is important as

sub-pixel emissivity variability is assumed to be negligible, although
oil slick heterogeneity suggests this assumption may be inaccurate

Fig. 9. A. False color AVIRIS image, including clouds in scene. B. RGB map of band absorption strength, which correlates with oil thickness. C. True color AVIRIS oil scene. D. Tetra-
corder oil-to-water emulsion ratio map.
From (Clark et al. 2010).

Fig. 10. Small image subset of MODIS and MERIS, and a Landsat 5 TM image of the Deepwater Horizon (DWH) spill on 8 and 9 May 2010. Red fire icon shows DWH site. Red arrow
discussed in text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(Fingas & Brown, 2011). Airborne hyperspectral TIR imagers address
these deficiencies, although such systems are uncommon. The multi-
spectral ASPECT sensor suite discriminated between oil and seawater
based on emissivity and was insensitive to features such as algae. The
band centered at 11,245 nm provided the highest contrast images for
discriminating oil from water, but highlighted non-oil thermal sea
surface patterns. (Shen & Lewis, 2011) that can appear similar to oil
in the visible range of the spectrum (e.g., Fig. 3).

2.3.5. Satellite oil slick remote sensing of the DWH
True-color MODIS imagery (Fig. 10) was important in the DWH

response due to the spill's vast extent and the accessibility of Rapid
Response Products. In conjunction with the less frequent revisit
data from MERIS, high quality visible satellite imagery was available
every few days, although clouds were a frequent problem. Although
separated by a few hours, the MERIS and MODIS spill patterns
changed significantly, with contiguous areas in MODIS appearing
wispy in MERIS (Fig. 10, red arrow) presumably because of different
illumination geometry and the greater sunglint sensitivity of MERIS.
Although the Landsat TM (Fig. 10C) and ETM+ have far higher spatial
resolutions, their narrower swath and less frequent revisit (16 days)
prevented significant use during the DWH spill, particularly given
the northern Gulf's cloudiness.

AVIRIS data confirmed that areas where MODIS showed wispy
structures (Area B) primarilywere thin sheenswith a few thick oil slicks
covering a tiny fraction of the sea surface. In contrast, apparently ho-
mogenous and contiguous oil areas (Area A) contained significant
thick oil that still occupied only a small fraction of the sea surface
(Clark et al., 2010). Overall, AVIRIS revealed that most MODIS slick
pixels were mostly covered by thin sheens. On 17 May DWH oil was
transported south towards the loop current (Fig. 11A, red arrow),
while an associated flow transportedmore southerly waters northward
(Fig. 11A, dashed arrow). The latter did not transport oil (Area D), yet
shows characteristics similar to Area B. AVIRIS data showed that the
slick's southerly tail (Area C) contained few thick oil slick patches,
tens of meters wide; with most of the feature being sheen. Stronger
sunglint here leads to a visual appearance that could be interpreted in-
correctly as from more oil than Area B. Finally, where the tail turned
northwards (Area E), scene illumination geometry and/or surface
wave dampening cause the slick to appear darker. Combining MISR's
nadir and 26° forward views in the red band showed subtle slick struc-
tural details (Fig. 11C). MISR lacked a Rapid Response Product and was

concurrentwithMODIS (same cloud cover) and so did not contribute to
the DWH response.

During DWH, satellite TIR was not used significantly, probably
due in part to a lack of TIR Rapid Response Products and the need
for better TIR data interpretation at satellite resolution.

3. Active oil slick remote sensing

3.1. Background: active oil slick remote sensing

3.1.1. Synthetic aperture radar oil slick observations
SAR data from airborne and satellite (SSAR) platforms are used

widely for surface wave detection, and because oil dampens waves,
oil slick detection (Brekke & Solberg, 2005; Fingas & Brown, 2011;
Holt, 2004). Radar oil slick studies date to 1969 and identify changes
in surface wave properties due to oil dampening. Specifically, oil and
other surfactants reduce both the surface tension and the effect of
wind friction on the ocean surface, which results in a reduction and
shift of short gravity and capillary waves to shorter wavelengths
along with an effective reduction of wave growth. This causes a re-
duction in the radar backscatter from the ocean, which primarily
arises from Bragg scattering by surface waves with similar wave-
lengths to the microwave radiation. Sheens thinner than 1.0 μm
were detected for calm seas (winds to ~1.5 m s−1) for a controlled
spill in the Santa Barbara Channel in 1970 with greater sensitivity
for vertical polarization (Pilon & Purves, 1973). These thin oil sheens
appear to affect primarily waves from 0.12 to 0.7 Hz, spanning capil-
lary waves to short gravity waves. However, extensive slicks can
dampen longer ocean waves (Hühnerfuss et al., 1983). Alcohols and
other surfactant films induce maximum dampening in the range of
2–10 Hz (Trivero & Biamino, 2010).

Over the years, many studies have investigated oil releases and
other substances emulating oil releases with SAR and scatterometers,
including multiple frequency and multiple polarizations from aircraft
and towers (Gade et al., 1998a; Hühnerfuss et al., 1983, 1996;
Wismann et al., 1998).Most showed increased oil-damping attenuation
associated with higher radar frequency; some also identified oil-
induced scattering unrelated to Bragg scattering. Singh et al. (1986)
found a strong incidence angle dependency of the backscatter strength
for a planned oil release with a peak at 30–50° depending on frequency
and sea state.

Previous studies have shown that C-band SAR is most sensitive to
thin slicks in the wind speed range of 3.5 to 7 m s−1 (Garcia-Pineda

Fig. 11. A. MODIS Terra image and B, RADARSAT-2 SAR image of the Deepwater Horizon spill, acquired 17 May 2010 at different times. Note greater spatial extent of the SAR-
identifiable spill in B (dashed red line shows oil slick outline from A, white arrows indicated false positives). C MISR false color image based on combination of nadir viewing
blue and green with 26° forward red band, arrow indicates smoke from in situ burn (MISR 2010). See text for discussion. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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et al., 2009) with the detection threshold wind speed increasing to
8–12 m s−1 with increasing slick thickness (Espedal, 1999; Gade et
al., 1998a). An exception is for wind speeds of 5–6 m s−1 where sheens
disperse but thicker slicks remain as patchy areas (Jones, 2001). The
threshold wind speeds for significant Bragg backscatter for different
radar bands depend strongly on radar frequency, incidence angle, and
ocean surface temperature, but weakly on ocean salinity (Donelan &
Pierson, 1987). At very low wind speeds (b2 m s−1) the sea surface
microlayer is well developed and flat because winds are too weak to
roughen the sea surface through capillary wave formation (Thorpe,
1995). Thus, calm seas exhibit reduced radar backscatter and appear
similar to backscatter for an oil-slicked surface, lacking contrast for
slick detection (Trivero & Biamino, 2010). Similarly, white capping dis-
perses oil and thus surface roughness depends on wave-breaking bub-
bles, rather than capillary waves, preventing SAR from distinguishing
oil slicks at high wind speeds (Gade et al., 1998b). Wind shadowing
and internal waves and rain can cause interference (Espedal, 1999;
Jones, 2001), although the latter sensitivity is decreased for C-band
compared to X-band (Brown et al., 2003a).

SAR data do not allow clear discrimination between oil slicks
(natural or anthropogenic) and biogenic slicks (DiGiacomo et al.,
2004; Gade et al., 1998b), another source of false positives. This
reduces SAR utility for oil spill identification because SAR data com-
monly show slicks in coastal waters due to vegetation such as kelp,
fluvial run-off, coastal boating, and natural oil seepage (DiGiacomo
et al., 2004). Biogenic and petroleum slicks both accumulate in cur-
rent and eddy shears, creating false positives (Shi et al., 2008). The
ability of multi-frequency SAR to differentiate between planned
biogenic and a petroleum slick was tested for a planned spill and
was successful for low wind speeds, where biogenic slicks were
monomolecular (Gade et al., 1998b). It is unclear if the differences
between biogenic and thin oil sheens relate to sub-pixel slick spatial
distribution or to chemical properties. Interestingly, heavier crude
oil exhibited stronger damping curves (backscatter depression versus
Bragg wave number, which can be derived from multi-frequency
systems) than light oils whose damping curve is similar to biogenic
slicks. This suggests that future multifrequency systems could dis-
criminate thin sheens from thick, heavy oil slicks (Wismann et al.,
1998), although further research clearly is needed.

SSAR has been used to study natural oil seepage in the northern Gulf
of Mexico from persistent slicks (Garcia-Pineda et al., 2009) and their
general spatial patterns (Hu, Li, Pichel, & Muller-Karger, 2009). Such
techniques can also identify platform and pipeline leakage. Challenges
arise in heavily trafficked production regions, such as the northern
Gulf of Mexico. Ships also create turbulence wakes that resist capillary
wave formation, appearing dark in SAR data and emit diesel during nor-
mal operations (Lu et al., 1999). Just 10 L (0.01 m3) of oil can create a
contiguous SSAR-detectable (i.e., 0.1 μm thick) slick 50-m wide by 2-
km. Estimated mean oil tanker release of bilge oil is 20 L day−1 (NRC,
2003).

Despite many false positives and that current SSAR cannot dis-
criminate sheens from thick oil (Fig. 11B), high spatial resolution
(b150 m) SSAR contributes to oil slick early warning and provides
data during periods of cloudiness. Key to effective early warning is re-
ducing false positives through repeat imagery, feature extraction, and
ancillary information like platform location, weather, wind speed and
direction, etc. Solberg et al. (1999) identified correctly 94% of oil SAR
slicks (validated by aerial overflights), but prior knowledge was key.
False positives tended to occur as thin piecewise linear slick images,
or in areas with very heterogeneous or low contrast background SSAR
return (Brekke & Solberg, 2005). In studies of natural seeps (Garcia-
Pineda et al., 2009) and identification of platform spills (Espedal,
1999), ancillary data plays a critical role in improving SSAR data inter-
pretation. Repeat SSAR acquisitions also have been used for numerical
oil spill model validation showing the need for improvedmodel param-
eterizations of basic oil spill processes (Cheng et al., 2010).

3.1.2. Airborne and spaceborne synthetic aperture radar
Airborne SAR can map areas of interest at high spatial resolution

(b10 m), with faster repeat times than SSAR, playing a key spill re-
sponse role when cloud cover, foul weather, or nighttime acquisi-
tion requirements restrict other approaches. These advantages
have been used in planned oil release studies (Gade et al., 1998a).
The UAVSAR airborne L-band SAR uses quad polarization to image
a 22-km swath width at 1-m (along-track)×1.7-m (cross-track) sin-
gle look resolution (Hensley et al., 2009). L-band wavelengths are
longer (1–2 GHz, 15–30 cm free space wavelength) and have
lower signal alteration from propagation through the atmosphere
than airborne X- or C-band frequency instruments, even under cloud-
free conditions. UAVSAR is a low noise instrument with a noise equiva-
lent sigma zero of−53 dB at the point ofmaximal antenna gain, degrad-
ing to −40 dB in the near and −35 dB in the far range (Jones et al.,
2011). Calibration is 1 dB absolute and 0.5 dB relative (channel to
channel).

SSAR provides continuous available, synoptic-scale imagery (Fig. 11B)
for early warning with newer, steerable sensor satellite systems that
improve revisit times (Brown et al., 2003a). Coverage has improved sig-
nificantly in the last decadewith increases in the number of SSAR systems
in orbit, such as the COSMO-SkyMed's 4-satellite constellation, which
produces a privately available Rapid Response Product. Recent
polarimetric radar satellite instruments have higher spatial resolution,
aiding false positive discrimination, e.g., Envisat's ASAR with 30-m
resolution which has a publically available Rapid Response Products,
RADARSAT-2, with 3 to 100-m resolutions, and ALOS PALSAR with 7-
m azimuthal resolution in high-resolution mode. In some cases, polari-
metric SAR exhibits significantly different co-polarized signatures for
slick-free and slick-covered sea surfaces, reducing some false positives
(Migliaccio et al., 2009).

3.1.3. Laser oil slick remote sensing

3.1.3.1. Lidar oil slick remote sensing. Lidar is based on the differential
time-of-flight of light pulses and often is used for topographic and
bathymetric mapping. However, lidar also can detect backscatter
from water-column scatterers. For example, lidar and sonar-derived
maps of fish schools show good spatial agreement, except where
lidar observe phytoplankton layers (Carrera et al., 2006).

The CHARTS integrated airborne sensor suite system includes a
topographic/bathymetric lidar, a CASI-1500 hyperspectral sensor,
and a RGB digital camera (Duncan Tech-4000)with 0.2 to 0.5-m resolu-
tion. The CHARTS system surveys coastal areas as part of the National
Coastal Mapping Program (Fig. 7G). A CHARTS survey consists of topo-
graphic data from the shoreline to 0.5-km onshore at 1-m spot spacing
with ±0.15-m elevation accuracy and bathymetric data from the
shoreline to 1-km offshore (or laser extinction) at a 5-m spot spacing
with ±0.3-m elevation accuracy. Gridded data map anthropogenic
and natural coastal changes through repetitive surveys. Because bathy-
metric laser pulse returns are measured throughout their transit
through thewater column, reflective and absorptive layers can be iden-
tified, allowing for the detection of surface and submerged oil.

Lidar can remotely sense oil-related changes in surface characteris-
tics. For example, ocean surface roughness and slick affected back-
scatter are measured by the near nadir-pointing CALIOP lidar
aboard the CALIPSO satellite. Although CALIOP primarily is an atmo-
spheric profiler, it can be used to study backscatter from the ocean
surface in its two bands at 532 and 1064 nm. Specifically, the sea sur-
face roughness can be accurately calculated from satellite-derived
winds from AMSR-E, a passive microwave radiometer, to predict
lidar backscatter (Hu, Winkler, Vaughan, et al., 2009). Where the
model-calculated lidar backscatter diverges significantly from ob-
served backscatter, the sea surface is described poorly by the
model, leading to an inference of oil.
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3.1.3.2. Laser fluorescence oil slick remote sensing. Laser-induced fluo-
rescence (LIF) has been used to detect surface oil slicks. Here, an air-
borne ultraviolet (UV) laser that typically operates in the range of
300–355 nm (Brown, 2011) illuminates the ocean, exciting petroleum
compounds in an oil slick. Amulti-channel receiver records the fluores-
cence spectrum, generally from 300 to 650 nm with broad peaks
centered around 420–480 nm. Different oil types have distinct fluores-
cence spectra (Brown, 2011) with light oils fluorescing in the blue and
heavy oils fluorescing towards the green (Hengstermann & Reuter,
1990). Where the oil slick is thinner than 10–20 μm, water-column or-
ganic material fluorescence produces a broad peak at 420 nm that can
interfere with oil signatures (Fingas & Brown, 2011). Chlorophyll fluo-
rescence sharply peaks at 685 nm and is easily discriminated from oil
(Hengstermann & Reuter, 1990). Synchronized range gating can pre-
vent laser backscatter into the detector, minimizing ambient radiation
input. Where the time signal is recorded, submerged oil has been
mapped in the upper few meters of the water column (Brown et al.,
2003b) allowing discrimination between submerged oil and phyto-
plankton in near surface waters.

More advanced approaches use a combination of LIF and absorption
in the water Raman line. Specifically, oil thickness can be estimated
from the reduction in the relative strength of the Raman line intensity
and lab-based attenuation coefficients, while fluorescence provides
for primary oil confirmation (Lennon et al., 2006). During a planned
spill, comparison of thickness estimations from hyperspectral data

(400–1000 nm, 30-nm bandwidth) and the LIF Raman techniques
showed qualitative agreement for very thin sheens (estimated to be
1–5 μm thick). Yet, both the LIF and a combined hyperspectral/fluores-
cence volume underestimated the oil released by a factor of 2 and 5, re-
spectively, and by a factor of ~10 for two further planned spills. LIF
saturation for sheens thicker than 5 to 10 μm or incorrect accounting
for the oil's optical characteristics or sea conditions could explain the
underestimate (Lennon et al., 2006).

3.2. Active remote sensing of the DWH

3.2.1. Airborne Synthetic aperture radar remote sensing of the DWH
During the DWH spill, the UAVSAR instrument imaged 120,000 km2

on 22–23 June 2010, collecting high-resolution radar along most of the
U.S. Gulf coastline and over themain oil slick (Fig. 7E), including exten-
sive coverage of the northeastern area of Barataria Bay, Louisianawhere
heavy oiling occurred (Jones & Davis, 2011; Jones et al., 2011). The aver-
age backscatter intensity from two UAVSAR swaths covering an area of
~15×40 km within the main oil slick near the DWH rig site (Fig. 12A)
showed oil slick returns that were significantly lower than returns
from un-slicked water at the same incidence angle. UAVSAR returns
show variations within the slick that apparently relate to oil thickness,
fractional coverage, and/or oil emulsion characteristics. These returns
are consistent with a non-uniform slick thickness, as verified with
near-coincident, in situ, visual observations (Jones et al., 2011). The

Fig. 12. A. UAVSAR radar backscatter intensity over the DWH spill site area from two adjacent tracks. Ships appear as dark red dots near the rig site in lower panel. Radar backscatter
incidence angle dependency accounts for the general range dependent trends in look direction. B. UAVSAR multi-polarization radar backscatter intensity in northeastern Barataria
Bay, Louisiana (red = HH, blue = VV, green = HV). Radar-dark areas in water areas show the oil sheen extent. Inset shows oiled vegetation along an island coastline in cross-po-
larization (green). C. Backscatter intensity versus incidence angle for clear water near the DWH rig site (solid blue line), within Barataria Bay (blue diamonds), and for main slick,
oil-on-water areas near rig site (solid red line). Also shown are oil radar returns from Gulf side of Louisiana barrier islands at Barataria Bay entrance (Class A), within Barataria Bay
just inland of the barrier islands (Class B), and in northeastern Barataria Bay, Bay Jimmy area (Class C). C adapted from Jones et al. (2011).
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complex polarimetric data, i.e., the amplitude and phase of the back-
scatter signal for both horizontally and vertically polarized microwave
radiation, also have been used to derive oil extent maps (Liu et al.,
2011).

Minchew et al. (2012) studied in detail the L-band radar backscat-
ter from the main oil slick near the wellhead location and calculated
the co-polarized (HH and VV) and cross-polarized (HV) channels. In
this notation, the first and second letters indicate transmit and receiv-
ing polarizations, respectively, of the microwave radiation. Results for
areas with known oil slicks were compared to those for open water.
The polarimetric analysis showed the scattering mechanism to be
predominantly Bragg surface scattering in all areas of both unslicked
sea surface and oil-slicked surface within the main slick over a range
of incidence angles from 26° to 60°. In addition to the damping of the
ocean wave spectral components by the oil, damping also results from
an effective reduction of the ocean dielectric constant from a mixture
of 65–90% oil with water in the surface layer. Note that measurement
of the reduction in effective dielectric constant requires a relatively
thick emulsified layer and is not measurable for thin oil sheens where
the oil affects the radar backscatter only through alteration of the
ocean wave spectra.

The high spatial resolution of the UAVSAR enabled the characteri-
zation of very near-shore oiling of vegetation in the marshlands
affected by the DWH oil spill. The radar backscatter intensity for
the different polarizations in the Bay Jimmy area to the northeast
of Barataria Bay, Louisiana, showed evidence of surface oil slicks
(Fig. 12B). These slicks, which a ground crew observed, were mainly
sheen on the day of the UAVSAR overflight (Bruce A. Davis, NASA,
Pers. Comm., 2010), and show up as radar-dark areas within the bay.
Barataria Bay winds during the two days of data acquisitions were
2.5–5.0 m s−1 and 2.5–3.5 m s−1 from the southeast. UAVSAR returns
from unslicked water in the Gulf and Barataria Bay were similar
(Fig. 12C) and much higher than oil slick returns in either the main
slick or Barataria Bay at all incidence angles. Furthermore, oil slick
returns from the main slick were significantly higher than oil sheen
returns in Barataria Bay, indicating sensitivity in the UAVSAR data to
varying oil properties including thickness and weathering.

Minchew et al. (2012) and Jones et al. (2011) concluded that the L-
band radar backscatter intensity is the most reliable radar indicator of
oil slicks, affecting both co-polarized and cross-polarized channels.
The largest variations within the oil slick related to the intensity
and the anisotropy decomposition parameter (indicative of small-
scale surface roughness), although measurement of the latter re-
quires a low-noise instrument with cross-polarization capability,
like the UAVSAR. This indicates that UAVSAR detection of varying oil
slick characteristics (e.g., thickness, coverage, emulsification) re-
quires a low instrument noise floor, which allows accurate measure-
ment of cross-polarization return for oil slicks (Jones et al., 2011;
Minchew et al., 2012).

3.2.2. Satellite synthetic aperture radar remote sensing of the DWH
Advantages of SSAR are their all-weather, day/night capabilities,

higher spatial resolution than most other satellite sensors, and large
spatial coverage. Disadvantages include many false positives and non-
discrimination of thin sheens (0.1–1.0 μm) from thick oil requiring
response actions. Thus, MODIS's poorer sensitivity to thin sheens was
advantageous in better identifying where there was a non-negligible
probability of finding thick oil. This difference is illustrated in Fig. 11B
where the RadarSat-2 SAR area that appears slicked is significantly
larger than the area in the MODIS image (Fig. 11A). Still, the prevalence
of clouds meant that SSAR data often were very useful, particularly
where cloudiness persisted for several days, Also, the detailed analysis
of the polarimetric capabilities of ALOS PALSAR and RadarSat-2 has
not yet been completed, whichmay potentially lead to detectable sensi-
tivity related to thickness, analogous to that provided by the UAVSAR
polarimetric analysis.

3.2.3. Airborne and spaceborne laser remote sensing of the DWH

3.2.3.1. Laser bathymetry (lidar) submerged oil detection of the DWH.
Extensive airborne bathymetric lidar data were acquired during the
DWH by the HSRL and CHARTS instruments, respectively (Fig. 7D, F,
G), covering oil impacted areas in southeast Louisiana and over the
spill in May 2010. Relevant CHARTS coastal data were collected for
other areas prior to and following the DWH spill along the northern
Gulf of Mexico as part of the U.S. Army Corps of Engineers, National
Coastal Monitoring Program (Fig. 7G).

The CHARTS lidar mapped surface reflectance and identified struc-
tures likely associated with thicker oil slicks and likely sheens
(Fig. 13A). Initial examination of water-column data showed evi-
dence of unique lidar return backscatter properties that began near
the location of surface oil slick features (i.e., green band, 532 nm).
The spatial relationship between surface and subsurface features sug-
gests oil injection. During this acquisition, winds were persistently
easterly (66 to 88°) and light (3.9 and 5.0 m s−1) based on data
from NOAA buoy 42040 (NOAA, 2010b), which would cause westerly
surface oil advection. Comparison with the overview camera image
sequence (Fig. 13E) shows that a largely contiguous slick line was
abruptly disrupted (Fig. 13D, G). Moreover, the disrupted slick was
associated with hazy patterns along an east–southeast/west–north-
west trend (also see Fig. 13A). We propose that these data are consis-
tent with a dispersant application along the trend of the hazy slick
structures shortly prior. In the visual image of the disrupted slick
area (Fig. 13D), the surface slick appears to remain only in two
small patches, ~200 m apart. In this area (~100-m northeast of the
green–red intersection in Fig. 13A), the lidar shows far more contigu-
ous structures, which could be explained if some of the oil was slight-
ly subsurface. Better understanding of the process underlying these
observations may be provided from CASI data.

3.2.3.2. Spaceborne lidar submerged oil detection of the DWH. CALIOP
also provides information on the presence of scatterers in the water
column's upper ~40 m (Fig. 16C). In surface waters near the DWH
site there was a significant increase in scatterers; however, other
areas (e.g., near 26.7°N—not shown) also exhibit strong subsurface
signals, too, although generally more spatially extensive. A strong
subsurface feature at ~28.7°N was visible in many post-spill CALIOP
data sets and was located near the DWH site. In some data sets, this
feature's backscatter strength was far more strongly “peaked” than
in Fig. 16F (e.g., 23 May and 8, 24 June 2010). This feature was not
found commonly in pre-spill data. Because there are many non-oil,
upper water-column scatterers, other data, such as AVIRIS, are re-
quired to relate CALIOP data positively to the DWH oil spill.

4. Oil spill impacts

4.1. Background: oil slick impact remote sensing

4.1.1. Vegetation and ecosystem impacts
Petroleum hydrocarbons contain many toxic compounds that cause

vegetation stress, changing leaf color and damaging the canopy. Longer-
term, germination disruption and vegetation mortality can shift the
ecosystem towards more chemically tolerant species, altering the dom-
inant species (Li et al., 2005). Imaging spectroscopy has sufficient spec-
tral resolution to characterize diagnostic absorption signatures (band
position, width, depth, and symmetry) allowing monitoring of soil
and vegetation changes. High spectral resolution is critical to enable dis-
crimination between vegetation species and other scene items such as
soil (Li et al., 2005).

Remote sensing provides the spatial coverage and sensitivity to
assess oil spill damage and ecosystem impacts over statistically signif-
icant areas, provides data for logistically or politically inaccessible
sites, and has been used for other disasters, but seldom for oil spills.
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Change detection and damage detection are two approaches to re-
mote sense ecosystem oil spill impacts.

In change detection, changes in remote sensing parameters, such
as surface reflectance, emittance, SAR backscatter, etc., identify
changes such as ecosystem shifts. For example, soil property changes
from the 1991 Kuwaiti oil spill for over 100 oil lakes were monitored
with Landsat TM land surface temperature (LST) data (Husain &
Amin, 1995). Areas with higher LST had either shallower or greater
oil contamination than areas with lower LST, and gradually decreased
over the 7-year study (Ud Din et al., 2008).

Plant stress can be identified by spectral shape changes including
shifts towards shorter wavelengths of the “red edge,” located near
700 nm, due to chlorophyll loss and less scattering between leaves
(Boochs et al., 1990). Although vegetation status often is assessed
by the normalized difference vegetation index, spectral changes in
the shape and location of the red edge are more robust (Li et al.,
2005; van der Meijde et al., 2009). Spectral changes in the red edge
have identified vegetation stress from petroleum hydrocarbons in
ground-based spectrometer data (van der Meijde et al., 2009) and
AVIRIS data for an oil spill in Jornada, NewMexico (Li et al., 2005). Be-
cause these variations can occur on sub-pixel scales, spectral mixture
analysis often is used to characterize the fraction of endmembers
(distinct components) in a pixel, such as dominant species (Roberts
et al., 1998). SAR monitoring of canopy structural changes also can
map plant stress effectively (Ramsey et al., 2011). Because other fac-
tors can cause vegetation stress, spatial information on vegetation oil-
ing can be important (Li et al., 2005). Combining remote sensing oil
hydrocarbon spectral detection (e.g., Fig. 4) with ecosystem stress re-
mote sensing can allow discrimination between stresses from oil and
other causes.

4.1.2. Fire and oil spills
Oil spill response can involve accidental fire (Fingas, 2011) such as

the 1979 Atlantic Sea Empress spill and the Ixtoc-1 blowout, deliberate
fire like the 1991 Gulf War oil spill, which involved ~625 deliberate
well fires (Husain & Amin, 1995), or in situ burning as part of the spill
response. In situ burns require a sufficiently thick oil slick for burning,
>1 mm if the oil is un-emulsified although heavier crude oils can
require a thicker layer (Fingas, 2011). Burning produces a semi-solid

tar-like layer or solid residues of ~5% the original volume (Fingas,
2011) that may sink after cooling (Buist, 2003). In situ burning is not
a panacea; for many spills, weathering, logistics, weather, or proximity
to populated areas restricts suitability. Yoshioka et al. (1999) concluded
that 10–20% of historical spills could have been candidates for in situ
burning. In situ burning advantages include very high and rapid oil
removal rates, up to 2000 m3 h−1, compared to other approaches, and
short-term air pollution risk. Remote sensing data can provide guidance
on where and when in situ burning is appropriate.

Burning oil is extremely hot, exceeding 700–800 °C, allowing mid-
infrared (MIR)/TIR satellite monitoring through fire detection algo-
rithms, which were used to monitor the uncontrolled 1991 Kuwait
oil well fires (Fig. 14A) (Husain & Amin, 1995) and platform gas
flaring (Elvidge et al., 2009). Well fires during the Iraqi withdrawal
from Kuwait created the largest (non-accidental) spill in history, re-
leasing an estimated 1–1.5 billion barrels of oil into more than 100
oil lakes covering 16 km2. Ultimately, these lakes contained 25–40
million barrels of oil. Oil fire identification and monitoring lasted
over ~8 months using Landsat TM TIR (10,400–12,500 nm) and
AVHRR MIR (3550–3950 nm) data, while AVHRR bands 3, 4, and 5
were used to map smoke plumes, which primarily were carbon soot
(see Section 4.2). Well fire thermal emissions showed many contin-
ued burning at full strength after more than a month (Husain &
Amin, 1995). MODIS also detected oil fires and plumes for the 2003
US–Iraq war (Fig. 14E).

4.1.3. Oil spill fire aerosols
Remote sensing can track smoke plumes from in situ burns and

well fires (Fig. 14). The Kuwait oil fires created extensive plumes
that were tracked by geostationary and polar orbiting satellites
(Fig. 14A) in support of air-sampling missions (Ferek et al., 1992).
For example, data documented the relatively narrow width of the
plumes (20–50 km) over hundreds of kilometers (Fig. 14B). Compar-
ison of plume drift with winds at different heights was used to infer
plume altitudes from satellite data (Limaye et al., 1992).

4.1.4. Oil slick volatiles
Volatile organic hydrocarbons from oil spills, present significant

health concerns and create pollutants like ozone and nitrous oxides

Fig. 13. A. Lidar-derived water column reflectance just below the sea surface from two flight lines. B. East–west cross-section of sea surface and water column backscatter. Green line
in A indicates cross section location. Bright red and orange regions show evidence associated with oil submerged to 3 to 4-m deep. Lidar return scale on B. C and D. Contrast en-
hanced overflight images of area of where submerged scatterers were detected. E. Overview images along flight line showing location of images in C, D, and G. F. Location of crossing
flightpaths in A indicated by arrow. G. Contrast enhanced image along flightpath.
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(NOx), which remote sensing can detect, providing important early
warnings. For the Kuwaiti oil fires, CO2 emissions were large, with
airborne measurements indicating 4.9×105tonnes CO2/day (Hobbs
& Radke, 1992), an amount that would be detectable by current satel-
lite instruments such as GOSAT. Because crude oil often contains sul-
fur, combustion can produce significant sulfur dioxide, SO2. For the
Kuwait oil fires, daily SO2 emissions were estimated at 20,000 to
22,500 t (Husain & Amin, 1995). Current spaceborne instruments
can observe some trace gases, for example; SCIAMACHY can detect
CO2 and SO2 (Burrows et al., 2011). Nevertheless, spill-related

pollution can be difficult to discriminate from other anthropogenic
pollution sources, particularly where the instrument footprint is
large (30×240 km footprint for SCIAMACHY).

Airborne remote sensing can play a role in disaster response by
detection of dangerous of toxic gas concentrations. A wide range
of gases can be identified from both MIR and TIR spectral signa-
tures using a spectral library matching approach (Kroutil et al.,
2011), although high spectral resolution data such as from Fourier
Transform InfraRed (FTIR) spectrometers are critical (Kroutil et al.,
2011).

Fig. 15. A. Mid infrared, 4-μm brightness temperature for a daytime MODIS Terra image acquired at ~1700 UTC 9 July 2010 (~100 km field of view). Flaring from the DWH well site
resulted in the elevated brightness temperatures in the center of the image. B. AVIRIS false color composite (RGB=2277, 1682, 724 nm) of DWH well site, acquired ~1510 UTC, 9
July 2010. Flaring is from two ships in the image center. C. Radiance spectra from AVIRIS images in B for an extremely saturated pixel from the center of the smaller flare, and in D for
a less saturated spectrum from an in situ fire. D. AVIRIS false color composite (same RGB bands as B) showing in situ burning acquired ~2235 UTC, 9 July 2010. E. Band ratio image
showing fire detection over water. F. AVIRIS radiance spectra from pixels in D.

Fig. 14. A. NOAA AVHRR satellite image of 1991 Kuwait oil fires (Husain and Amin 1995). B. Multispectral, false color image (RGB=3.74, 0.86, 0.63 μm), of 1991 Kuwait oil fires and
smoke on 12 Feb. 1991 (NOAA 1991). C. True color, Landsat 5 TM image of 1991 Kuwait oil fires and smoke on 23 Feb. 1991 (NASA 1991). D. MODIS image of pipeline rupture and
ignition and smoke plume (NASA 2004). E. MODIS false color image (RGB=3.96, 0.86, 0.645 μm) of 2003 S. Iraq oil fires and smoke on 12 Mar. 1991, (NOAA 2003). Red pixels show
positive fire detection. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Oil slick ecosystem impact remote sensing of the DWH

4.2.1. In situ burning and well flaring
In situ burning was used widely (411 burns) during the DWH spill,

consuming 4–5×107L of oil (Lehr et al., 2010). Elevated brightness
temperatures were evident in multiple MODIS scenes during the spill
(Fig. 15A). Warmer areas corresponded with MODIS visible indication
of thick oil where in situ burning would be more likely. However,
increased brightness temperatures stayed close to background bright-
ness temperatures and did not exceed the 37 °C threshold used for
MODIS daytime fire detection (Giglio et al., 2003). Only the pixel con-
taining flaring at the DWHwell site resulted in an obvious fire detection
based on elevated brightness temperature (Fig. 15A), in part because in
situ burning covered a very small fraction of a MODIS pixel.

The finer spatial resolution of airborne remote sensing provides
significant advantages for monitoring in situ burns, although sensor
saturation is much more likely. An extreme example of saturation is
in the 3.4-m AVIRIS data acquired over the DWH well site (Fig. 15B).

Flares cause saturation through much of AVIRIS's spectral range, in
some cases, saturating a majority of AVIRIS NIR bands (Fig. 15C).
Blackbody emission curves were fit to the unsaturated bands of flare
spectra, indicating temperatures potentially in excess of 1700 °C.
Smoke cover was a dominant feature in AVIRIS images acquired over
in situ fires. Smoke absorption greatly reduced emitted fire radiance
at wavelengths shorter than 1200 nm, butminimally attenuated emit-
ted radiance at longer wavelengths. Due to the low reflectance of solar
irradiance by water and smoke, fires were easily detectable using a
ratio of the 2280 and 450 nm bands (Fig. 15E). Fire increases the
2280-nm band radiance (Dennison & Roberts, 2009), thereby
increasing the band ratio above 0.2. A fire temperature retrieval algo-
rithm (Dennison & Matheson, 2011) fit to AVIRIS spectra acquired
over an in situ burn found effective temperatures of up to 1025 °C.

Fires from in situ DWH burns produced smoke plumes (Fig. 16D)
that were characterized by the CALIOP lidar on 10 July 2010. Records
show in situ burning on both 9 and 10 July (Lehr et al., 2010). On 10
July CALIOP recorded an aerosol layer rapidly rising to ~2 km altitude

Fig. 16. A–C. CALIPSO LIDAR, Radarsat 1 SAR, and AVIRIS data for (1854 UTC) 10 July; (2341 UTC) 9 July, 23:41; and (1530 UTC) 9 July, respectively. Size scale on B and C. B. Slick
outlines from SAR image for (0343 UTC) and (1158 UTC) 11 July from ASAR, and CosmoSkyMed2, respectively. D. Wind speed, u, and direction for three meteorology stations, 42040
and 42364 (on B), and Burl1. Time of CALIPSO, and Radarsat1 overpasses and AVIRIS flights indicated (C, S, and A, respectively). E. Normalized, mean SAR return for 18-pixel wide
swath along CALIPSO track, and second order polynomial fit (red) to non-slick pixels (red). F. CALIPSO LIDAR backscatter for 532 nm and 1064 nm, subsurface return, and modeled
sea surface backscatter for the Gulf of Mexico. Data key on panel.
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near the incident site that was consistent with smoke. The aerosol
layer gradually thickened towards land, leading to cloud formation
~10 km north of the shoreline (Fig. 16B).

This CALIPSO satellite overpass was during a period of persistent
calm to light (0–5 m s−1) WSW winds (Fig. 16D) and followed
AVIRIS flights on 9 July (1530 UTC) at the incident site that showed
a strong smoke plume spreading WNW (Fig. 16). Smoke advection
in the 9 July AVIRIS scene was most consistent with ESE winds at
the Burl1 weather station, located at East Pass, Louisiana (28.905°N,
89.43°W). Such light winds generally imply minimal surface slick ad-
vection, explaining the good relationship between a 10 July RadarSat1
SAR image and CALIPSO backscatter (Fig. 16F). SAR images from 11
July showed a similar shaped oil slick outline near the DWH incident
site, shifted ~10–15 km further south (see outlines in Fig. 16B, blue—
ASAR 0343 UTC 11 July, green—CosmosSkyMed2, 1158 UTC, 11 July).

4.2.2. Oil slick trace gases remote sensing of the DWH
The airborne ASPECT sensor suite includes a FTIR spectrometer for

trace gas identification based on MIR and TIR spectral signatures from
high spectral-resolution, along-track data. Using an extensive spectral
library, trace gases with column abundances in the ppm-meter range
can be identified through amultiple linear regression analysis through
a trained filter. ASPECT flies at a low altitude, 1000 m, decreasing the
effect of atmospheric temperature profiles on the signatures.

ASPECT data were obtained during 86 repeat DWH overflights that
included coverage of in situ burns and the spill site (Fig. 7H). TIR data
allowed positive detection of CO2, CO, and methanol while acetalde-
hyde was detected in the MIR (3660 nm). Other pollutants were
below system detection levels. The methanol feature was located per-
sistentlywithin 1.5 kmof thewell site andwas interpreted asmethanol
evaporation from rising fluids from thewell cap.Methanol was injected
into the well cap to reduce hydrate formation; however, significant oil,
gas, and methanol escaped the cap (Kroutil et al., 2011).

4.3. Vegetation and ecosystem impacts remote sensing of the DWH

Extensive AVIRIS data for the DWH spill (Fig. 7A) were collected,
including pre-oil inundation of the entire Gulf coast and are being
analyzed to identify previously stressed ecosystems and derive
dominant species in conjunction with ground reference observations
and to identify oiled vegetation based on its spectral signature
(Kokaly et al., 2010). These data are essential for interpreting post-
oil spill effects and can aid resource allocation and remediation efforts
by directing resources to the more resilient portions of the coastal
ecosystem. Analysis of HICO DWH data (Sonia Gallegos, Naval Re-
search Laboratory, Pers. Comm., 2011) in conjunction with MODIS
and Landsat data will aid in extending AVIRIS ecosystem data.

Radar backscatter from vegetation relates to the physical structure
and dielectric properties of the backscatter media, including canopy
structure. The UAVSAR results for oil-affected wetlands (Fig. 12B) in
Barataria Bay show both a sensitivity to oiled vegetation and the
potential for L-band radar's use in measuring oil on the soil or lower
canopy in areas where the upper canopy is not directly oiled (Jones
et al., 2011; Ramsey et al., 2011). For example, the UAVSAR radar
detected the signature of oiled vegetation on the windward (SE)
side of a Bay Jimmy Island but not on the leeward side (Fig. 12B,
inset), a result consistent with true color images of the area (Jones
et al., 2011). The oil-impacted shoreline exhibited higher cross-
polarization (HV) returns relative to the co-polarized (HH and VV)
returns (green band in Fig. 12B). This oiled shoreline signature was
observed throughout northeastern Barataria Bay (Ramsey et al.,
2011), where DWH oil impacts were among the highest in May and
June 2010. These results show that high resolution UAVSAR data
can complement AVIRIS hyperspectral data to improve detection of
impacted areas earlier and to characterize more fully the impacts.

5. Discussion

5.1. Oil slick remote sensing

In the DWH response, remote sensing aided efforts to address a
key question: How much oil was on the sea surface? AVIRIS demon-
strated a method to estimate quantitatively oil slick thickness, but
could only cover less than a third of the slick at best. Thus, total
slick estimates used MODIS data to scale the AVIRIS-derived oil quan-
tities (Clark et al., 2010). Unfortunately, synergistic AVIRIS and
MODIS data only were available on a few days due to cloud cover,
technical problems, etc. Both MODIS and SSAR data were useful for
response flight planning, particularly for finding oil slick locations
that were poorly predicted and for identifying oil movements
towards coastal ecosystems. However, the limited ability of satellite
data to discriminate thick oil slicks from thin oil sheens prevented
their playing a more direct role.

For the foreseeable future, remote sensing most likely will augment
rather than replace experienced airborne observers for several reasons.
First, each oil spill is unique, preventing easy application of remote sens-
ing without significant human interpretation, and second direct visual
airborne observations can provide insights and opportunistic observa-
tions of the oil spill over a wider range of conditions. Still, remote sens-
ing can address the shortage of experienced observers within the high
operational pace demanded by large-scale oil spills and also reduce ob-
server biases. Approaches such as NIR imaging spectroscopy that re-
quire significant computation face challenges to translation into Rapid
Response Products; however, computer improvements promise im-
proved integration into future robust oil spill response.

5.1.1. Passive airborne oil slick remote sensing
As noted, because an oil slick's visible appearance depends far

more strongly on the oil-to-water emulsion ratio and air content
than to thickness, hyperspectral visible reflectance approaches that
neglect emulsion levels are not robust. Moreover, passive visible ob-
servations are susceptible to false oil detection. In contrast, oil thick-
ness measurements using NIR C\H absorption features were found
robust from 0.1 to 20 mm. Critical to AVIRIS's success was its high sig-
nal to noise ratio and fine (10-nm) spectral resolution; sensors with
poorer performance would make the spectral library approach far
less likely to estimate the correct thickness. Currently, a spectral
library is needed for each oil, i.e., an oil sample is required. Further
study could enable derivation of the “spectral library” from known
or assumed oil properties.

TIR oil detection is far more susceptible to false positives than vis-
ible slick detection, sharing similar problems from sea state depen-
dence, cloud interference, and difficulty in discriminating from
other sea surface features, as well as sea-surface thermal variations
and temperature-profile dependent atmospheric correction. Current
airborne and satellite TIR only provide loose discrimination between
thin slicks and very thin oil sheens (Grierson, 1998). Thus, awaiting
daylight and passive reflective imagery is often more practical. One
advantage of airborne TIR is that clouds above the airplane are far
colder and have lower emissivity and thus, do not interfere with
airborne TIR remote sensing data under cloudy skies.

Although airborne TIR remote sensing has focused on oil identifi-
cation from thermal signatures, hyperspectral TIR data has the poten-
tial to derive quantitative oil slick thickness using an approach similar
to that used for NIR imaging spectroscopic data. Furthermore, lab
spectra suggest that some of these features can discriminate between
oil types (Byfield, 1998). However, as with NIR spectral features,
TIR oil emissivity depends on oil–water emulsions (Salisbury et al.,
1993). Significant work is needed to address complexities from atmo-
spheric corrections, which must consider relevant emissions and
absorptions for the thermal profile.
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Usually, hyperspectral TIR data are analyzed with an in-scene
atmospheric compensation algorithm that uses only the data itself
without recourse to ancillary atmospheric data or models (Young
et al., 2002). Data then are searched for spectral features of interest
using generalized least-squares regression on a spectral covariance
matrix derived from the data.

An alternate TIR approachwith the potential to indicate oil thickness
is Apparent Thermal Inertia, ATI. If the oil and seawater properties (the
latter is sea state dependent) are known, then the sea surface's thermal
lag relates in some predictable manner to oil slick thickness (Asanuma
et al., 1986). However, ATI derivation likely is complicated by the oil
slick's changing properties, including the oil-to-water emulsion ratio,
which affects slick emissivity (Salisbury et al., 1993).

5.1.2. Passive satellite oil slick remote sensing
Current passive satellite approaches suffer from false identifica-

tion, infrequent overpasses, coarse spatial resolution, cloudiness sen-
sitivity, and limited ability to distinguish between biogenic sheens, oil
sheens, and thick oil slicks and that are thousands of times thicker.
Multiple satellites now allow for repeat data on one to several day
time-scales (clouds permitting). However, significant oil advection
can occur during this revisit time, reducing satellite data utility,
given the need for timely resource allocation. Further, analysis ap-
proaches that assume all spectral features are either sea surface or
oil, e.g., Chen and Chang (2010) are incorrect, leading to false positives
and potential resource misallocation and thus, are not useful for spill
response. As a result, satellite data largely plays a support role, guiding
airborne and surface observers.

The success of AVIRIS quantitative oil spill thickness mapping
suggests that the proposed Hyperspectral InfraRed Imager (HyspIRI)
satellite mission could similarly aid oil spill response. HyspIRI is a
Tier 2, NRC earth decadal survey satellite that will provide 60-m
data in 210 channels from 380 to 2500 nm and 8 channels from 4
to 12 μm with 145 and 600-km swaths, respectively, with a planned
3-day revisit utilizing sensor pointing (HyspIRI, 2011).

5.1.3. Active satellite and airborne oil slick remote sensing
The most common active oil spill remote sensing approach is all

weather SSAR. Marine slicks are detectable for wind speeds from
2–3 to 10 m s−1 for incidence angle range from 20° to 45°, with an
optimum wind speed range from 3.5 to 7.0 m s−1 (Garcia-Pineda et
al., 2009). SSAR's numerous false positives are a drawback and it gen-
erally only provides a binary indication of slick extent, providing little
useful response guidance. Such data are of minimal use for improving
oil spill models as they largely represent advection of thin sheen
areas, rather than the thick oil that contains most of the volume
(Hollinger & Mennella, 1973). In a spill response, the primary remote
sensing objective is not to find sheens, but to identify thick oil, particu-
larly as it approaches coastal ecosystems, and also outside the spatial
envelope where oil was believed to exist. SSAR primarily supported
these goals by guiding surveillance flights on multiple cloudy days
when MODIS data were unavailable.

Due to its higher sensitivity than SSAR, the UAVSAR data showed a
relationship to oil slick characteristics such as thickness, emulsifica-
tion, and coverage. The underlying mechanism is Bragg scattering
from a layer with the dielectric properties of a mixture of oil and
water (Minchew et al., 2012). Observed radar backscatter variations
within the slick relate to varying sea-surface dielectric characteristics
due to different oil slick compositions, emulsion levels, and to vari-
able oil modification of the short-wavelength ocean wave field.
UAVSAR data showed that a low noise, fully polarimetric radar instru-
ment can differentiate between different oil slick properties to a
greater level than earlier airborne SAR or SSAR. These results support
controlled studies to separate the effects of thickness, surface cover-
age, and oil properties on the radar backscatter, which could provide
an oil remote sensing tool for cloudy and night conditions.

LIF allows discrimination between oil and non-oil slicks, preventing
false positives, but, in a planned oil release study, LIF underestimated
total oil by factors of 2 to 5 (Lennon et al., 2006). Several factors could
have confounded the analysis including unresolved heterogeneity,
atmospheric corrections, and sea state and upper ocean optics, and
chemical weathering changes. Although, LIF approaches largely are
appropriate to very thin sheens, the majority of the oil lies in the thick
oil slicks. Thus, LIF poorly matched DWH needs.

Airborne bathymetric lidar and spaceborne lidar both demonstrated
an exciting new capability to remote sense near-surface, submerged oil.
Development of an operational lidar technology will provide much
needed field data to understand oil spill processes better related to oil
dispersion and shallow sub-surface oil.

5.2. Applications of quantitative oil slick thickness mapping

Oil remote sensing can improve our understanding of natural
marine hydrocarbon seepage (Washburn et al., 2005), assess vessel
operations and spill inputs, and improve oil spill science (Adamo
et al., 2009). Quantitative oil thickness mapping will allow true mass
transport determination, rather than slick pattern advection or sheen
advection, improving oil spill advection and emulsification models.
Cheng et al. (2010), showed the need for modeling improvements
from repeat SSAR data despite a lack of SSAR thickness information.

5.3. Real world application of remote sensing technology to oil slicks

Clearly the appropriate time for developing new oil spill remote
sensing approaches is not during the response, when the main goal
is mitigating damage. During a response, there is a strong bias to allo-
cate response resources based on proven and widely accepted, i.e.,
defensible, technologies because time is unavailable to evaluate a
technology's accuracy or applicability. The transition to operational
readiness from a lab or field demonstrated technology, much less
from a theoretical technology, is significant. Many steps are required
to validate technology in the appropriate environment, including inte-
gration with critical hardware and analysis software before reaching
operational technology readiness (Ramirez-Marquez & Sauser, 2009).

Technologies with proven and accessible Rapid Response Products,
like MODIS, are far more likely to contribute to spill response. Data
fusion of ancillary data such asmeteorology can be highly helpful; how-
ever, data coordination logistics during a spill are challenging.

Oil spills provide an opportunity to field test new approaches under
real world conditions (Clark et al., 2010), as does the post-spill period
for monitoring technologies (Ud Din et al., 2008). Although oil spills
occur frequently, they are unpredictable and highly challenging for
data collection mobilization, particularly for small oil spills.

Large spills present a more feasible target; however, careful cali-
bration/validation studies may be impossible during oil spills. A key
step in most remote sensing applications is field validation, which
generally requires a planned release. Although large test facilities
can play a role, they cannot recreate many real-world characteristics
of a marine oil spill from a remote sensing perspective. In this regard,
natural marine hydrocarbon seeps provide real world oil slicks for
studying oil slick processes (Leifer et al., 2006) without release
permits.

In the DWH response, field-testing of the NIR approach was ap-
proved because of its prior success with oil slicks in AVIRIS Katrina
data (Swayze et al., 2007), physics-based mechanism, and lab studies.
Furthermore, spatial patterns in the derived oil-thickness maps
(Fig. 9) were consistent with oil slick processes; key to confidence in
the approach. Symmetric oil thickness (e.g., Fig. 8) would have necessi-
tated more detailed validation data, as for the Ocean Imaging system in
the Coal Oil Point seepfield (Svejkovsky et al., 2009). Thus, evaluation of
a remote sensing approachmust demonstrate consistency with oil slick
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processes (Fig. 1) in the marine environment under real world condi-
tions (water vapor, waves, winds, platform vibration, etc.).

Where multiple sensors provided overlapping data, significant
benefit was gained in interpretation, such as AVIRIS and CALIPSO, or
AVIRIS and MODIS. However, other attempted synergistic data collec-
tions, such as UAVSAR and AVIRIS were thwarted by logistics. Thus,
best oil spill response would involve an operational readiness for
multiple sensor integration such that logistical details are not bottle-
necks, of which ASPECT is an example.

Some technologies played a minor role in the DWH spill response
because they lacked a reliable track record, a well-understood under-
lying physical mechanism, a Rapid Response Product, significant con-
tribution beyond other approaches, or largely were mismatched with
primary response needs of thick oil mapping. The extensive DWH re-
mote sensing data should be analyzed to enable improvement of new
and existing remote sensing technologies.

6. Conclusions

New remote sensing technologies and techniques were developed
during the first decade of the 21st century and were used during the
Deepwater Horizon spill. Actively supporting the response were the
MODIS andMERIS visible satellite sensors, and to a lesser extent satellite
SAR. Airborne remote sensing platforms also were important including
multispectral expert systems, hyperspectral airborne sensors, ultrasen-
sitive L-band airborne radar, and airborne thermal infrared spectrome-
ters. Particularly important was the development of the AVIRIS
hyperspectral approach to quantify oil thickness, a previously unobtain-
able achievement with revolutionary potential for oil spill science.

Technology incorporation into oil spill response requires strong
confidence in robustness and reliability. Rapid Response Products,
such as the Ocean Imaging expert system and MODIS satellite data
were critical for the timely response needs to support decision-
making. Promising technologies without a rapid response capability
largely were not useful during the spill, although important data
clearly were collected for post-spill interpretation.

Oil spills present rare field test opportunities for new technologies,
in part, because planned releases are difficult to permit and conse-
quently are rare. The need for increased and long-term oil spill science
research clearly was demonstrated during the Deepwater Horizon
spill—the appropriate time for developing new oil spill remote sensing
technology is not during a spill response. A paradigm shift in oil spill
research is critical to move technologies from the research and theo-
retical levels to operational readiness prior to the next large oil spill.
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