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Abstract: Imaging spectrometer data have been used to map plant functional types 
(PFTs—plant species grouped by similarities in their resource use, ecosystem func-
tion, and responses to environmental conditions) at spatial resolutions of 30 m and 
finer, but not at coarser spatial resolutions that may be necessary for global PFT 
 mapping. This study uses spatially resampled Airborne Visible InfraRed Imag-
ing Spectrometer (AVIRIS) data acquired over the Wasatch Mountains of northern 
Utah, USA to examine changes in PFT classification accuracy as spatial resolution 
is degraded from 20 to 60 m. Accuracy was dependent on the spatial resolution of 
the classified data and the spatial resolution of endmembers used in the multiple 
endmember spectral mixture analysis classifier. 

INTRODUCTION

Mapping, monitoring, and identifying changes in vegetation cover are critical 
for improving understanding of global change phenomena. Vegetation mapping using 
remotely sensed data has been applied to measure ecosystem response to climate 
change, disturbance, and invasive species (Nemani et al., 1996; Myneni et al., 2001; 
Chambers et al., 2007; Dennison et al., 2009). Vegetation mapping is also an impor-
tant component in the support of management of natural resources, such as inven-
tory assessment, fuels management, and wildlife habitat characterization (Bobbe et 
al., 2001). To facilitate modeling of vegetation responses to ecosystem change, many 
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ecologists group plant species into “plant functional types” (PFTs; Diaz and Cabido, 
1997). PFTs are groupings of plant species based not on phylogenetic relationships, 
but rather on similarities in their resource use, ecosystem function and responses to 
environmental conditions (Walker, 1992). This simplified and generalized structure 
of vegetation classification has been found to be valuable for understanding natural 
and human-induced environmental changes and the processes behind them (Bugmann, 
1996; Woodward and Cramer, 1996; Diaz Barradas et al., 1999; Lavorel and Garnier, 
2002).

Imaging spectroscopy, which measures reflected solar radiance using a large set 
of narrow, contiguous spectral bands, has shown particular promise for mapping plant 
taxa and functional types (Martin et al., 1998; Roberts et al., 1998; Dennison and 
Roberts, 2003a; Clark et al., 2005; Plourde et al., 2007; Asner et al., 2008). The United 
States National Research Council has recommended a spaceborne global survey mis-
sion to measure ecosystem response to environmental change, including an imaging 
spectrometer capable of mapping PFTs (National Research Council, 2007). While 
 previous studies have used 30 m or finer spatial resolution imaging spectrometer data 
for mapping vegetation, a global mapping mission is likely to require a coarser spatial 
resolution due to tradeoffs between repeat interval, swath width, and spatial resolution. 
The VSWIR spectrometer, one component of the proposed HyspIRI mission, would 
have a 60 m spatial resolution. 

Multiple endmember spectral mixture analysis (MESMA) has been successfully 
used as a vegetation and PFT classification method for imaging spectrometer data at 
sub–30 m spatial scales (Roberts et al., 1998; Dennison and Roberts, 2003a, 2003b; Li 
et al., 2005; Youngentob et al., 2011). This research uses MESMA to classify PFTs at 
three spatial resolutions for the Wasatch Mountains of northern Utah, USA. PFT clas-
sifications at 20, 40, and 60 m spatial resolution demonstrate the impact of changing 
spatial resolution on map accuracy, and provide important context for understanding 
how future spaceborne imaging spectrometers can contribute to vegetation mapping 
and global process modeling.

BACKGROUND

Vegetation Mapping Using Imaging Spectrometer Data

Imaging spectrometer data have been used to map vegetation in a variety of ecosys-
tems. Martin et al. (1998) classified forest cover types at the stand level from Airborne 
Visible InfraRed Imaging Spectrometer (AVIRIS) reflectance data acquired in Harvard 
Forest in central Massachusetts. Their work demonstrated that imaging spectroscopy 
could successfully discriminate 11 forest classes with 75% accuracy. Thenkabail et 
al. (2004) utilized data from the spaceborne imaging spectrometer Hyperion to clas-
sify nine land cover types ranging from slash-and-burn farms to undisturbed tropical 
rain forest across an expanse of six different ecoregions in West Africa. Using step-
wise linear discriminant analysis, they achieved an overall accuracy of 96% using 23 
Hyperion bands. Clark et al. (2005) examined the species-level separability of seven 
tropical rainforest species using canopy-level imaging spectrometer data. Maximum 
likelihood classification yielded an 88% overall accuracy. Youngentob et al. (2011) 
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mapped eucalyptus forest by applying MESMA to continuum-removed HyMap image 
spectra, and achieved 81% accuracy at the subgeneric level. 

Previous work in shrublands has focused on mapping shrub taxa in southern 
California chaparral. Roberts et al. (1998) used MESMA to map a variety of chaparral 
species in the Santa Monica Mountains of California. Dennison and Roberts (2003a) 
mapped five chaparral PFTs in the Santa Ynez Mountains using MESMA, resulting 
in a 93% overall accuracy. Dennison and Roberts (2003b) examined the effects of 
vegetation phenology endmember selection for MESMA. Seasonality was found to 
impact the spectral shape of the selected endmembers and the confusion between end-
members increased as soil water balance changed from positive to negative. 

Imaging spectrometer data have also been extensively utilized for mapping 
invasive species such as tamarisk (Tamarix spp.) (Narumalani et al., 2006; Hamada 
et al., 2007), horse tamarind (Leucaena leucocephala) (Tsai et al., 2005), iceplant 
(Carpobrotus edulis), jubata grass (Cortaderia jubata), fennel (Foeniculum vulgare) 
and giant reed (Arundo donax) (Ustin et al., 2002; Underwood et al., 2003), leafy 
spurge (Euphorbia esula) (Everitt et al., 1995; Williams and Hunt, 2002), and hoary 
cress (Cardaria draba) (Mundt et al., 2005). The ability of imaging spectrometer data 
to detect invasive species among a mixed landscape of native vegetation has been 
successful mainly due to the fact that the invasive species can often have a distinct 
spectral signature when compared against native vegetation.

Multiple Endmember Spectral Mixture Analysis

Spectral mixture analysis (SMA) models the fractional cover of “endmembers” 
(representing pure land cover types within an image pixel) along with a shade end-
member that is used to adjust for shadowing and topographic shading (Adams et al., 
1993). Linear SMA assumes that the spectra of the land cover types in an instanta-
neous field of view (IFOV) combine linearly, and that the spectral contribution of each 
land cover type is proportional to its relative abundance within the pixel IFOV. Linear 
SMA is based on the following equation: 
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where b is the sequential band number and M is the total number of bands. RMSE 
represents the extent to which modeled reflectance matches measured reflectance for 
each pixel spectrum. 

Standard SMA uses a uniform set of endmembers (measured in the laboratory or 
field or extracted from the image) for the entire image, and cannot account for spectral 
variability introduced by multiple vegetation types, multiple soil types, or within-class 
spectral variability. Roberts et al. (1998) developed MESMA to allow endmembers to 
vary on a per-pixel basis. MESMA requires a more extensive spectral library than SMA, 
allowing multiple potential endmembers that capture the spectral variability of a single 
land cover type. Unlike SMA, two-endmember MESMA (one shade endmember and 
one non-shade endmember) can be used as an image classification algorithm. MESMA 
using three or more endmembers can be used to measure fractional cover. MESMA 
has been used to map southern California shrublands (Roberts et al., 1998; Dennison 
and Roberts, 2003a, 2003b), eucalypt forest (Youngentob et al., 2011), coastal salt 
marsh (Li et al., 2005), soils and landforms (Okin et al., 2001; Ballantine et al., 2005), 
snow grain size (Painter et al., 2003), urban land cover (Rashed et al., 2003; Powell 
et al., 2007), fire temperature (Dennison et al., 2006; Dennison and Matheson, 2011), 
and planetary surface composition (Li and Mustard, 2003; Johnson et al., 2006). As 
a classification method, two-endmember MESMA is well-suited for mapping PFTs 
in mountainous terrain. The inclusion of a shade endmember adjusts for variations in 
direct irradiance caused by topography. 

Several approaches to endmember selection have been developed for MESMA in 
order to produce a parsimonious set of endmembers representing different vegetation 
types. Roberts et al. (2003) proposed a count-based approach to endmember selection, 
where the endmembers that modeled the largest number of spectra within a spectral 
library class were selected. Dennison and Roberts (2003a) developed a method for 
selecting a set of endmembers that is more spectrally representative of each land cover 
class for use in MESMA. This is done by using a metric called Endmember Average 
RMSE (EAR), which allows each spectrum within a class to model all other spectra 
within the class using linear SMA. The spectrum with the minimum mean RMSE is 
then selected as an endmember. Dennison et al. (2004) introduced Minimum Average 
Spectral Angle (MASA), which functions similarly to EAR, but uses spectral angle 
(Kruse et al., 1993) as the selection metric. In practice, all of these past approaches to 
endmember selection for MESMA require some degree of subjectivity in selecting the 
single “best” set of endmembers for classification. 

METHODS

Study Area

Four PFTs were mapped using AVIRIS data covering a portion of the Wasatch 
Mountain Range in northern Utah, USA (Fig. 1). The range emerges directly east of 
Salt Lake City, Utah (40°46´ N, 111°58´ W) spanning roughly 260 km from north to 
south.  The AVIRIS scene used for this study covers the western side of the Wasatch 
Range adjacent to the Salt Lake Valley. Classification focused on the subset of the 
scene between U.S. Interstate 80 and Little Cottonwood Canyon, indicated by the 
dashed box in Figure 1. The Wasatch Range within the study area rises from approxi-
mately 1500 m elevation at the edge of the Salt Lake Valley up to summits higher 
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than 3400 m (Fig. 2). The 28 km × 11 km study area is crossed by multiple east-
west–oriented canyons. Shrub cover dominated by Gamble oak (Quercus gambelii) 
is common at lower elevations. Higher elevations are dominated by tree species 
including aspen (Populus tremuloides), Douglas fir (Pseudotsuga menziesii), white 
fir (Abies concolor), subalpine fir (Abies lasiocarpa), limber pine (Pinus flexilis), and 
Engelmann spruce (Picea engelmannii), along with grass and herbaceous vegetation 
cover in mountain meadows.  

AVIRIS and NAIP Data

The AVIRIS image used for this study was acquired on August 5, 1998. AVIRIS 
has 224 bands with an approximate bandwidth of 10 nm, and covers a spectral range of 
350–2500 nm. The sensor was flown on the NASA ER-2 platform at an altitude of 21 
km, producing an image swath width of approximately 11 km and a ground IFOV of 

Fig. 1. Map showing the AVIRIS flight line and the location of the study area (dashed box).
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approximately 20 m. Digital orthophotography from the National Agriculture Imagery 
Program (NAIP) was used to register the AVIRIS image and aid in selection of ground 
reference polygons that were used to train and assess the accuracy of the MESMA 
classification. NAIP 1 m spatial resolution color and color infrared aerial photography 
was acquired over the study area on August 10 and August 31, 2006. The eight-year 
period between acquisition of the AVIRIS and NAIP data was not optimal, but no 
major disturbance (e.g., fires, logging) or shifts in the spatial distributions of PFTs 
were noted to have occurred during this time period within the study area. 

Fig. 2. A. Elevation within study area, scaled between 1480 m and 3460 m. B. Shaded relief 
within the study area, using an illumination zenith of 45° and a due-south illumination azimuth. 
South-facing slopes appear bright, and north-facing slopes appear dark.
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The 20 m AVIRIS calibrated radiance image was registered to an NAIP true-
color orthophoto resampled to a 20 m spatial resolution. A total of 885 tie points were 
established to register the AVIRIS image to the resampled NAIP image. Delaunay 
triangulation with nearest neighbor resampling was used to warp the AVIRIS image. 
The registered AVIRIS radiance image was then degraded from its original spatial 
resolution of 20 m to 40 m and 60 m using spatial averaging. For example, the mean of 
four 20 m pixel spectra was calculated to create the 40 m image, and the mean of nine 
20 m pixel spectra was calculated to create the 60 m image. Each image was then sepa-
rately corrected to apparent surface reflectance using the FLAASH (Anderson et al., 
2002) atmospheric correction package in ENVI (ITT Visual Information Solutions). 
The mid-latitude summer atmospheric and rural aerosol models were used, and vis-
ibility was set to 30 km based on path radiance within the radiance image. Water vapor 
retrieval was applied using the 1135 nm water vapor absorption feature. The 20, 40, 
and 60 m apparent surface reflectance images produced by FLAASH were subset from 
224 bands to 190 bands, dropping bands that were found to have strong atmospheric 
water vapor absorption. 

PFT Reference Data

An image segmentation algorithm (eCognition, version 7.0, Definiens Developer) 
was applied to the 1 m NAIP color and color infrared orthophotos to create polygons 
with internally similar land cover. eCognition uses an object-based approach to derive 
image segments (Baatz et al., 2004). Neighboring pixels are examined for their simi-
larity based on input parameters of scale (which controls the level of desired hetero-
geneity), shape, and compactness. Multiple parameter configurations were tested, and 
best values for each parameter were empirically determined to be 90 for scale, 0.5 for 
shape, and 0.5 for compactness. Using these parameters, the study area was segmented 
into polygons that were then assigned PFT identities in the field. 

Four PFTs were mapped during field work that took place over the summer of 
2009. Functional types were assigned based on leaf type and life-form. The four PFT 
classes were broadleaf deciduous shrub (e.g., Gambel oak), broadleaf deciduous tree 
(primarily aspen), needleleaf evergreen tree (e.g., Engelmann spruce), and grass/ 
herbaceous (meadows). A fifth PFT, broadleaf evergreen shrub, is present in the study 
area. However, the major species in this functional type, curl-leaf mountain mahogany 
(Cercocarpus ledifolius), was not found in sufficiently large stands to map at 20 m 
spatial resolution. A fifth rock and soil class was also mapped using the polygons gen-
erated from the NAIP data. 

Polygons were required to be at least 60 m by 60 m in size and dominated by 
a single land cover type (at least 75% dominance) to ensure that the PFT classifica-
tion by MESMA would be applicable across all of the examined spatial resolutions. 
Dominant PFTs were assigned to a total of 174 image polygons based on field obser-
vation. An additional 47 polygons dominated by rock and/or soil were also identified 
in the field and using the 1 m NAIP orthophoto. After field mapping was complete, 
the field polygons were randomly partitioned into a set of reference training polygons 
for selecting endmembers for MESMA and an independent set of post-classification 
accuracy assessment polygons. 
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The period of time between AVIRIS data acquisition (1998), NAIP data acquisi-
tion (2006), and PFT assignment (2009) was longer than desired. Unfortunately, more 
recent airborne imaging spectrometer data at any spatial resolution were not avail-
able anywhere within the Wasatch Range. No major disturbance, such as fires, log-
ging, or landslides, was known to have occurred within the study area during this time 
period. Most of the study area is protected within the Mount Olympus and Twin Peak 
Wilderness Areas, and polygons directly adjacent to obvious human impacts (e.g., 
roads) were avoided.  

Iterative Endmember Selection and MESMA Classification

Spectra were extracted from the field-validated training polygons for each of the 
five land cover classes using ENVI. ENVI extracts pixel spectra where the centroid of 
the pixel falls within a polygon. Extracted spectra from the 20, 40, and 60 m AVIRIS 
reflectance images were used to create separate spectral libraries for all three spa-
tial resolutions. For each training library, an automated iterative endmember selection 
algorithm was then used to find the set of endmembers that produced the highest kappa 
value for classifying the spectra within the training library. Unlike overall accuracy, 
kappa accounts for agreement by chance and is a better measure of accuracy when 
class representation is not uniform within a dataset (Congalton, 1991). First, the algo-
rithm compared all possible pairs of endmembers to find the two endmembers that 
resulted in the highest kappa value for classifying the training library using MESMA. 
Then all potential additional endmembers were compared for their ability to increase 
kappa. The endmember that increased kappa the most was added to the selected set 
of endmembers. Next, each endmember from the selected set was subtracted to test 
whether kappa further improved with endmember removal. Addition and subtraction 
of endmembers then continued until kappa no longer increased and the final selected 
set of endmembers was determined. 

The endmember libraries were then used to classify the AVIRIS images using 
MESMA, as implemented in the ENVI add-on ViperTools (http://vipertools.org). Five 
combinations of endmember libraries and image resolutions were tested. Each end-
member library (20, 40, and 60 m) was applied to the respective reflectance image it 
was extracted from. Additionally, the 20 m endmembers were applied to the 40 and 
60 m AVIRIS images to assess accuracy differences resulting from using endmembers 
acquired from a finer resolution data source. MESMA was used to model the reflec-
tance images with two endmember models, where the best-fit combination of a PFT 
endmember and a photometric shade endmember was selected for each pixel. The mini-
mum and maximum allowable endmember fractional constraints were set to –0.05 and 
1.05, respectively (Dennison and Roberts, 2003a). RMSE was constrained to below 
0.025 to assign a valid model fit. Pixels that were not modeled with an RMSE of less 
than 0.025 with any of the endmembers in the library were categorized as unclassified.

Accuracy Assessment

Pixel-level error matrices were created for each combination of image and end-
member spatial resolutions, and producer’s accuracy (representing errors of omission) 
and user’s accuracy (representing errors of commission) were calculated from each 
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error matrix. Overall accuracy, kappa, and kappa variance were also calculated for 
each classification (Congalton, 1991). Kappa values close to zero indicate agreement 
due to chance, and as the value of kappa approaches 1 agreement is less likely to be 
due to chance. Kappa and kappa variance were used to calculate a Z-statistic for each 
pair of classifications to determine whether their kappa coefficients were significantly 
different at the 95% confidence level (Congalton, 1991). 

RESULTS

Endmember Selection

The iterative endmember selection algorithm rapidly increased the within-library 
kappa until one endmember was added for each of the five classes (Fig. 3). Kappa 
then increased more slowly as multiple endmembers were added for each class, until a 
maximum kappa value was reached at each spatial resolution. This maximum within-
library kappa peaked at 0.90 for the 20 m library, 0.87 for the 40 m library, and 0.89 
for the 60 m library. A total of 44 endmembers were selected at 20 m, decreasing to 23 
endmembers at 40 m and 19 endmembers at 60 m (Table 1).

Degrading Both Image and Endmember Spatial Resolution 

In the 20 m MESMA classification, the spatial distribution of the four PFTs 
and the rock/soil class qualitatively coincided with topographic features (Fig. 4A). 
Needleleaf evergreen trees were most prevalent on north- and west-facing slopes at 
higher elevations. Broadleaf deciduous trees were mapped at higher elevations on the 
right side of Figure 4A. This PFT was mapped on all aspects, which coincides with the 

Fig. 3. Changes in kappa with the number of endmembers selected from the 20 m, 40 m, and 
60 m images.
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observed distribution of aspen within the study area. Broadleaf deciduous shrubs are 
most prevalent at lower elevations on the western and northern portions of the map in 
Figure 4A. The grass/herbaceous PFT occurred throughout the image, but was most 
prevalent at higher elevations. The rock/soil class dominated at the highest elevations, 
but was also found where rocky outcrops intermixed with the surrounding vegetation 
at some lower elevations. Most of the unclassified pixels were found at high elevations 
where snow and exposed rock were present. 

The MESMA classification results at 40 m spatial resolution (Fig. 4B) demon-
strated several differences in the spatial distribution of the four PFTs and the rock/
soil class. The broadleaf deciduous tree PFT was much more prevalent, reaching 
lower-elevation portions of the image where this PFT likely does not actually occur. 
Broadleaf deciduous tree appears to replace broadleaf deciduous shrub in some north-
ern parts of the study area. This trend continues at 60 m (Fig. 4C). The spatial contigu-
ity of the four PFTs and the rock/soil class appears reduced at 60 m, and the classes 
do not appear to coincide with natural topographic features as readily as they do in the 
20 m classification. 

Pixel-level error matrices show the details of the classification results for the three 
resolutions of AVIRIS images modeled by endmembers of the same resolution (Tables 
2–4). Overall accuracy and kappa values were higher at 20 m resolution than at 40 
and 60 m resolution (Table 5). Overall accuracy declined by almost 10% from 20 m 
to 40 m, and kappa declined from 0.84 to 0.72. Overall accuracy and kappa increased 
slightly from 40 m to 60 m. At 20 m spatial resolution, all user’s accuracies (Table 6) 
and producer’s accuracies (Table 7) exceeded 75%. User’s accuracies for the needle-
leaf evergreen tree PFT exceeded 99% at 20 m, while producer’s accuracies exceeded 
90% for the two broadleaf deciduous PFTs.  

Most of the user’s and producer’s accuracy values decreased from 20 m to 40 
m. User’s accuracy for needleleaf evergreen tree remained at 99%, but producer’s 
accuracy for the same PFT declined by over 22% (Table 7). Producer’s accuracies for 
needleleaf evergreen tree and grass/herbaceous moderately recovered from 40 m to 60 
m spatial resolution, but producer’s accuracies of the remaining classes declined. At 
60 m spatial resolution, the number of pixels extracted from each polygon is relatively 
small, so a small number of misclassified pixels resulted in large changes in accu-
racy values. The user’s accuracy for the grass/herbaceous PFT was only 53%, because 

Table 1. Number of Endmembers per Class Selected at Each Spatial Resolution

Class
Spatial resolution

20 m 40 m 60 m

Broadleaf deciduous tree  8  4  2
Needleleaf evergreen tree 14  7  6
Broadleaf deciduous shrub  6  4  4
Grass/herbaceous 10  3  2
Rock/soil  6  5  5
Total 44 23 19
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Fig. 4. Classification result of MESMA applied to the 20 m image using endmembers extracted 
from the same image (A), the 40 m image using endmembers extracted from the same image 
(B), the 60 m image using endmembers extracted from the same image (C), the 40 m image 
using endmembers extracted from the 20 m image (D), and the 60 m image using endmembers 
extracted from the 20 m image (E).
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grass/herbaceous endmembers mapped several 60 m pixels belonging to other classes 
(Table 4). User’s accuracy for needleleaf evergreen tree remained high (Table 6), with 
only 3 pixels from other classes being mapped as this PFT. 

At all three spatial resolutions, broadleaf deciduous tree and grass/herbaceous 
endmembers mapped other classes (Tables 2–4), resulting in lower user’s accuracies. 
Needleleaf evergreen tree and grass/herbaceous PFTs were more likely to be mapped 
as other classes, resulting in lower producer’s accuracies. At all spatial resolutions 
rock/soil was the most frequently unclassified class. Rock, soil, and subdominant veg-
etation present in the accuracy polygons may not have been adequately represented in 
the training polygons due to complex local stratigraphy. Increasing the RMSE thresh-
old would have likely reduced the number of unclassified pixels belonging to the rock/
soil class. 

Table 2. Pixel-Level Error Matrix for the 20 m AVIRIS Image Modeled  
Using the 20 m Endmember Library

Classification

Reference

Broadleaf 
deciduous 

tree

Needleleaf 
evergreen 

tree

Broadleaf 
deciduous 

shrub

Grass/
herbaceous Rock/soil

Broadleaf deciduous tree 403 79 21 30 0
Needleleaf evergreen tree 1 1124 3 0 6
Broadleaf deciduous 

shrub
7 105 1226 16 54

Ggrass/herbaceous 27 35 9 320 8
Rock/soil 0 12 2 0 752
Unclassified 5 0 2 8 113

Table 3. Pixel-Level Error Matrix for the 40 m AVIRIS Image Modeled  
Using the 40 m Endmember Library

Classification

Reference

Broadleaf 
deciduous 

tree

Needleleaf 
evergreen 

tree

Broadleaf 
deciduous 

shrub

Grass/
herbaceous Rock/soil

Broadleaf deciduous tree 103 48 14 14 0
Needleleaf evergreen tree 0 207 0 0 2
Broadleaf deciduous 

shrub
0 43 294 6 14

Grass/herbaceous 8 25 2 63 3
Rock/soil 0 17 1 0 190
Unclassified 1 0 14 6 26
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Applying 20 m Endmembers to Coarser Resolution Images

When the endmembers selected from the 20 m image were used to classify the 
40 and 60 m images, classification results were much more similar to the 20 m clas-
sification results than when endmembers were selected at the spatial resolution of 

Table 4. Pixel-Level Error Matrix for the 60 m AVIRIS Image Modeled  
Using the 60 m Endmember Library

Classification

Reference

Broadleaf 
deciduous 

tree

Needleleaf 
evergreen 

tree

Broadleaf 
deciduous 

shrub

Grass/
herbaceous Rock/soil

Broadleaf deciduous tree 43 17 4 7 1
Needleleaf evergreen tree 1 118 1 0 1
Broadleaf deciduous 

shrub
1 8 120 1 3

Grass/herbaceous 4 9 14 33 2
Rock/soil 0 3 0 0 72
Unclassified 1 0 3 0 23

Table 5. Overall Pixel-Level Accuracy and Kappa for Each Modeled Image,  
Sorted from Highest Accuracy to Lowest Accuracy

Image resolution Endmember resolution Overall accuracy (%) Kappa

20 20 87.6 0.84
40 20 86.1 0.82
60 20 83.3 0.78
60 60 78.8 0.73
40 40 77.8 0.72

Table 6. Pixel-Level User’s Accuracy (in percent) for Each Combination of Image 
and Endmember Resolution

Image 
resolution

Endmember 
resolution

Broadleaf 
deciduous 

tree

Needleleaf 
evergreen 

tree

Broadleaf 
deciduous 

shrub

Grass/ 
herbaceous Soil/rock

20 20 75.6 99.1 87.1 80.2 98.2
40 40 57.5 99.0 82.4 62.4 91.4
60 60 59.7 97.5 90.2 53.2 96.0
40 20 76.9 97.8 84.4 78.1 95.8
60 20 72.1 98.3 82.0 78.1 91.1
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the 40 and 60 m images (Figs. 4D and 4E). The pixel-level error matrices show the 
details of the classification results when compared to the reference data (Tables 8 and 
9). Low-elevation occurrence of the broadleaf deciduous tree PFT was reduced at 40 
m and 60 m compared to the previous results. Areas of needleleaf evergreen tree were 
more continuous and consistent across spatial resolutions when the single set of end-
members selected at 20 m spatial resolution was used. Use of the 20 m endmembers 
on the 40 and 60 m images resulted in higher overall accuracy and kappa values (Table 
5). The overall accuracy dropped by only 1.5% from 20 m to 40 m, compared to a 
9.8% decrease when the 40 m endmembers were used. The overall accuracy dropped 
by 4.4% from 20 m to 60 m, compared to an 8.8% decrease when 60 m endmembers 
were used.

Decreases in user’s and producer’s accuracies were moderated by using the 20 
m endmembers on the 40 m and 60 m spatial resolution images (Tables 6 and 7). 
The broad leaf deciduous tree and grass/herbaceous PFTs that exhibited the largest 
decreases in user’s accuracy at 40 and 60 m had much smaller decreases in user’s 
accuracy when 20 m endmembers were used (Table 6). Using 40 and 60 m endmem-
bers resulted in user’s accuracies below 60% when applied to images at those spatial 
resolutions, while using 20 m endmembers on the 40 m and 60 m images resulted 
in user’s accuracies no lower than 72%. Results were less consistent for producer’s 
accuracies (Table 7). Using 20 m endmembers on the 40 m image increased the pro-
ducer’s accuracies for the needleleaf evergreen tree and grass/herbaceous PFTs, but 
using 20 m endmembers on the 60 m image decreased producer’s accuracies for the 
same PFTs. 

Significance of Differences in Classification Accuracy 

With five different classifications, a total of 10 unique comparisons between clas-
sifications can be made to determine whether kappa values for a pair of classifications 
are significantly different. Seven of the 10 paired comparisons had statistically signifi-
cant differences in Z values (Table 10). Positive values in Table 10 indicate the clas-
sification in the leftmost column resulted in a higher kappa than the classification in 
the top row. Values > 1.65 or < -1.65 indicate a significant difference between the clas-
sifications with a 95% level of confidence. For the 40 and 60 m images, classifications 

Table 7. Pixel-Level Producer’s Accuracy (in percent) for Each Combination  
of Image and Endmember Resolution

Image 
resolution

Endmember 
resolution

Broadleaf 
deciduous 

tree

Needleleaf 
evergreen 

tree

Broadleaf 
deciduous 

shrub

Grass/ 
herbaceous Soil/rock

20 20 91.0 83.0 97.1 85.6 80.6
40 40 92.0 60.9 90.5 70.8 80.9
60 60 86.0 76.1 84.5 80.5 70.6
40 20 92.0 78.8 97.9 84.3 78.3
60 20 88.0 72.9 96.5 78.1 80.4
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using 20 m endmembers resulted in significantly higher accuracy than using endmem-
bers from the same spatial resolution. Moreover, there was not a significant difference 
between kappa values for the 40 and 60 m images when modeled by 20 m endmembers. 
The 20 m image had a significantly higher kappa value than the 40 m image if the 40 m 
image was modeled by 40 m endmembers. When the 40 m image was modeled by 20 
m endmembers, the 20 m image did not have a significantly higher kappa value. 

DISCUSSION

Coarsening image spatial resolution reduced classification accuracy, even when 
the same set of endmembers was used to model all images. Spectral mixing caused by 
spatial averaging increased confusion between PFTs as spatial resolution coarsened. 

Table 8. Pixel-Level Error Matrix for the 40 m AVIRIS Image Modeled Using  
the 20 m Endmember Library

Classification

Reference

Broadleaf 
deciduous 

tree

Needleleaf 
evergreen 

tree

Broadleaf 
deciduous 

shrub

Grass/
herbaceous Rock/soil

Broadleaf deciduous tree 103 19 3 9 0
Needleleaf evergreen tree 0 268 1 0 5
Broadleaf deciduous 

shrub
1 37 318 5 16

Grass/herbaceous 8 9 2 75 2
Rock/soil 0 7 1 0 184
Unclassified 0 0 0 0 28

Table 9. Pixel-Level Error Matrix for the 60 m AVIRIS Image Modeled Using  
the 20 m Endmember Library

Classification

Reference

Broadleaf 
deciduous 

tree

Needleleaf 
evergreen 

tree

Broadleaf 
deciduous 

shrub

Grass/
herbaceous Rock/soil

Broadleaf deciduous tree 44 10 1 6 0
Needleleaf evergreen tree 1 113 1 0 0
Broadleaf deciduous 

shrub
1 21 137 3 5

Grass/herbaceous 2 4 2 32 1
Rock/soil 0 7 1 0 82
Unclassified 2 0 0 0 14



 mapping plant types with aviris data 339

Spatial averaging did not take into account the point spread function of a coarser 
 spatial resolution sensor, and also reduced sensor noise through averaging, so clas-
sification accuracies could be lower if data from an actual 40 m or 60 m sensor were 
used. The characteristics of the training and accuracy polygons also affected accuracy 
at different spatial resolutions. Polygons were required to be at least 60 m in size and 
at least 75% dominated by a single PFT or land cover type. These requirements likely 
screened out smaller or more heterogeneous vegetation patches that could have been 
correctly classified at finer spatial resolution but would be incorrectly classified at 
coarser spatial resolution.

Coarsening the spatial resolution of the endmembers decreased classification 
accuracies more than coarsening the spatial resolution of the image alone. This result 
suggests differences in the spectral libraries created at each spatial resolution. Since 
image spectra were extracted from polygons with fairly homogeneous PFTs, spatial 
averaging of these spectra should have reduced the spectral variability within each 
PFT class. Class average RMSE (CAR) (Dennison and Roberts, 2003a) can be used 
to assess the spectral variability of endmembers within PFT classes. CAR calculates 
the mean RMSE of a set of endmembers by modeling all spectra from the same class 
or another class using a two-endmember SMA. In this case, CAR was used to find the 
mean RMSE of endmembers modeling all spectra within the same class. The CAR 
value for a class will increase as endmembers are less able to account for the spectral 
variability within a class (Dennison and Roberts, 2003a). 

With the exception of the broadleaf deciduous shrub class, CAR increased with 
coarsening spatial resolution, indicating higher spectral variability at coarser spa-
tial resolutions (Table 11). Increases in within-class spectral variability are at least 
partially due to spectral mixing occurring at the edges of training polygons. Pixels 
were extracted from polygons if their centroids were inside the polygon boundary. 
At coarser spatial resolutions, this makes it more likely that edge pixels will contain 

Table 10.  Z-Statistic Results Comparing the Kappa Values from  
the Five Classificationsa

40 m  
modeled with 20 
m endmembers

60 m  
modeled with 20 
m endmembers

40 m  
modeled with 40 
m endmembers

60 m  
modeled with 60 
m endmembers

20 m modeled 
with 20 m 
endmembers

1.33 2.49 7.25  4.59

40 m modeled 
with 20 m 
endmembers

1.42 4.97  3.36

60 m modeled 
with 20 m 
endmembers

2.49  1.68

40 m modeled 
with 40 m 
endmembers

–0.49

aSignificant differences are indicated in bold italic type.
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mixed reflectance from both the targeted PFT and another PFT or land cover type. 
Thus, spectral mixing at the edges of polygons may have reduced classification accu-
racies at coarser spatial resolutions by increasing spectral variability in both the train-
ing and accuracy assessment data. One possible solution to reducing edge mixing is to 
buffer training polygons along their inside edges, reducing the possibility that a pixel 
that partially covers another PFT will get selected. However, buffering can greatly 
reduce the number of spectra extracted for each polygon, and eliminate smaller poly-
gons entirely. 

PFT heterogeneity and patch size will ultimately determine how well PFT map-
ping using imaging spectrometer data scales to coarser spatial resolutions. The large, 
relatively homogeneous polygons used in this study produced high accuracies even at 
60 m spatial resolution. Lower accuracies are likely in ecosystems with higher spatial 
heterogeneity in PFTs. Given that future spaceborne imaging spectrometers are likely 
to map large areas of the Earth’s land surface, further work should focus on assess-
ing PFT mapping across a broad range of ecosystems and terrain characteristics. An 
additional challenge for a spaceborne global mapping mission is identifying appropri-
ate PFTs that can be applied at regional-to-global scales. PFTs identified within the 
Wasatch Range study area may not be applicable or classifiable in other regions of 
North America or the world. 

CONCLUSIONS

Classification of PFTs using AVIRIS data acquired over the Wasatch Range 
 produced high overall accuracies at all spatial resolutions, but classification accuracy 
did decrease with coarsening spatial resolution. Spectral mixing in pixels situated on 
the edges of polygons likely increased the spectral variability within the 40 and 60 
m endmember libraries, but declines in accuracy were moderated when endmembers 
were selected from the 20 m resolution image. Additional analysis using a range of 
polygon sizes and buffering is needed to determine whether the increased accuracy pro-
vided by higher spatial resolution endmembers is solely due to reduced edge mixing. If 
edge mixing is eliminated as a source of error and “more pure” higher spatial resolu-
tion endmembers are still found to confer an advantage for mapping PFTs in coarser 
spatial resolution images, data from finer resolution airborne or spaceborne imaging 
spectrometers may be valuable for creating endmember libraries for a coarser resolu-
tion global dataset. Finally, although classification accuracy is apparently reduced at 
coarser spatial resolutions, the tradeoffs between accuracy and global coverage may 

Table 11. Class Average RMSE from the 20 m, 40 m, and 60 m  
Endmember Libraries 

Endmember 
library

Broadleaf 
deciduous tree

Needleleaf 
evergreen tree

Broadleaf 
deciduous 

shrub

Grass/
herbaceous Rock/soil

20 m 0.0128 0.0272 0.0466 0.0120 0.0380
40 m 0.0287 0.0226 0.0309 0.0295 0.0481
60 m 0.0103 0.0349 0.0361 0.0354 0.0549
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still be acceptable for providing otherwise unobtainable inputs for global-scale pro-
cess modeling. 
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