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Successful discrimination of a variety of natural and urban landscape components has been achieved with
remote sensing data using multiple endmember spectral mixture analysis (MESMA). MESMA is a spectral
matching algorithm that addresses spectral variability by allowing multiple reference spectra (i.e.,
endmembers) to represent each material class. However, materials that have a high-degree of spectral
similarity between classes, such as similar plant-types or closely related plant species, and large variations in
albedo present an ongoing challenge for accurate class discrimination with imaging spectrometry. Continuum
removal (CR) analysis may improve class separability by emphasizing individual absorption features across a
normalized spectrum. The spectral and structural characteristics common tomost Eucalyptus trees make them
notoriously difficult to discriminate in closed-canopy forests with imaging spectrometry. We evaluated
whether CR applied to hyperspectral remote sensing data improved the performance of MESMA in classifying
and mapping nine eucalypt tree species according to the two major Eucalyptus subgenera, Eucalyptus
(common name “monocalypt”) and Symphyomyrtus (common name “symphyomyrtle”). Mixed-canopies
comprised of monocalypts and symphyomyrtles are common in Australia, although their spatial distribution
is not random. The ability to map these functional types on a landscape-scale could provide important
information about ecosystem processes, landscape disturbance history and wildlife habitat. We created a
spectral library of 229 pixels from 37 symphyomyrtle tree canopies and 406 pixels from 62 monocalypt tree
canopies selected from HyMap imagery and verified with field data. Based on these reference data, we
achieved overall classification accuracies at the subgenera-level of 75% (Kappa 0.48) for non-CR spectra and
83% (Kappa 0.63) for the CR spectra. We found that continuum-removal improved the classification
performance of most endmember-models, although a larger portion of pixels remained unmodeled with the
CR spectra (2%) compared to the non-CR spectra (0%). We utilized a new method for model optimization and
created maps of monocalypt and symphyomyrtle distribution in our study area based on our best performing
endmember-models. Our vegetation maps were largely consistent with our expectations of subgenera
distribution based on our knowledge of the region.
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1. Introduction

Our ability to understand, monitor and conserve native landscapes
is limited by our lack of knowledge about the composition, structure
and disturbance history of ecological communities. Recent advances
in airborne and spaceborne hyperspectral remote sensing combined
with improved algorithms for spectral discrimination are allowing
researchers to map vegetation communities with increasing accuracy
(for reviews see, Majeke et al., 2008; Turner et al., 2003; Xie et al.,
2008). However, vegetation types that have a high degree of spectral
and structural similarity or high intra-species variability present an
ongoing challenge for accurate classification andmapping (Clark et al.,
2005; Cochrane, 2000; Goodwin et al., 2005; Hestir et al., 2008).
Variations in landscape topography, canopy structure and viewing
geometry also can reduce the accuracies of classification techniques
and spectral matching algorithms that are influenced by albedo
(Asner et al., 2000; Dennison et al., 2004; Wu, 2004).

In this study,we investigatedwhethermultiple endmember spectral
mixture analysis (MESMA, Roberts et al., 1998) could be used to
discriminate Eucalyptus trees from the twomajor subgenera, Eucalyptus
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(common name “monocalypt”) and Symphyomyrtus (common name
“symphyomyrtle”), using hyperspectral remote sensing data collected
over a forest in southeastern Australia. These two subgenera encompass
the majority of eucalypt tree species and represent an important
functional type based on general divisions among the physiology (e.g.
concentrations of foliar biochemicals) and ecology (e.g. response to fire
and salinity) of trees fromthese twogroups (Noble, 1989).Despite these
differences, most species within these two subgenera still possess the
unfavorable structural characteristics and spectral variability that can
frustrate attempts at discrimination on a canopy scale using imaging
spectroscopy (Turner et al., 1998). The MESMA approach incorporates
spectral variability within material classes, and therefore may be useful
for this application.

We further investigatedwhether a spectral normalization technique,
continuum removal (CR), could improve the performance of MESMA,
given the variability in reflectance arising from the open-canopy
architecture common to eucalypt trees.

We hypothesized that CR-spectra were likely to improve class
discrimination by reducing brightness differences and accentuating
subtle absorption features. We also tested the hypothesis that those
species thatwere less confidentlymodeledhadparticular physiognomic
characteristics common to both subgenera. Using our most successful
models, we generated maps of the distribution of monocalypt and
symphyomyrtle trees in our study area. This research is part of a larger
study investigating the use of hyperspectral remote sensing to map
habitat for arboreal marsupial folivores.

2. Background

2.1. Spectral mixture analysis

Spectralmixture analysis (SMA) is an analysis technique thatmodels a
mixed spectrum as the combination of two ormore “pure” spectra, called
endmembers (Adams et al., 1986; Gillespie, 1992; Roberts et al., 1993;
Settle & Drake, 1993). Endmembers can be derived from the laboratory,
field (Roberts et al., 1993), imagery (Dennison & Roberts, 2003a) or even
radiative transfer (Painter et al., 1998; Sonnentag et al., 2007). Although
multiple near-infrared (NIR) scattering results in non-linear mixing (e.g.,
Borel & Gerstl, 1994; Roberts et al., 1993; Somers et al., 2009a,b), most
often a linearmodel is assumed. Typical endmembers includeone to three
bright spectra paired with a dark “shade” or photometric shade
endmember to control for brightness. Using a linear mixing model, a
mixed spectrum ismodeled as the sumof the reflectance of eachmaterial
within a pixel multiplied by its spectral fraction (Eq. 1):

ρ′λ= ∑
N

i=1
fi�ρiλ+ελ ð1Þ

where ρ′λ is the reflectance of a modeled spectrum, ρiλ is the
reflectance for endmember i, fi is the fraction contributed by the
endmember, N is the number of endmembers, and ελ is the residual
term—for a specific wavelength λ. Fractional abundance can be
estimated using a variety of approaches, including least squares
(Shimabukuro & Smith, 1991), modified Gramm–Schmidt orthogonal
decomposition (Adams et al., 1993) or singular value decomposition
(Boardman et al., 1995) as three common approaches. Model fit is
often assessed using a root mean square error (RMSE) error metric:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

λ=1
ελð Þ2

M

vuuut
ð2Þ

where M is the number of bands (Dennison et al., 2004).
Most often, SMA is implemented using a fixed-set of endmembers

applied to an entire scene. While this approach has proven to be
effective for mapping fractional cover, it fails to account for within-class
spectral variability or spatial variability in the spectral dimensionality of
the data (Roberts et al., 1998; Sabol et al., 1992; Song, 2005). In an
attempt to overcome this limitation, various techniques to address
endmember variability and similarity have been developed (e.g., Asner
& Lobell, 2000; Bateson et al., 2000; Roberts et al., 1998; Somers et al.,
2009a,b). For example, Bateson et al. (2000) incorporated endmember
variability into SMA by representing each endmember as a bundle of
spectra constructed from the data. Somers et al. (2009a,b) presented an
alternative to SMA, Integrated Spectral Unmixing (InSU), that combined
reflectance and derivative reflectance features using an automated
waveband selection protocol. This method reduced the variability
within endmember classes by focusing on a subset of wavelengths.
Similarly, Asner and Lobell (2000)used a spectralunmixingalgorithm in
combinationwithwaveband selection and a normalization technique to
reduce endmember variability.

MESMA is an extension of SMA that addresses spectral and spatial
variability within material classes by allowing the number and type of
endmembers to vary on a per pixel basis (Roberts et al., 1998). Rather
than usingwaveband selection or spectral transformation techniques to
reduce endmember variability, MESMA enables the user to select
multiple endmembers to represent each material class. Spectral
matching can be accomplished with the two-endmember case of
MESMA, which is comprised of one class endmember coupled with a
shade endmember (Dennison et al., 2007; Roberts et al., 1998). The
MESMA approach has been widely used for mapping minerals (Bedini
et al., 2009; Li&Mustard, 2003), snowcover andgrain size (Painter et al.,
1998), fire properties (Dennison et al., 2006; Eckmann et al., 2008),
continental-scale land-cover type (Ballantine et al., 2005), urban
environments (Powell et al., 2007; Rashed, 2008) and vegetation type
and biophysical properties (Dennison & Roberts, 2003a; Roberts et al.,
1998; Sonnentag et al., 2007). Recently, techniques to improve MESMA
endmember selection (Dennison et al., 2004; Dennison & Roberts,
2003b; Dennison et al., 2007) and an open-source software application
(Roberts et al., 2007) have been developed to facilitate its use. However,
a limitation of MESMA over spectral matching algorithms that use a
similarity metric derived from spectral angles rather than overall
reflectance (i.e. Spectral Angle Mapper, SAM, Kruse et al., 1993), is that
classification accuracy can be strongly influencedbyvariations in albedo
(Dennison et al., 2004).

2.2. Continuum removal

Continuum removal (CR) is a spectral processing technique that
normalizes brightness while emphasizing absorption features (Clark
& Roush, 1984). A convex hull, or continuum, is fitted over a spectrum
to connect the points of maximum reflectance with a straight line
(Fig. 1). The continuum can be applied to selected segments or across
the entire spectrum. The peak reflectance points where the actual
spectrummeets the continuum line are standardized to a value of one
and this value decreases towards zero as the distance between the
original spectrum and continuum line increases. The continuum is
removed by dividing reflectance value (ρ) of a specific wavelength (λ)
by the reflectance value of the continuum (ρcλ) at the corresponding
wavelength (Eq. 3):

CR=
ρλ

ρcλ
: ð3Þ

In remotely sensed data, the effects of field of view and photon
scattering can alter radiance reaching the sensor (Richards & Jia,
2006). Subtle absorption features in reflectance data are enhanced in
the normalization process of CR and their depth and position are not
influenced by variations in albedo (Schmidt & Skidmore, 2003).

CR is most often used in spectral data analysis to identify the
geological composition of materials and to quantify vegetation
biochemistry (Huang et al., 2004; Kruse & Lefkoff, 1993; Mutanga &



Fig. 1. A continuum line fit over a Eucalyptus leaf reflectance spectrum (upper) and the
resulting continuum-removed spectrum (lower).
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Skidmore, 2004; van der Meer, 2004). Several other spectral
transformation methods such as derivative analysis and wavelet
transformation are also commonly used to facilitate these analyses
(e.g., Huang et al., 2004; Leung et al., 1998). Derivative analysis and
wavelet transformation involve spectral smoothing and feature
reduction algorithms that can eliminate unnecessary signal compo-
nents and emphasize subtle absorption features. They are sometimes
combined with CR to take advantage of its normalization technique,
which is not a feature of these othermethods (e.g., Huang et al., 2004).
Derivative analysis and wavelet transformation can be useful for class
discrimination (e.g., Castro-Esau et al., 2004; Li, 2004; Somers et al.,
2009a,b; Zhang et al., 2004). However, unlike CR, they introduce the
risk of discarding important spectral features.

The application of CR for mapping vegetation types is less common
than its use in quantifying vegetation biochemistry from spectral
data; however, a few studies have demonstrated its potential value. A
normalized spectral mixture analysis (NSMA) developed by Wu
(2004), improved the performance of a vegetation–impervious
surface–soil (V–I–S) model. Likewise, normalized reflectance values
were helpful in differentiating the spectral features of lichen and rock
in mixed pixel spectra (Zhang et al., 2005) and vegetation types in a
coastal wetland (Schmidt & Skidmore, 2003). Spectral feature fitting
(SFF) is a spectral matching algorithm that uses continuum-removed
spectra and has been applied with success to mapping vegetation
species, functional types and condition (Kokaly et al., 2003, 2007).
Hestir et al. (2008) used CR to isolate water absorption features from
spectra and this enabled them to map an invasive, succulent plant
species with SMA. Filippi and Jensen (2007) were less successful in
using CR in conjunction with artificial neural networks to classify
coastal vegetation. However, their method did not rely on end-
member selection. To our knowledge, the application of continuum-
removed spectra to MESMA has never been investigated for
vegetation mapping.

2.3. Eucalyptus forests

Eucalyptus (L'Herit) is a genus of broad-leaved, evergreen trees
that dominate most forest and woodland landscapes in Australia
(Williams & Woinarski, 1997). Several eucalypt species are also
important exotic plantation trees and invasive species in the
Americas, Africa and Asia (Davidson, 1993; Rouget et al., 2002).
Unfavorable structural characteristics, such as pendulous leaves and
open, overlapping canopies combined with a high degree of spectral
variability within species and similarity between species make
Eucalyptus tree species notoriously difficult to discriminate using
remote sensing data (Coops et al., 2004; Goodwin et al., 2005). A
recent attempt to map eucalypt species with hyperspectral remote
sensing data was largely successful but it required the use of multiple
sensors (the Compact Airborne Spectrographic Imaginer (CASI) and
Hyperspectral Mapper (HyMap)) and an open woodland structure to
facilitate crown delineation (Lucas et al., 2008). Youngentob et al.
(2008) suggested that mapping Eucalyptus subgenera could provide
critical information about landscape scale processes and wildlife
habitat and that this may be more feasible and affordable with
current, single-sensor technology.

There are over 700 species of Eucalyptus trees. Approximately 440
of those belong to the subgenus Symphyomyrtus and 140 to Eucalyptus
(Noble, 1989). Monocalypts and symphyomyrtles occur throughout
most of the range of environments tolerated by the Eucalyptus genus
as a whole, although tree species from specific subgenera are
characteristic of particular ecosystem types and elevations (Austin
et al., 1983; Davidson & Reid, 1980; Hughes et al., 1996). Mixed stands
comprised of these two groups are also common in native forests
(Pryor, 1959), but their spatial distributions are not random (Austin et
al., 1983) and they tend to deviate from one another in their early
growth characteristics (Davidson & Reid, 1980), response to fire (Duff
et al., 1983; Noble, 1984), response to salinity (Marcar, 1989; Noble,
1989), concentrations of foliar chemicals (Eschler et al., 2000;
Gleadow et al., 2008; Hawkins & Polglase, 2000; Hill et al., 2001)
and susceptibility to predation from insect and mammalian folivores
(Moore et al., 2004; Stone et al., 1998). A Bhattacharyya distance (B-
dis) calculation applied to hyperspectral data collected from the main
canopy species in our study area suggested that the spectral
properties of those monocalypts and symphyomyrtles are sufficiently
distinct to enable identification and mapping with data from a high
resolution, hyperspectral sensor that includes NIR and shortwave
infrared (SWIR) wavelengths (Youngentob et al., 2008). The bands
identified in the B-dis approach combinedwith amaximum likelihood
classification was highly successful for discriminating eucalypt
subgenera based on sunlit pixels collected from HyMap reflectance
data (testing Kappa 0.92) (Youngentob et al., 2008). However, even
when additional “shade” classes comprised of lower reflectance pixels
for each subgenera were included, this method produced a map that
did not match expectations of field distributions based on our
knowledge of the region (Youngentob et al. unpublished).

3. Study area

Our research site is located in the Tumut region of southern New
South Wales, Australia (midpoint=148°30′E, 35°10′S) (Fig. 2). Over
50,000 ha of native Eucalyptus forests were cleared from this region
between 1930 and 1985 to establish an exotic pine (Pinus radiata)
plantation. This research focused on the remaining native eucalypt
forest blocks and isolated remnant forests and paddock trees in and
around Buccleuch, Bungongo and Bondo State Forests and Brindabella
National Park. The native forest range from dry schlerophyll with
characteristic apple box (Eucalyptus bridgesiana) and red stringy bark
(E. macrorhynca) interspersed with broad-leaved peppermint (E. dives)
and manna gum (E. viminalis) to the more prevalent tall-open and
montane forest where manna gum, mountain gum (E. dalrympleana)
and narrow-leaved peppermint (E. radiata) thrive in the cooler, wetter
environment. Snow gum (E. pauciflora) is present and increases in
abundance at higher elevations. Mountain swamp gum (E. camphora)
and black sallee (E. stellulata) are common in low-lying, marshy areas.



Fig. 2. A Systeme Observation de la Terra (SPOT) image of a portion of the study site in the Tumut region of New South Wales, Australia. The lighter rectangle outlines the
approximate area encompassed by the five northern HyMap flight-lines. The darkest portions of the image are Pinus radiata forest and these are surrounded by blocks of native
Eucalyptus forest (medium gray) and grazed paddocks (light gray).
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Brown-barrel (E. fastigata) and alpine ash (E. delegatensis) are present
but relatively uncommon in our study area. The topographyof the region
features low to moderate relief undulating hills ranging from 600 to
1200 m above sea level and becomes mountainous to the east
(Brindabella Ranges) and south (Snowy Mountains). The underlying
geology is comprised of granite plutons interbedded with sandstone and
shale, which formed during the middle Paleozoic as part of a larger
geologic subdivisionknownas the Lachlan FoldBelt. Annual temperatures
average 15.3 °C–29.3 °C in summer to 3.0 °C–11.5 °C inwinter (meanmin
and mean max; Burrinjuck Climatic Station). Precipitation is distributed
evenlyacross theyear and typically ranges from785 to1385mmannually
(BIOCLIM, Nix, 1986).

4. Methods

Due to the large number of protocols in our methodology, we have
provided a schematic diagram to briefly outline each step (Fig. 3). The
steps are explained in detail in the following sub-sections.

4.1. Hyperspectral data acquisition and preprocessing

We collected HyMap data onMarch 8th, 2007 (HyVista Corporation
Pty Ltd). HyMap is an airborne imaging spectrometer that captures 126
wavebands over a spectral range of 446.1 nm to 2477.8 nm at
bandwidth intervals of 10 nm in the visible (VIS) and NIR wavelengths
and 15–20 nm in the SWIR (Cocks et al., 1998). At 1500 m flying
altitude, the ground instantaneous field of view was approximately
3.5 mwith a swathwidth of 1.8 km (512 pixels). Imagerywas collected
between noon and 3 pm under clear-sky conditions. Five adjacent,
NE–SW flight-lines ranging from 15 to 20 km in length were flown in
the north of the study area and six flight-lines in the south. This study
focuses on the region within the five northern flight-lines. The HyMap
data were provided in a geo-corrected format based on positional data
(UTM-WGS-84, Zone 55 S) and atmospherically corrected to reflectance
using HyCorr, a version of ATREM for HyMap (CSES, 1992; Gao & Goetz,
1990). This method uses a radiative transfer model to calibrate to
absolute reflectance based on the atmospheric water absorption
features at 940 nm and 1140 nm. The apparent reflectance data were
further corrected for residual noise using Empirical Flat Field Optimal
Reflectance Transformation (EFFORT, Boardman, 1998). One corrupted
waveband at 446.1 nm and two additional bands (1389.1 nm and
1403.9 nm) located in a spectral region that is strongly influenced by
water vapor were subsequently removed, resulting in 123 bands.

We performed our image analyses using ENVI software (Research
Systems, Inc., Boulder, Colorado). We used a normalized difference
vegetation index (NDVI)-based mask to remove pixels dominated by
paddock fields and other grasses (non-photosynthetic vegetation in
late summer) as well as soil, roads and quarries (Xiao et al., 2004). We
easily identified the pine compartments in a black and white image
(Fig. 2) because they appeared darker than the native eucalypt forest.
We excised the pine compartments from the image with a “regions of
interest” (ROI)-based mask. We also found that P. radiata trees had
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Fig. 3. A schematic diagram showing the sequence of steps in our classification methodology.

Table 1
The number of individual paddock trees (listed by species) from the twomajor eucalypt
subgenera Eucalyptus (common name “monocalypt”) and Symphyomyrtus (common
name “symphyomyrtle”) and the corresponding number of HyMap pixels selected for
the endmember spectral library.

Vegetation class Individual trees (n) Selected pixels (n)

Eucalyptus bridgesiana 11 38
Eucalyptus camphora 6 19
Eucalyptus dalrympleana 7 51
Eucalyptus viminalis 13 71
Shade/noise 50
Symphyomyrtle (total) 37 229
Eucalyptus dives 2 8
Eucalyptus macrorhyncha 2 9
Eucalyptus pauciflora 3 18
Eucalyptus radiata 52 299
Eucalyptus stellulata 3 18
Shade/noise 54
Monocalypt (total) 62 406
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higher NDVI values than eucalypt trees, possibly owing to denser
canopies with higher, overall nitrogen content (Myers et al., 1996;
Poggiani, 1985). We masked NDVI values greater than 0.93 to remove
pinewildlings from thenative eucalypt forest. The remainingunmasked
portion of the image was comprised primarily of eucalypt forest pixels
and isolated eucalypt paddock tree crowns. Continuum-removal
analysis was applied to the whole spectrum of every pixel in the
masked imagery in order to create a separate “normalized” reflectance
image from the hyperspectral data.

4.2. Identification of individual Eucalyptus trees

We located isolated eucalypt paddock trees (n=99) in the field that
we could match to tree crowns in the HyMap imagery. These trees were
then identified to the subgeneraandspecies level (Table1).Weattempted
to obtain at least six representatives from each of the ninemost common
forest tree species (listed in Section 3). However, E. pauciflora, E. dives, E.
macrorhyncha and E. stellulata were relatively rare as isolated trees or
homogenous tree clusters in the paddocks and this resulted in a smaller
number of trees identified. Those species and E. bridgesiana (common in
the paddocks) were also less abundant in the contiguous forest than E.
viminalis, E. dalrympleana and E. radiata. A large number of E. radiatawere
identified to insure that a suitable quantity of spectra could be collected to
represent the Eucalyptus subgenera, since this species was the most
abundant monocalypt in the contiguous forest and the paddocks.

4.3. Tree pixel selection for spectral library

To identify relatively pure eucalypt tree-canopy spectra from the
imagery, we first displayed the masked HyMap reflectance and
continuum-removed images in three wavelengths from the SWIR
(1.65 nm), NIR (0.84 nm) and VIS red-edge (0.67 nm) regions of the
electromagnetic spectrum. Viewed in these wavelengths, green pixels
indicate high concentrations of chlorophyll containing vegetation (e.g.
canopy leaves) and purple, blue and white pixels are either not as
photosynthetically active (e.g. bark and branches) or highly shaded
(Fig. 4). We selected individual pixels (n=531) from the previously
identified eucalypt paddock trees that had high NIR values relative to
SWIR and VIS values in both the continuum-removed and the reflectance
image. Separate librarieswere created for the reflectance and continuum-
removed spectra.However, the spectra in the continuum-removed library
had the same pixel locations in the imagery as the spectra in the
reflectance library. The selected pixels were assigned to the appropriate
eucalypt species-level and subgenera-level classes based on a priori
knowledge fromfieldverification (Table1).Wealso selected shaded,non-
green pixels (n=104) from the identified paddock trees. These pixels
were typically located on the heavily shaded side of the canopy relative to
the viewing geometry of the sensor and the angle of the sun. The shade
spectra were often “noisier” due to lower reflected radiance and were
assigned to a separate species-level class, “shade/noise”, within the
appropriate subgenera-level class. We did not select any of the darkest
pixels (dark blue or black in reflectance image). Duplicate pixels in the
imagery can be created as an artifact of the geo-referencing process so
spectra that had identical reflectance values as a previously selected
spectrum from the same tree were not included in the library.
4.4. Endmember selection for models

We used ViperTools (Roberts et al., 2007) for endmember-model
selection, MESMA and class-mapping. Endmember selection is an
important aspect of MESMA that should take into consideration the
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Fig. 4. Spectral profiles for a pixel collected from a reflectance (upper) and continuum-
removed (lower) HyMap image of an isolated eucalypt tree crown.
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spectral diversity of the library and computational efficiency, since a
spectral library can be comprised of hundreds of spectra for each
material class (Dennison et al., 2004; Dennison & Roberts, 2003b). We
used two average spectral similarity metrics, endmember average
root mean square error (EAR; Dennison & Roberts, 2003a) and
minimum average spectral angle (MASA; Dennison et al., 2004), to
select endmembers from the spectral library that were most
representative of their species-level vegetation class. Both of these
methods model the spectra within a vegetation class testing each
spectrum as an endmember. The spectrum with the lowest average
error metric is the endmember that best models the other spectra in
its class, on average (Dennison & Roberts, 2003a).

The error metric for EAR is RMSE so that:

EARi=
∑
n

j=1
RMSEi;j

n−1
ð4Þ

where i is an endmember, j is the modeled spectrum, and n is the
number of modeled spectra. The “−1” corrects for the zero error
resulting from an endmember modeling itself.

MASA is similar to EAR, but uses a spectral angle (θ) as the error
metric. Spectral angle is calculated as:

θ= cos−1
∑
M

λ=1
ρλρ′λ

LρLρ′

0
BBB@

1
CCCA ð5Þ

where Lρ is the length of the endmember vector and Lρ′ is the length of
the modeled spectrum vector calculated as:

Lρ′=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

λ=1
ρ2
λ

s
: ð6Þ
MASA is then calculated as:

MASAi=
∑
n

j=1
θi;j

n−1
: ð7Þ

As EAR is based on RMSE from a linear spectral mixing model, it is
influenced by albedo. We applied minimum (0%) and maximum
(100%) shade-fraction constraints to decrease the likelihood that very
light or very dark spectra would be identified as highly representative
endmembers for their class by increasing the RMSE of spectra that
exceeded the shade fraction thresholds (Dennison & Roberts, 2003b).
MASA is not influenced by variations in albedo. The algorithms were
run separately for the reflectance and the continuum-removed
spectral libraries.

A third metric, Count-based Endmember Selection (COB: Roberts
et al., 2003) is also included in Viper Tools. COB uses the MESMA
concept to select endmembers based on the number of library spectra
each endmember models. COB determines the number of spectra
modeled by an endmember within the endmember's class (InCOB)
and outside of the endmember's class (OutCOB). The optimummodel
would have the highest InCOB and lowest OutCOB. InCOB as
implemented in Viper Tools also includes an iterative element, in
which spectra that are modeled by the endmember with the highest
InCOB are subsequently removed from the selection process, creating
a smaller library consisting only of spectra that did not meet the fit
criteria for the highest InCOB. Next, the second highest InCOB,
calculated using the remaining spectra is reported, followed by
InCOBs calculated for progressively smaller numbers of spectra
unmodeled by earlier selections. Constraints used for MESMA can
also be used for COB, including fraction and RMSE constraints. A RMSE
threshold was applied to exclude reflectance spectra endmembers
that exceeded 0.025 RMSE (Roberts et al., 1998). A RMSE threshold of
0.06 was applied to the continuum-removed spectra. Numerous
studies have found 2.5% to be an acceptable threshold value for
reflectance spectra (e.g., Roberts et al., 1998); however, no such
studies have been done with CR spectra. We investigated several
thresholds for CR and selected the value that provided the best
discrimination with the fewest number of endmembers excluded.
Given that this was determined empirically, a different spectral library
with a different set of materials to discriminate might require a
different threshold.

4.5. Model optimization

The final set of endmembers was determined through an
interactive, iterative process by which endmembers were both
added and subtracted from the set to vary overall and class accuracy.
The total number of endmembers selected for each species-level class
varied depending on the size of each class. We did not select more
than half of the spectral library for any class. We initially selected a
minimum of 4 and a maximum of 10 candidate endmembers for each
species-level class by choosing the endmembers with the lowest EAR
values. Minimum EAR endmembers often included one or more of the
lowest MASA endmembers as well. However, when the lowest EAR
value endmembers failed to capture the lowest MASA value, we
selected up to 4 additional lowest MASA value endmembers for each
class. Where there were multiple endmembers with nearly identical
lowest EAR or lowest MASA values, we gave preference to those
endmembers that had the highest InCOB. In a few cases, additional
endmembers were selected using InCOB where the lowest EAR and
lowestMASA endmembers failed tomodel a subset of spectra within a
class. This was only done if the total number of endmembers selected
had not exceeded half of the total spectral library for that species-
class.
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This selection process does not account for spectral confusion
between classes. The endmembers with the lowest EAR or MASA
values may also model another class better than that class's own
endmembers (Powell et al., 2007). To determine which endmembers
were “over-representative”, we applied the selected endmembers to
the entire spectral library and calculated overall species classification
accuracy. Each endmember was reviewed to determine the number of
correct and incorrect assignments. This enabled us to identify those
endmembers that modeled a large number of spectra from outside
their species-class. As expected, there was considerably more class
confusion at the species-level than at the subgenera-level. Since we
were primarily concerned with our ability to discriminate between
the two eucalypt subgenera, we focused on excluding those
endmembers that modeled a large number of spectra as the wrong
subgenera class. This was an iterative process that began by removing
an endmember with the greatest model error at the subgenera-level.
We then re-ran the models with the smaller number of selected
endmembers. If removing an endmember resulted in an increase in
overall accuracy or no change at all, we left that model out. If
removing an endmember resulted in a decrease in overall accuracy,
we reinstated that endmember-model. We repeated this process until
we had the smallest set of endmembers that modeled the most
spectra within the correct subgenera class and the least spectra of the
incorrect subgenera class without further diminishing our classifica-
tion accuracy. We retained at least one endmember from each
species-level class in the final model. Due to a high degree of spectral
diversity in the shade/noise category, we selected a sufficient number
of shade/noise endmember-models to ensure that at least 75% of the
shade/noise spectra in the library weremodeled.We required that the
accuracy of each species-level class in the final model exceed 50%
(producer's accuracy) for modeling the correct subgenera for all
model classes except E. radiata and E. viminalis (the most abundant
forest species), which we required to have at least 70% producer's
accuracy.

Some endmembers may not be highly representative of their class
but still important for modeling other “atypical” spectra in their class.
Once we had completed the process described above, we investigated
whether we could further improve the performance of the final model
by selecting misclassified spectra from the worst performing end-
member-models and using them as new endmembers. We looked at
each of the final endmember-models and selected a misclassified
spectrum from a model if the RMSE between the model-endmember
and the misclassified spectrum approached a threshold value (0.025
reflectance and 0.06 continuum-removed). The logic was that if these
spectra were poorly fit by that endmember-model, then theymay be a
better endmember formodeling othermisclassified spectra from their
own class. We then re-ran the model with the additional endmember.
We left the new endmember in themodel if it improved overall model
performance and modeled four or more spectra in its class. We then
repeated this process with other endmembers until we were unable
to improve model performance or further reduce the total number of
endmembers in the final model according to the criteria above.

5. Results and discussion

5.1. Error assessment

We used a Kappa analysis to measure the agreement between the
reference data and the supervised classifications (Monserud &
Leemans, 1992). We focused our results on the ability of selected
endmembers to correctly model other library spectra by the
appropriate subgenera class, although we report Kappa statistics for
classification accuracies at both the species-level and the subgenera-
level. A confusion matrix and associated accuracy assessments at the
subgenera-level are presented in Tables 2 and 3 for the best
performing models from the reflectance and continuum-removed
data. The continuum-removed data performed better than the non-
transformed data in the majority of models.

We found low species-level accuracy for both the non-transformed
and the continuum-removed hyperspectral reflectance data. Overall
accuracy for the non-transformed data was 35% (Kappa=0.25), and
overall accuracy for the continuum-removed data was 46%
(Kappa=0.31). Accuracy was much higher at the subgenera-level.
Overall accuracy for the non-CR reflectance spectra was 75%
(Kappa=0.48) based on the best 30 endmember-model (Table 2) and
83% (Kappa 0.63) for the best 34 endmember continuum-removed
model (Table 3). The spectra from the selected endmember-models are
displayed in Fig. 5.

The ability of endmember-models from each eucalypt tree species
to appropriately model other spectra at the subgenera-level varied
widely in both producer's accuracy (determined by errors of
omission) and user's accuracy (based on errors of commission). For
the majority of models, CR models were less likely to exclude spectra
from the appropriate subgenera class than non-CR models and less
likely to model spectra from the wrong subgenera than non-CR
models. However, the best performing CR model left a higher
percentage of the spectral library unmodeled (2%) than the best
performing non-CRmodel (0%). Models that used CR-spectra required
a higher RMSE threshold because the transformation process can
increase the signature to noise interference and subsequently increase
the diversity of spectra within-groups and impact model-fit (Abilio
et al., 2007). This is also why a larger number of endmember-models
were required to obtain the best classification accuracies for the CR
data compared to the non-CR data.
5.2. Classification error in relation to eucalypt tree species physiognomy

Plant species that share certain structural and spectral character-
istics, such as leaf shape and color or foliage density, are generally
more difficult to discriminate with imaging spectrometry than more
distinct species or plant types (Castro-Esau et al., 2006; Clark et al.,
2005; Goodwin et al., 2005; Hestir et al., 2008). Shade resulting from
open-canopy structure or viewing geometry can also increase
confusion among tree-class types due to spectral similarities resulting
from the lower reflectance values of these shaded regions (Asner
et al., 2000; Lucas et al., 2008). Most eucalypt tree species have a
relatively open canopy structure. An imaging spectrometer flown over
a eucalypt forest is likely to collect radiation reflecting from the
ground, trunk, and upper branches of the trees in addition to the
canopy foliage. Therefore, similarities among eucalypt tree-classes in
canopy density, and bark, branch and foliage color are all likely to
influence classification accuracies. For example, the brown fibrous
bark that covers the trunk and thick branches of E. bridgesiana
(Symphyomyrtus) is more similar in appearance to the bark of the
monocalypt species in our study area than to the smooth gum and
ribbony bark of the three other symphyomyrtles. We expected to see
more confusion between canopy spectra of E. bridgesiana and the
monocalypts for this reason. Non-CR E. bridgesianamodels performed
the poorest for subgenera-level classification in user's accuracy (57%),
although the producer's accuracy was somewhat higher (66%). E.
bridgesiana models from the continuum-removed data had a
considerably higher users and producer's accuracy (78% and 80%
respectively).

Similarly, E. pauciflora has a smoother and lighter bark than the
other monocalypt species in this region. The leaves are also more
similar in color to the lighter green leaves of the three symphyo-
myrtles than to the other four monocalypts. For these reasons, we
expected relatively high classification errors for E. pauciflora. We
found that E. pauciflora models had the poorest subgenera-level
classification in producer's accuracy for reflectance data (56%) and the
second poorest for continuum-removed data (59%).



Table 2
Confusion matrix and classification accuracies for hyperspectral reflectance data of 9 eucalypt tree species from 2 subgenera, Eucalyptus (common name “monocalypt” (M)) and
Symphyomyrtus (common name “symphyomyrtle” (S)).

Correct matrix Reference pixels

Eubr
(S)

Euca
(S)

Euda
(S)

Euvi
(S)

Shade
(S)

Eust
(M)

Eupa
(M)

Eudi
(M)

Euma
(M)

Eura
(M)

Shade
(M)

User's accuracy
subgenera-level (%)

Mapped
piexls

Eubr (S) 10 2 4 7 1 2 1 0 0 15 0 57
Euca (S) 3 2 3 1 0 0 1 0 0 2 0 75
Euda (S) 5 6 12 12 3 0 3 0 2 22 0 59
Euvi (S) 5 1 11 39 0 0 2 0 1 29 0 64
Shade (S) 0 0 0 0 33 0 0 0 0 0 20 62
Eust (M) 4 0 3 2 0 1 1 0 0 23 0 74
Eupa (M) 5 3 7 2 0 0 7 1 2 40 0 75
Eudi (M) 0 1 2 1 0 10 1 3 0 81 1 96
Euma (M) 0 0 1 0 0 0 0 0 2 10 0 92
Eura (M) 3 2 5 2 0 1 0 2 1 74 2 87
Shade (M) 0 0 0 1 8 2 0 0 0 2 26 77
Producer's accuracy subgenera (%) 66 65 63 88 82 81 56 100 63 77 59

Correct matrix Monocalypt Symphyomyrtle Overall user's acc.

Monocalypt 293 52 85%
Symphyomyrtle 100 160 62%
Overall producer's acc. 75% 75% 0 unmodeled
Subgenera level overall accuracy=75% Species level overall accuracy=35%
Kappa statistic=0.48 Kappa statistic=0.25

Pixels collected from the shaded portion of eucalypt tree canopies (S/N, shade-noise) were assigned to their own class within the appropriate subgenera designation. Eucalypt tree
species names are abbreviated (Eu+the first two letters of the species name). Self-modeled endmembers are not included in the table or accuracy calculations.
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E. camphora was one of the few models to perform worse in both
producer's and user's accuracies in the CR models (53% and 55%
respectively) than in the non-CRmodels (65% and 75% respectively). E.
camphora has a very open canopy structure, relatively short stature
(generally b10 m) and prefers low lying, marshy areas with poorly
drained soils. This may have contributed to mixed pixels and lower
overall reflectance values for the spectra from this species (Fig. 5) and
also resulted in reduced classification accuracies. The use of lidar in
combinationwith hyperspectral remote sensing imagerymay improve
classification accuracies for species, such as E. camphora, that are
Table 3
Confusion matrix and classification accuracies for continuum-removed hyperspectral refle
“monocalypt” (M)) and Symphyomyrtus (common name “symphyomyrtle” (S)).

Correct matrix Reference pixels

Eubr
(S)

Euca
(S)

Euda
(S)

Euvi
(S)

Sh
(S

Mapped
pixels

Eubr (S) 6 3 7 12 1
Euca (S) 0 1 2 3 0
Euda (S) 5 3 12 2 0
Euvi (S) 17 1 21 34 6
Shade (S) 0 1 0 1 25
Eust (M) 0 2 0 0 0
Eupa (M) 0 0 0 1 1
Eudi (M) 0 0 2 1 0
Euma (M) 1 1 1 1 0
Eura (M) 6 2 4 9 0
Shade (M) 0 3 0 0 11
Producer's accuracy subgenera (%) 80 53 86 81 73

Correct matrix Monocalypt

Monocalypt 326
Symphyomyrtle 55
Overall producer's acc. 86%
Subgenera level overall accuracy=83%
Kappa statistic=0.63

Pixels collected from the shaded portion of eucalypt tree canopies (S/N, shade-noise) were a
species names are abbreviated (Eu+the first two letters of the species name). Self-modele
distinct in their size relative to the other species but have spectral
reflectance properties that are less distinct (Gillespie et al., 2004).

E. viminalis and E. dalrympleana are closely related, white, ribbon-
barked trees that differ from one another primarily in the shape of
their young leaves. E. radiata and E. dives are two peppermint species
that are also very similar, except that the latter has broader adult
leaves. A high degree of species-level confusionwithin these pairs was
expected. When these pairs were combined, species-level accuracy
improved to 58% (kappa 0.42) in the continuum-removed data and 52%
(kappa 0.38) in the reflectance data.
ctance data of 9 eucalypt tree species from 2 subgenera, Eucalyptus (common name

ade
)

Eust
(M)

Eupa
(M)

Eudi
(M)

Euma
(M)

Eura
(M)

Shade
(M)

User's accuracy
subgenera-level (%)

0 0 0 0 8 0 78
0 1 0 0 4 0 55
0 2 0 0 6 0 73
0 3 0 0 17 0 80
0 1 0 0 0 13 66
1 2 0 0 1 0 67
0 4 0 0 5 0 82
1 2 0 3 46 0 95
1 0 1 0 12 0 78
7 1 5 5 162 3 90
7 1 0 0 31 25 82

100 59 100 100 88 68

Symphyomyrtle Overall user's acc.

46 88%
163 75%
78% 10 (2%) unmodeled

Species level overall accuracy=46%
Kappa statistic=0.31

ssigned to their own class within the appropriate subgenera designation. Eucalypt tree
d endmembers are not included in the table or accuracy calculations.



Fig. 5. Selected imagery endmember spectra for models based on non-transformed (top) and continuum-removed (bottom) HyMap reflectance data of eucalypt tree-crowns.
Individual tree species names are listed under each graph.
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5.3. Map generation

We used the best performing continuum-removed and reflectance
endmember-models (Fig. 5) to generate maps of the distribution of
monocalypts and symphyomyrtles in our study area (Fig. 6A and B).
We applied the same shade fraction and RMSE constraints to model
the full-scene that we used to model the spectral library. Based on our
individual model assessment (Section 4.5), we identified those
endmembers that reported b75% accuracy in modeling spectra from
the appropriate subgenera and masked-out the pixels in the images
that were modeled by those endmembers in order to create two
“higher-confidence” maps (Fig. 7A and B). Excluding pixels that were
modeled by the minority subset of endmembers that fell below this
75% threshold provided an interesting, additional end-product that
should reflect a higher confidence in predicted class distributions than
the maps based on the full-suite of selected endmember-models.
However, removing the pixels that were less confidently mapped
meant that a larger portion of the final image remained unmodeled.
We also must emphasize that our accuracy assessments were based
on the reference data (spectral library) and the final prediction
accuracies may be different if the spectral diversity of the spectral
library was not representative of the spectral diversity in the full-
image (Powell et al., 2007). For example, if image spectra possessed a
higher abundance of frequentlymiss-modeled spectra than the library

image of Fig.�5


Fig. 6. Vegetation maps of the two major eucalypt subgenera, Eucalyptus (monocalypt) and Symphyomyrtus (symphyomyrtle) based on A) the best-performing continuum-removed model comprised of 34 spectral endmembers and B)
the best-performing reflectance model comprised of 30 spectral endmembers. Regions in the imagery that were not comprised of eucalypt forest have been masked.
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Fig. 7. Vegetation maps of the two major eucalypt subgenera, Eucalyptus (monocalypt) and Symphyomyrtus (symphyomyrtle) based on pixels modeled by endmembers that reported ≥75% accuracy from A) the best-performing
continuum-removed model comprised of 34 spectral endmembers and B) the best-performing reflectance model comprised of 30 spectral endmembers. Regions in the imagery that were not comprised of eucalypt forest have been
masked.
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did, the actual accuracy of the classified image would be lower than
our estimated accuracy.

In our northeastern-most flight-line, we observed that symphyo-
myrtles tended to be over-modeled at higher elevations and
monocalypts appeared to be over-modeled on the southern aspects
of high-relief areas. An analysis of change in vegetation composition
performed by Shugart and Nobel (1981) in the Brindabella Ranges
found that higher altitude sites (above 1200 m) were dominated by E.
pauciflora, a monocalypt species. Due to physiological characteristics
discussed in the previous section, this species may be more spectrally
similar to the most common symphyomyrtle species in our regions, E.
viminalis and E. dalrympleana, than to the other monocalypts. This
likely contributed to the classification error in the higher elevation
regions along our northeastern-most flightline.

We expected to see higher densities of the most dominant
monocalypt, E. radiata, on southern slopes because they prefer cooler
and wetter environments (Williams & Woinarski, 1997) and this was
clearly visible in the imagery. However, the near-homogenous
monocalypt densities that are reported along some of the southern
slopes suggested that there also was some confusion between
monocalypts and symphyomyrtles that, based on the confusion
matrix, most likely resulted from errors of commission between
shaded symphyomyrtle and shaded monocalypt pixels. Shaded pixels
are a common source of error in classifications based on imaging
spectrometry and for this reason, shaded pixels are often excluded
from classification exercises (e.g., Lucas et al., 2008). We included
shaded pixels, although we intentionally segregated these pixels into
their own class to assess their contribution to model error separately.
The “shade-noise” spectra exhibited a high degree of variability and
several of these endmembers only modeled a small number of other
“shade-noise” spectra, which made it difficult to assess how they
might perform in the full image. Had we included more “shade/noise”
spectra in our library, we may have observed a higher-degree of
model error in some of the “shade-noise” endmember-models,
resulting in their exclusion from the final model and/or a failure to
meet the minimum threshold for the “higher accuracy” maps.

Otherwise, based on our knowledge of the forest types in the
region, the predictions generated by the maps are largely consistent
with our expectations of subgenera distribution. There is also a high-
degree of consistency between maps, although our endmember-
model assessments and field knowledge suggest that the most
accurate representation is provided by the “high-accuracy” continu-
um-removed map (Fig. 7A). The higher-accuracy reflectance map did
not perform as well because several of the symphyomyrtle end-
member models had accuracies lower than 75% and this resulted in a
clear under-representation of the symphyomyrtle species (Fig. 7B).

As expected, themaps show that themajority of eucalypt forests in
our study area are comprised of mixed-canopy (monocalypt and
symphyomyrtle) stands (Pryor, 1959). However, there are also
regions that we know to be dominated by tree species from one
subgenera and this provided us with a qualitative indication of overall
map accuracy. The monocalypt, E. macrorhyncha, dominates a familiar
patch in the north (centered at 35°2′7S, 148°29′12E) and this is visible
to varying degrees in all four of the maps that we generated from our
models. We know that symphyomyrtle species dominate other
locations in this northern region, particularly in two E. viminalis
dominated swaths centered at (35°1′59S, 148°30′1E and 35°2′25S,
148°31′25E) and an area comprised largely of E. camphora (centered
at 35°3′54S, 148°31′24E). It is also important to consider that E.
viminalis and E. dalrympleana can grow taller than the monocalypt
species in our area and this could further increase the apparent
dominance of symphyomyrtle canopies relative to the actual
proportion of symphyomyrtles and monocalypts on the ground.
Predictions over the wetter forest regions around 850 m elevation
such as (35°9′47S, 148°38′11E and 35°9′57S, 148°38′52E) correctly
indicate a dominance of monocalypts (primarily, E. radiata). However,
the high-relief in the valley within the second area (35°9′57S, 148°38′
52E) may have contributed to more unmodeled pixels at that location
and the under-representation of E. viminalis (prevalent along the
slopes there as well) due to shaded and mixed pixels.

6. Summary

We have demonstrated that it is possible to map the two major
Eucalyptus subgenera, Eucalyptus (“monocalypt”) and Symphyomyrtus
(“symphyomyrtle”), on a landscape-scale using hyperspectral data
collected with a single, airborne sensor (HyMap). This is significant
because these subgenera represent important functional types and
the traits that are typically shared amongmembers within each group
may contribute to their non-random distribution within a landscape
(Austin et al., 1983). Mapping monocalypts and symphyomyrtles on a
landscape-scale could help to identify habitat for specialist folivores
(Moore et al., 2004; Youngentob et al., 2010), provide useful
information about the disturbance history of a region (Davidson &
Reid, 1980; Duff et al., 1983) and help predict the response of large
forest stands to fire (Noble, 1984), fungal pathogens (Stone et al.,
1998), variations in nutrient-cycling and salinity (Hawkins & Polglase,
2000; Marcar, 1989; Noble, 1989) and herbivore predation (Stone et
al., 1998). The tree species on which we based our classifications are
the most abundant species in our study area and are common in
several forest-types in NSW and northern Victoria. Future research
will focus on investigating the factors that may be responsible for the
observed distributions of subgenera within our mapped areas (e.g.,
the interesting patterns observed in the area centered at 35°4′9S,
148°31′52E) and their relationship to arboreal folivore distributions.

The MESMA approach for classifying and mapping eucalypt
subgenera enabled us to capture a larger degree of spectral diversity
within our classes than methods that rely on a single endmember to
represent each class. We found that continuum-removal analysis
improved model accuracy based on reference data, although a slightly
higher portion of the pixels remained unmodeled. We used the
similarity metrics EAR and MASA and count-based selection (COB)
included in theViper Tools software (Roberts et al., 2007) for our initial
endmember-model selections. We then used an iterative process that
involved individual endmember-model assessment for model opti-
mization. The procedure that we used to refine our model selection
and improve classification accuracies has the potential to be largely
automated. This would greatly improve the efficiency of this process
because model optimization was the most time-intensive component.
Some a priori knowledge of tree species in the field was required to
collect endmembers for our spectral libraries. The presence of isolated
tree-crowns in the paddocks within our flight-lines enabled us to
easily match trees in the imagery to trees in the field. However, high-
accuracy GPS equipment has been used to identify individual tree-
crowns in closed-forests where isolated canopies were not an option
(Huber et al., 2008). A limitation to our approach is that the costs
associatedwith collectinghyperspectral data canbe prohibitive. Itmay
be possible to use spectral unmixing methods to map eucalypt
subgenera with less expensive, coarser-resolution spatial hyperspec-
tral satellite imagery. As spaceborne technology improves and
airborne missions become less expensive, our knowledge about the
spatial distribution and abundance of forest-types and individual
specieswill increase alongwith our ability to understand, monitor and
conserve natural landscapes. In this article, we have presented a new
approach that combines two powerful spectral analysis techniques,
MESMA and continuum-removal, to map eucalypt subgenera dis-
tributions in a closed-canopy forest with imaging spectrometry.
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